
ptg17123584

I I I I I I I I I

CISCO ~

Virtual Routing
in the Cloud

ciscopress.com

Arvind Durai
Stephen Lynn

Amit Srivastava

ptg17123584

9781587144943_Durai_Virtual_Routing_Cloud_CVR.indd 2 4/8/16 1:25 PM

Exclusive Offer - 40% OFF

Cisco Press
Video Training
live lessons·®
ciscopress.com/video
Use coupon code CPVIDE040 during checkout.

Video Instruction from Technology Experts

Advance Your Skills

Get started with fundamentals,

become an expert, or get certified.

livelessons·®

Train Anywhere

Train anywhere, at your

own pace, on any device.

Learn

Learn from trusted author

trainers published by Cisco Press.

Try Our Popular Video Training for FREE!
ciscopress.com/video

Explore hundreds of FREE video lessons from our growing library of Complete Video

Courses, Livelessons, networking talks, and workshops.

http://www.ciscopress.com/video
http://www.ciscopress.com/video
http://www.ciscopress.com/video

ptg17123584

Cisco Press
800 East 96th Street

Indianapolis, IN 46240 USA

Virtual Routing
in the Cloud

Arvind Durai, CCIE No. 7016

Stephen Lynn, CCIE No. 5507 & CCDE No. 20130056

Amit Srivastava

ptg17123584

Virtual Routing in the Cloud
Arvind Durai, CCIE No. 7016
Stephen Lynn, CCIE No. 5507 & CCDE No. 20130056
Amit Srivastava

Copyright© 2016 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

Printed in the United States of America

First Printing April 2016

Library of Congress Control Number: 2016934921

ISBN-13: 978-1-58714-494-3

ISBN-10: 1-58714-494-8

Warning and Disclaimer
This book is designed to provide information about CSR 1000V router and adoption of NFV technology
in the cloud environment. Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

ii Virtual Routing in the Cloud

ptg17123584

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise
of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Publisher Paul Boger

Associate Publisher Dave Dusthimer

Business Operation Manager, Cisco Press Jan Cornelssen

Executive Editor Brett Bartow

Managing Editor Sandra Schroeder

Development Editor Ellie Bru

Senior Project Editor Tonya Simpson

Copy Editor Kitty Wilson

Technical Editor(s) Matt Bollick, Ray Wong

Editorial Assistant Vanessa Evans

Cover Designer Mark Shirar

Composition Mary Sudul

Indexer Brad Herriman

Proofreader The Wordsmithery LLC

iii

ptg17123584

About the Authors
Arvind Durai, CCIE No. 7016, is an advanced services principal architect for Cisco

Systems. His primary responsibility in the past 17 years has been in supporting major

Cisco customers in the enterprise sector, including financial, retail, manufacturing,

e-commerce, state government, utility (smart grid networks), and health-care sectors.

Some of his focuses have been on security, multicast, network virtualization, and

data center, and he has authored several white papers and design guides on various

technologies. He has also been involved in data center design for more than 10 years and

has designed many enterprise private cloud data center environments.

Arvind maintains two CCIE certifications: Routing and Switching, and Security. He holds

a Bachelor of Science degree in Electronics and Communication, a Master’s degree in

Electrical Engineering (MS), and a Master’s degree in Business Administration (MBA).

He is a coauthor of two Cisco press books, Cisco Secure Firewall Services Module and

TcL Scripting for Cisco IOS.

He has coauthored IEEE WAN smart grid architecture and has been a panel member for

IEEE publications. Arvind also has presented in many industry forums, such as IEEE and

Cisco LIVE.

Stephen Lynn, CCIE No. 5507 (Routing & Switching/WAN/Security) and CCDE No.

20130056, is an architect at Cisco Systems in the U.S. federal area. He has been with

Cisco for more than 16 years and is a subject matter expert on enterprise network

architecture. His focus is on large-scale network designs, including campus, WAN,

and data center. As a recognized expert within Cisco and in the industry, Stephen

has been working on large-scale, complex wide-area network designs in an enterprise

environment. Stephen’s focus has been on architectural designs involving 1,000 nodes

to more than 10,000 nodes, leveraging technologies such as DMVPN, GET VPN, and

FlexVPN to provide transport encryption and network segmentation over IP transport

such as MPLS/Ethernet. Other areas of focus include high availability and convergence,

QoS, Performance Routing (PfR), and network virtualization.

Stephen is a well-known speaker who has presented at several conferences and seminars

worldwide. He holds a Bachelor of Science in Electrical Engineering from the University

of Virginia. Stephen is based out of the Cisco office in Washington, DC.

Amit Srivastava is a senior manager with Equinix, Inc. At Equinix his team is responsible

for global network and product fulfillment for Equinix’s Cloud Exchange platform.

Amit formerly worked as a technical leader with Cisco Systems, Inc. He has developed,

tested, and enhanced network software for nearly 14 years. Before joining Cisco, he held

positions in software application development, management, and testing.

Amit was involved in developing embedded applications for mobile devices in his

engagement with Hughes Networks prior to joining Cisco.

Amit has been involved in the development cycles of new operating systems such as IOS

XR and IOS XE and delivering features such as MPLS-based Layer 2 and 3 VPNs and

traffic engineering. With IOS XE, Amit has worked with platforms such as ASR 1000

and CSR 1000V right from their inception, delivering enterprise-level features like IPsec,

NAT, firewalls, NetFlow, AVC, and QoS. Amit holds a Bachelor of Science degree in

Electrical Engineering.

iv Virtual Routing in the Cloud

ptg17123584

About the Technical Reviewers
Ray Wong is a technical marketing engineer (TME) for Cisco Systems. In his more than

eight years with Cisco, he has worked in multiple roles, from system testing, to solution

design and validation, to technical marketing. He was a major contributor in the Cisco

Virtual Office (CVO) solution. Together with his TME role for Cisco Cloud Services

Router (CSR 1000V), he is also a subject matter expert for IOS VPN, including DMVPN,

GET VPN, and FlexVPN.

Ray holds a Bachelor of Science degree in Computer Science and Mathematics from the

University of Wisconsin–Madison. He is also a frequent speaker at Cisco Live events.

Matt Bollick has worked in technical marketing at Cisco for the past 19 years, running

an obstacle course of technologies, including SNA, ATM and Ethernet switching, service

provider aggregation, metro Ethernet, network management, and enterprise branch

architectures. He has also worked on a variety of products, including the Cisco 7500,

7200, LS1010, 8540, 7300, and Cisco 10K before finally settling down for the past

several years as the platform architect for the ISR series of branch routers. In his spare

time, Matt is an avid SCUBA diver in North Carolina.

v

ptg17123584

Dedications

From Arvind:

I am thankful to God for everything. I would like to dedicate this book to my wife,

Monica, and my son, Akhhill, who have been extremely patient and supportive during

my long working hours. I am grateful to my parents for their blessings and for providing

me with strong values.

I would also like to thank my parents-in-law, brother and family, and brother-in-law and

family for all their support and wishes.

From Stephen:

I would like to dedicate this book to my wonderful and beautiful wife, Angela, and to

my two incredible children, Christina and Ethan. Without your love, sacrifice, and sup-

port, this book would not have been possible. Thanks for putting up with the late nights

and weekends I had to spend behind the computer and on conference calls instead of

playing games, building Legos, and doing other fun family activities.

From Amit:

I would like to dedicate this book to my wife, Reshma, my daughter, Aarushi, and my

parents. Without their love and support, I would never have been able to work on this.

I would also like to thank my parents-in-law and my entire extended family. Their love

and support have always been unconditional.

vi Virtual Routing in the Cloud

ptg17123584

Acknowledgments
Arvind Durai:

Thanks to my wife, Monica, for encouraging me to write my third book. She inspired

me and helped keep my spirits up all the time and provided her thoughts in multiple sec-

tions of this book. Thank you!!!

It was great working with Amit and Stephen. Their excellent technical knowledge and

passion for writing made this writing experience a pleasure. I am looking forward to

more years of working together as colleagues and friends.

Stephen Lynn:

A debt of gratitude goes to my coauthors, Arvind and Amit. Your knowledge and dedi-

cation to this project are appreciated more than you will ever know.

Acknowledgements for this book wouldn’t be complete without mentioning my wife,

Angela, who has endured and supported me through all my endeavors.

Amit Srivastava:

Special thanks to Arvind and Stephen, from whom I learned a lot while writing this book.

I look forward to their continued support.

Our Acknowledgement

Many people within Cisco have provided feedback and suggestions to make this a

great book. Thanks to all who have helped in the process, especially Ray Blair and Matt

Falkner, for providing insightful input during the proposal process. A special thank you

goes to our technical editors, Ray Wong and Matt Bollick, for your technical accuracy

and insight into the technologies. Special thanks to Dimitris Vlassopoulos for providing

his NSO lab setup and sharing his insights!

A big thank you goes out to the production team for this book, Brett Bartow, Ellie Bru,

and Tonya Simpson, who have been incredibly professional and a pleasure to work with,

and for making this book possible.

vii

ptg17123584

Contents at a Glance

Introduction xv

Chapter 1 Introduction to Cloud 1

Chapter 2 Software Evolution of the CSR 1000 37

Chapter 3 Hypervisor Considerations for the CSR 59

Chapter 4 CSR 1000V Software Architecture 95

Chapter 5 CSR 1000V Deployment Scenarios 141

Chapter 6 CSR Cloud Deployment Scenarios 185

Chapter 7 CSR in the SDN Framework 223

Chapter 8 CSR 1000V Automation, Orchestration, and Troubleshooting 247

Appendix A Sample Answer File for Packstack 293

Index 319

Reader Services
Register your copy at www.ciscopress.com/title/9781587144943 for convenient access

to downloads, updates, and corrections as they become available. To start the registra-

tion process, go to www.ciscopress.com/register and log in or create an account*. Enter

the product ISBN 9781587144943 and click Submit. Once the process is complete, you

will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive

discounts on future editions of this product.

viii Virtual Routing in the Cloud

http://www.ciscopress.com/title/9781587144943
http://www.ciscopress.com/register

ptg17123584

Contents
Introduction xv

Chapter 1 Introduction to Cloud 1

Evolution of the Data Center 1

Data Center Architecture Building Blocks 2

Introduction to Virtualization in the Data Center 4

Evolution of Virtualization 5

Conceptual Architecture of Virtualization 5

Types of Virtualization Technologies 6

Server Virtualization 6

Types of Server Virtualization 8

Storage Virtualization 9

Types of Storage Virtualization 11

Network Virtualization 12

Network Virtualization Evolution 13

Types of Network Virtualization 14

Service Virtualization 15

Introduction to the Multitenant Data Center 16

Introduction to Cloud Services 18

Infrastructure as a Service (IaaS) 18

Platform as a Service (PaaS) 19

Software as a Service (SaaS) 20

Cloud Deployment Models 20

Cloud Design Considerations 21

Domain 1: Infrastructure and Environmental 22

Domain 2: Abstraction and Virtualization 23

Domain 3: Automation and Orchestration 23

Domain 4: Customer Interface 24

Domains 5 and 6: Service Catalog and Financials 24

Domains 7 and 8: Platform and Application 24

Domain 9: Security and Compliance 24

Domain 10: Organization, Governance, and Process 25

Enterprise Connectivity to the Cloud 26

Internet for Transport 26

Direct Connectivity to a Cloud Provider 28

Enterprise Cloud Adoption Challenges 29

ix

ptg17123584

Software-Defined Networking 30

Open Networking Foundation 31

OpenDaylight Project 32

Network Function Virtualization 33

OpenStack 34

Summary 35

Chapter 2 Software Evolution of the CSR 1000 37

IOS Software Architecture 37

IOS XE Architecture 39

The IOS XE Kernel 40

The IOS Daemon 40

The Forwarding Manager 41

The Interface Manager 41

The Platform Manager 41

Cisco ASR 1000 System Architecture Overview 41

Route Processor 42

Embedded Service Processor 42

SPA Interface Processor 43

Cloud Service Router 1000V Overview 44

Deployment Requirements 45

Elastic Performance and Scaling 47

Rapid Deployment and Routing Flexibility in the Cloud 49

CSR 1000V Deployment Examples 50

Secure Cloud VPN Gateway 50

Network Extension from Premises to Cloud 51

Segmentation Within a Cloud 52

CSR 1000V Key Features 52

Summary 57

Chapter 3 Hypervisor Considerations for the CSR 59

Understanding Operating Systems 59

Operating System Design 60

Physical Resource Management 60

Software Access to Physical Resources 62

Kernels 63

Microkernels 63

x Virtual Routing in the Cloud

ptg17123584

Hybrid Kernels 64

The Cisco IOS Kernel 64

The Boot Process 66

Linux Memory Management 69

Linux Swap Space and Memory Overcommit 69

Linux Caching 71

Understanding Hypervisors 71

How Does a Hypervisor Compare to an Operating System? 72

Type 1 Hypervisor Design 74

Monolithic Architecture 74

Microkernel Architecture 74

Core Partitioning 75

ESXi Hypervisor 75

Architectural Components of ESXi 75

The VMkernel 75

Components of the VMkernel 76

Processes Running on the VMkernel 77

Device Drivers 78

File Systems 79

Management 80

KVM 82

Architectural Components of KVM/QEMU 84

Guest Emulator (QEMU) 85

Management Daemon (Libvirt) 88

User Tools (virsh, virt-manager) 89

Hyper-V 91

Xen 92

Summary 94

Chapter 4 CSR 1000V Software Architecture 95

System Design 95

Virtualizing the ASR 1001 into the CSR 1000V 98

CSR 1000V Initialization Process 99

CSR 1000V Data Plane Architecture 100

CSR 1000V Software Crypto Engine 103

Life of a Packet on a CSR 1000V: The Data Plane 103

Netmap I/O 104

xi

ptg17123584

Packet Flow 106

Device Initialization Flow 106

TX Flow 107

RX Flow 108

Unicast Traffic Packet Flow 109

Installing the CSR 1000V on a VMware Hypervisor 110

Bringing Up the VM with the CSR 1000V on ESXi 110

Installing the CSR 1000V on a KVM Hypervisor 126

Bring Up the CSR 1000V as a Guest 126

Performance Tuning of the CSR 1000V 137

Summary 139

Chapter 5 CSR 1000V Deployment Scenarios 141

VPN Services 141

Layer 2 VPNs 141

Layer 3 VPNs 142

Site-to-Site VPNs 143

Remote Access VPNs 147

Use Cases for the CSR 1000V as a VPN Service Gateway 148

Enterprise Data Center Network Extension 148

The CSR 1000V as a VPN Gateway 148

CSR for Secure Inter-Cloud Connectivity 152

Remote VPN Access into the Cloud 153

BGP Route Reflector Use Case for the CSR 155

The CSR 1000V in a Hierarchical Route Reflector Use Case 157

Planning for Future Branch Design with the CSR 1000V 162

Evolution of Branch Virtualization 164

LISP and CSR 168

LISP Terminology 169

The LISP Data Plane 171

The LISP Control Plane 171

Typical LISP Use Cases 175

IP Mobility 175

IPv6 Migration 175

Network-to-Network Connectivity 175

Network-to-Network Interconnection Topology and Configuration 176

Summary 183

xii Virtual Routing in the Cloud

ptg17123584

Chapter 6 CSR Cloud Deployment Scenarios 185

CSR in a Multitenant Data Center 185

Cloudburst 190

Direct Access Model 191

Redirection Access Model 192

The Cisco Inter-Cloud Fabric 194

Private Cloud Deployment with CSR in OpenStack 195

Introduction to OpenStack 196

Primary Use Case for OpenStack 196

OpenStack Components 197

CSR Within OpenStack 206

CSR 1000V as a Neutron Router 206

CSR 1000V as a Tenant Router 209

CSR 1000V in a Public Cloud 211

Amazon Web Services Deployment for the CSR 211

Amazon Web Service Solutions 211

Routing in AWS Clouds 212

CSR 1000V Deployment in AWS 216

Instantiate a CSR in AWS 217

Summary 222

Chapter 7 CSR in the SDN Framework 223

Deploying OpenStack 225

CSR as an OpenStack Tenant Deployment 235

Instantiate CSR Plugin to OpenStack 242

Summary 245

Chapter 8 CSR 1000V Automation, Orchestration, and Troubleshooting 247

Automation 248

BDEO 248

NSO (Tail-f) 249

NSO Example for NFV Orchestration with OpenStack (Service

Chain) 252

Orchestration 267

Virtual Managed Services (VMS) 267

Cisco Prime Network Services Controller (PNSC) 269

CSR 1000V Troubleshooting 271

Architecture Overview 271

xiii

ptg17123584

I/O Configuration 272

vSwitch 272

PCI Passthrough 274

SR-IOV (Single Root I/O Virtualization) 274

Host Configurations 275

Debugging Packet Loss 276

High-Level Packet Flow 276

ESXi Packet Debugging 289

Summary 292

Appendix A Sample Answer File for Packstack 293

Index 319

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions

used in the IOS Command Reference. The Command Reference describes these

conventions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In

actual configuration examples and output (not general command syntax), boldface

indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.

■ Vertical bars (|) separate alternative, mutually exclusive elements.

■ Square brackets ([]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xiv Virtual Routing in the Cloud

ptg17123584

xv

Introduction
In today’s bus iness environment, enterprise customers are under more pressure than ever

to innovate and adapt to new challenges and market conditions. Enterprises want to

focus their investments on their core business while reducing IT spending.

The cloud offers enterprise customers many benefits, such as lower costs and flexibility.

The cloud’s elastic model enables a company to increase and decrease infrastructure

capacity on demand. The usage-based model offered by the cloud helps governments

and enterprises reduce costs while increasing business agility by moving applications to

the cloud and consuming infrastructure resources from the cloud. This leads to enter-

prises looking at consuming network and IT services from the cloud rather than investing

in in-house operations.

The enabling technology in unlocking the cloud is virtualization. Virtualization abstracts

and isolates the computing hardware and underlying infrastructure into a logical

resource pool, allowing key capabilities such as resource sharing, virtual machine (VM)

isolation, and load balancing. These capabilities provide the fundamental building blocks

for an agile and scalable cloud environment with rapid provisioning, workload sharing,

and increased availability.

The surge in applications and IT service consumption moving to the cloud highlights the

need for evolved technologies and network elements in the cloud that offer security

and visibility to help businesses with performance and compliance verification. Evolved

networks and network services enable the provider to offer cloud services with security,

performance, and availability. The Cisco Cloud Services Router 1000V (CSR 1000V) is a

fully virtualized software router that offers a platform for enterprises to extend the data

center to the cloud and to enforce their policies in the cloud.

The Cisco CSR 1000V provides a transparent solution for extending IT services into

provider-hosted clouds. The solution offers a rich set of features, including VPN, fire-

wall, Network Address Translation (NAT), application visibility, and WAN optimization.

These functions allow enterprise and cloud providers to build highly secure, scalable,

and extensible cloud networks. In addition, the Cisco CSR 1000V supports a rich set of

application programming interfaces (API), providing robust integration into software-

defined networking (SDN) for automated provisioning of these networks and network

services and allowing simplified management and orchestration, which help in driving

down costs further.

Networks inherently carry vast amounts of information, including user locations, device

capabilities, topologies, and end-to-end performance characteristics. When exposed

appropriately through well-defined APIs, such information can be consumed by cloud

applications to fine-tune and customize their efficient delivery. The future holds the

promise of increasingly rich application–network interactions.

The primary objective of this book is to simplify design aspects and architectural details

in a unified resource, augmenting Cisco’s existing collection of installation and configura-

tion guides for various cloud-related products and solutions. This book covers the key

ptg17123584

xvi Virtual Routing in the Cloud

virtualization technologies used in the cloud; it provides a concise, accessible presenta-

tion of cloud network services and the different types of operational environments in the

cloud. Cloud networking service and delivery concepts are reinforced with illustrative

examples; architecture of SDN orchestration and its connection to Cisco CSR 1000V

network services are introduced and elaborated upon. In addition, the book reviews the

building blocks of the CSR 1000V, covering its architecture and software design.

This book also explains network design and deployment scenarios for the Cisco CSR

1000V, which influence its pivotal role in the cloud environment. Furthermore, the book

distills how intelligent networks help providers simplify cloud service management and

reduce costs through efficient scaling and optimized capacity utilization. This book

provides architectural knowledge that contextualizes the roles and capabilities of these

advanced networks and network services, along with discussions of design factors essen-

tial for their insertion into cloud services:

■ The book introduces the readers to the cloud and provides an overview to different

types of cloud operational environments, including a prelude to the evolution of

virtual routers.

■ Virtualization is introduced as a pivotal technology in cloud adoption.

■ The book covers the details of the operating systems and hypervisors on which vir-

tual routers run. It provides details pertaining to the operational aspects of virtual

routing.

■ The reader is introduced to the architecture and software design of the Cisco CSR

1000V virtual router. The reader is subsequently introduced to a comprehensive set

of APIs that can be leveraged by SDN.

■ The book focuses on different designs and use cases and configuration examples for

routing, secure extension of enterprises to the cloud, and VM mobility. It illustrates

how the CSR 1000V addresses the challenges that an architect faces in migrating

toward the cloud.

■ This book covers the different management techniques available to simplify opera-

tional and monitoring aspects of cloud services.

Who Should Read This Book?
This book is targeted for a technical audience responsible for architecture, design, and

deployment of data center and enterprise cloud services.

This book also caters to the next generation of cloud network operators to implement

enterprise features in the cloud, leveraging the CSR 1000V.

After reading this book, you will have a better understanding of the following:

■ Key virtualization concepts and cloud models

■ CSR 1000V software architecture and design

ptg17123584

xvii

■ SDN and the CSR 1000V platform and API

■ Simplification of data center multitenant design with the CSR 1000V

■ Use cases for the CSR 1000V to simplify enterprise routing in the cloud

■ Operational visibility, management, and control of an enterprise network in the

cloud

How This Book Is Organized
This book is organized into the following chapters.

Chapter 1: Introduction to Cloud

This chapter introduces the concept of cloud computing. It describes the various

cloud models available and how virtualization enables the present-day transition to

the cloud. Multitenant data center designs are illustrated, and the concept of SDN is

introduced here.

Chapter 2: Software Evolution of the CSR 1000

This chapter introduces the software evolution of the Cisco Cloud Services Router

(CSR 1000V). It covers the infrastructure requirements and design considerations of a

CSR 1000V, and it discusses the features that a CSR 1000V brings to the virtual rout-

ing realm.

Chapter 3: Hypervisor Considerations for the CSR

This chapter describes the different hypervisor technologies available on servers to man-

age the hardware resources for virtual machines. Hypervisor technology selection is an

important consideration when deploying the CSR 1000V.

Chapter 4: CSR 1000V Software Architecture

This chapter describes the software design of the CSR 1000V. It details the control-

plane and data-plane design of the CSR 1000V. It also describes licensing requirements,

software implementation, and packet flow related to the CSR 1000V.

Chapter 5: CSR 1000V Deployment Scenarios

This chapter describes the common deployment scenarios for the CSR 1000V. It depicts

these scenarios using configuration examples.

ptg17123584

xviii Virtual Routing in the Cloud

Chapter 6: CSR Cloud Deployment Scenarios

This chapter describes CSR 1000V deployments in the cloud and data center

environments.

Chapter 7: CSR in the SDN Framework

This chapter describes SDN components. It also provides an overview of the CSR 1000V

in the OpenStack framework. Case studies in this chapter aim to educate the reader on

using the APIs for user-defined outcomes.

Chapter 8: CSR 1000V Automation, Orchestration, and
Troubleshooting

This chapter provides an overview of CSR 1000V management tools for orchestration,

monitoring, and troubleshooting. It also illustrates the operation workflow for deploying

a CSR 1000V.

ptg17123584

This chapter introduces the concept of cloud computing . It provides an overview of the

evolution from the physical data center to the concept of virtualization within the data

center. It describes the various cloud models available and how virtualization is enabling

the present-day transition to the cloud. The chapter illustrates multitenant data center

designs and introduces the concept of software-defined networking (SDN) .

Evolution of the Data Center
A data center is a facility that houses computer systems and data storage. These systems

are interconnected by high-speed network infrastructure to facilitate information

dissemination and processing. The data center is in the center of the modern technology

evolution and plays a key role in the paradigm shift in how the information and

infrastructure system interact and integrate.

Traditionally, data centers have relied heavily on physical hardware. The physical size

of a data center is defined by the infrastructure and the space in which the hardware is

hosted. These characteristics in turn define the amount of data that can be stored and

processed in that location.

In the early second half of the 20th century, the early predecessors of the data center

were large mainframes that occupied entire rooms. The first mass-produced mainframe

computer was delivered in the 1950s. This machine, the UNIVAC-I mainframe com-

puter , was the size of a one-car garage 14 feet by 8 feet by 8.5 feet high, and it weighed

29,000 pounds. It could perform 1905 instructions per second. Despite its massive size,

the UNIVAC was only a fraction as powerful as today’s computers. The A9 processor

in an iPhone 6s is more than 6 million (106) times more powerful than the UNIVAC. In

the days when IT decisions revolved around the mainframe, everything from hardware,

operating system, and applications that ran on top of it had to be made on an enterprise

scale. However, all of these components ran within one device, offering limited scalabil-

ity and flexibility.

Introduction to Cloud

Chapter 1

ptg17123584

2 Chapter 1: Introduction to Cloud

During the 1980s, the computer industry experienced a transition that brought

microcomputers and personal computers into wider use in business. This transition

accelerated through the 1990s as microcomputers began filling the old mainframe

computer rooms and functioning as servers. These rooms became known as data

centers. Gone were the mainframes that filled entire rooms. In their place were rack-

mountable servers.

In the early stage of data center evolution, enterprises built distributed data centers based

on their business and IT requirements. As business opportunities continued to expand,

enterprises required better data center services and holistic management strategy. The

demands for higher scalability, increased uptime, and higher data bandwidth made it hard

to satisfy business requirements with the distributed data center model.

These requirements drove enterprises to consolidate their data centers into centralized

locations. They constructed dedicated facilities with dedicated cooling infrastructure,

redundant power distribution equipment, and high-speed network fabric capable of

supporting tens of thousands of servers to enable businesses to host a range of services.

In the process of centralizing the data centers , distributed servers and storage devices

were integrated, along with data and applications. The integration of the systems and data

storage streamlined the infrastructure of the data center, allowing for greater sharing and

utilization of system resources. The exercise also consolidated many arduous processes,

such as system management, disaster recovery, and data backup, and contributed to

enhanced IT services with unified management and increased business continuity.

The latter years of the 2000s saw a shift in the data center paradigm. Studies have shown

that data center resources are underutilized; on average, these studies have found,

data centers are only 20% utilized. Much of that underutilization is due to application

silos with dedicated network, processing, and storage resources. Enterprises have been

increasingly pressed to reduce IT spending while increasing business agility to launch

new services. At the same time, users have increased expectations to be able to access

information from anywhere, anytime, and using any device. These forces together have

ushered in the era of cloud computing.

Today, data centers leverage virtualization technologies and cloud services to improve

resource utilization and increase business agility and flexibility to quickly respond to

rapidly changing business requirements. A variety of data center service models are

available to enterprises. Software as a Service (SaaS) , Platform as a Service (PaaS) , and

Infrastructure as a Service (IaaS) are data center cloud offerings that offer different

tiers of service-level considerations. After reading this chapter, you will have a better

understanding of these concepts .

Data Center Architecture Building Blocks

Data center architecture should include a clear vision of the technology evolution in the

future to avoid the entire facility being restricted by the least-scaling components in the

building blocks. A typical data center consists of the following functional blocks:

ptg17123584

Evolution of the Data Center 3

■ Facility—This block is the building that houses the data center. It provides robust

and redundant power, cooling, and security for the data center. Power consumption

and efficiency are top concerns facing data center managers because the power bill

is generally the largest operating cost. It’s also critical to ensure that a facility has

sufficient power, cooling, and space for future growth. When data centers are built,

they are designed for a specific power budget and cooling capacity. However, over

time these needs tend to increase, and the data center runs out of capacity even

though there is plenty of available space.

■ Network fabric—The network fabric provides data transport and connectivity

between entities within a data center. The fabric must have multiple-link redundancy

and plenty of capacity for application traffic. It should offer simplified operation

that has the complete view of the fabric. Going forward, services such as security

and load balancing should be embedded into the fabric to increase the speed and

simplify the management of these services.

■ Services—This block is composed of network and security services, such as server

load balancing, Secure Sockets Layer (SSL) or IPsec VPN offloading , application

firewall, intrusion prevention, network analysis, and “packet capture” are examples

of some of these services, although the list can change greatly depending on the

particular requirements of the data center.

■ Compute—This functional block includes servers and dedicated appliances, which

are special types of single-purpose servers. This block typically includes rack-

mounted or blade servers for efficient space, power, and cooling. These servers

generally provide high performance, with plenty of CPU cores, and have as much

memory as is practical to make the most efficient use of space.

■ Storage—This functional block provides data storage services to the data center.

The servers in the compute block either connect to a dedicated storage-area net-

work (SAN) for block-based storage or use network-attached storage (NAS) systems

for file-based storage.

Tip Raw volumes of storage are created in block-based storage , and each block can be

controlled as an individual hard drive. Block-based storage can be used to store files, as

well as special applications such as databases. This type of storage format is much more

efficient and reliable than file-based storage.

File-based storage, the most commonly used type of storage, stores files and folders and

provides the same visibility to all the users accessing the system. This type of storage is

very inexpensive to maintain, and it’s simple to integrate access control with a corporate

directory. However, it is less efficient than block-based storage.

Traditional architectures for data centers leverage discrete tiers of servers for comput-

ing, where each tier uses dedicated servers to execute specific functions. The most well-

known example is the three-tiered architecture, which consists of web, application, and

database servers.

ptg17123584

4 Chapter 1: Introduction to Cloud

While the discrete multitiered architecture served as the de facto data center design in

the early 2000s, rapid IT expansion and a desire to quickly roll out new applications

highlight these shortfalls of the architecture:

■ Lack of IT agility

■ Scalability problems for virtualized workloads

■ Inability to scale to new unstructured data environments

Tip Unstructured data refers to information that does not have a predefined data

model. This type of data is often text centric but may include data such as dates,

numbers, and facts. With a data structure that is not of a predefined format, it is hard for

traditional programs to compare and extract the stored information. This unstructured

data is very prevalent in the age of Facebook and other social media sites. Techniques

such as data mining and text analytics are used to provide different methods for finding

patterns in otherwise unstructured data sets.

Until very recently, storage, computing, and network resources were separate physical

components that were managed separately. Even applications that interacted with these

resources, such as system management and monitoring software, had different security

and access policies.

Introduction to Virtualization in the Data Center
Virtualization is a word that has become synonymous with computers today. Given

today’s computing requirements, virtualization is an absolute necessity in the present-day

work environment. Chances are that any person using a physical computer in today’s

world will be inconspicuously exposed to some form of virtualization.

As the word suggests, virtualization involves creating a virtual version of something that

can be used without it being physically present where it is required. Take, for example, a

server hosting a website. A small business owner, Bob, makes money by selling furniture

online. He has a small server that can host his website and cater to a couple hundred

hits—or shoppers accessing his website—per minute. With Thanksgiving coming, Bob

expects his business to surge, along with the number of hits on his website. Today Bob

has three options:

■ He can buy a larger server for his website that, he is pretty sure, won’t be required

after the Thanksgiving rush.

■ He can do nothing and allow his service to deteriorate during the peak season when

his web users most need it.

■ He can go online and rent a server for his computing needs for the duration he

thinks it will be required. This server is actually a virtualized server sharing hardware

ptg17123584

Introduction to Virtualization in the Data Center 5

resources with virtual servers from other companies that are also trying to handle

the Thanksgiving rush.

You don’t have to be Sherlock to figure out the best option here. Virtualization is the

best option for Bob. He can rent a server and share the compute resource for the dura-

tion of the surge. This way, he doesn’t burn his dollars when his computing requirements

decline, and he gives his users the service they need for the duration of the surge.

Evolution of Virtualization

Let’s look at how our present-day virtualization technology evolved. During the 1950s

and 1960s, the mainframe was the workhorse when it came to processing data or solving

complex equations. Back in the day, the mainframe was one big computer that had all

the answers. The world then moved on to a distributed architecture, with all computing

requirements serviced by different components in the system. Computing, storage, and

networking requirements were serviced by different entities. In some ways, virtualization

technologies bring back many of the shared resource models from the mainframe days.

Today your service provider virtualization cloud can cater to your computing, storage,

and networking requirements. Years of evolution have brought us to a model that is

actually similar to the mainframe architecture.

Here are a few benefits of virtualization:

■ Optimal utilization of hardware resources so that there is no spare capacity sitting

around unused

■ Redundancy because virtual servers typically aren’t tied to specific pieces of

hardware that can fail

■ Abstracted complexity so the virtual servers don’t have to be virtualization aware

■ Distributed storage, which offers high availability for data and faster failure

recovery

■ Cost-effectiveness because you pay for the capacity you need when you need it

Conceptual Architecture of Virtualization

As you look at the different virtualization technologies through the course of this chap-

ter, you will find some uncanny resemblances between them. Figure 1-1 shows a concep-

tual overview of virtualization.

The lowest layer is the physical layer you wish to virtualize. It can be a server blade,

a storage device, a network of storage devices, a network, or any physical entity you

wish to virtualize. On top of that is a virtualization layer, which is a piece of software or

hardware that controls access to the physical entities and presents these entities to the

instances running on it to ensure efficient utilization of the hardware and fair distribu-

tion of resources. The virtual server, or virtual machine, instances run on top of this piece

ptg17123584

6 Chapter 1: Introduction to Cloud

of software or hardware, using the virtual resources presented to it by the virtualization

layer. Some examples of virtual resources are network and storage virtual devices pre-

sented by the hypervisor to the virtual machine.

Tenants

Virtual Resource (VR)

Software Managing Physical Resource

x86 Architecture

Tenant 1 Tenant 2

Virtualization Layer

Physical Resources

VR2VR1

Figure 1-1 Conceptual Overview of Virtualization

Virtualization is a powerful concept. The lowest physical layer described might not be a

single device. You can extrapolate the same concept to a group of devices that are net-

worked together. You can also run virtualization with the virtualized instances (which is

called nested virtualization). The core concepts, however, do not change.

Types of Virtualization Technologies

Virtualization is classified mainly based on what is virtualized or what it solves. There are

three classification types:

■ Server virtualization

■ Storage virtualization

■ Network virtualization

Server, storage, and network virtualization together constitute a data center service.

Virtualization of these elements takes care of service virtualization.

Server Virtualization

The instruction sets for the x86 architecture were initially developed for embedded

systems and small computers. However, this architecture grew in features and capabil-

ity over the years. The original 32-bit architecture had a restriction of less than 4GB of

memory per system. However, when AMD burst onto the scene with its Opteron 64-bit

ptg17123584

Introduction to Virtualization in the Data Center 7

version of the x86, it introduced essentially limitless RAM address space. 264 bytes

of RAM will give you memory on the order of 1 billion gigabytes. Throw in a 64-bit

address bus, and you get much better I/O than with a 32-bit version.

Servers—or any hardware, for that matter—equipped with these processors are often

underutilized if they run an application on a single operating system. Virtualization

enables you to exploit the full capability of these modern-day masterpieces.

Without virtualization, an operating system manages the hardware and schedules it for

applications. Software is tightly coupled to the hardware because all of the hardware

resources are managed by a single OS. You run the applications that are supported by

that particular OS only.

With virtualization, a hypervisor runs on the server and provides logical isolation

between virtual instances sharing the same physical hardware. These virtual instances

are logically isolated from one another and behave as if they are running on their own

physical hardware. You run operating systems to manage an instance—that is, the view

the hypervisor gives you of the hardware resource (memory, CPU, networks, and so on).

Typically, instance is used as a synonym for a virtual machine.

With each virtual machine getting its share of the hypervisor-managed hardware resourc-

es, server virtualization ensures that you get the most out of your hardware.

The hypervisor virtualizes the x86 architecture. Memory, CPU, network cards, and other

physical resources are presented to the instances running on the hypervisor. The instanc-

es get their share of the physical resource from the hypervisor (vMem, vCPU, vNIC,

and so on). An instance runs an operating system (that is, a guest OS) using these virtual

resources. Multiple such instances can run on a single hypervisor. Applications run on

this guest OS as tenants, and the virtual resources given to this instance are scheduled by

the guest OS. Figure 1-2 shows the components of server virtualization.

Apps

Guest OS

vCPU vNIC vMem vStorage

Hypervisor

CPU DiskMemoryNIC

Figure 1-2 Components of Server Virtualization

ptg17123584

8 Chapter 1: Introduction to Cloud

Types of Server Virtualization

There are several different types of server virtualization:

■ Full virtualization—With this server virtualization technology, the hypervisor does

the heavy lifting. The hypervisor completely disassociates the guest OS from the

physical machine, and the guest OS is not aware that it is running in a virtualized

environment. The benefit of using this technology is that your guest OS doesn’t

need to be modified to run in such an environment.

■ Para-virtualization—This server virtualization technology offers a set of soft-

ware interfaces to the guest OS that are similar to the underlying physical server

resource but not identical. The guest OS is aware of the fact that the hypervisor is

presenting a virtual resource, and it is therefore referred to as an enlightened guest .

A para-virtualized guest OS is a modified operating system that runs optimally on

a hypervisor. However, this enlightenment means there is an inherent drawback to

para-virtualized hypervisors: You must write drivers to enlighten the guest operat-

ing systems. However, the performance benefits of para-virtualization are immense.

Many major operating system vendors have para-virtualization available today or

planned for the near future to take advantage of the significant performance ben-

efits it can provide. The Xen hypervisor is a prime example of para-virtualization.

Figure 1-3 shows an enlightened guest where tenants are aware that they are run-

ning in a virtualized environment.

Virtual Resources

Enlightened Guest

Makes the Guest Virtualization Aware

x86 Architecture

Hypervisor

Tenant 1 Tenant 2

VRF2VRF1

Virtual Layers

Physical Resources

Virtual Drivers

Figure 1-3 Para-virtualization

■ OS virtualization—This server virtualization technology has no hypervisor at all.

The host OS kernel allows multiple user spaces instead of one, thus providing

isolation to each guest application. This concept is commonly referred to as

containers . The upside of this approach is that the applications running within the

containers use regular OS calls, with no application rewrite needed to work within

such an environment. There does need to be some compatibility between the host

and guest operating systems. Changes in either one can potentially break a working

container. Figure 1-4 shows the elements of server virtualization.

ptg17123584

Introduction to Virtualization in the Data Center 9

Tenants Sharing
Virtual

Resources

View of
Consumed
Resources

Physical
Resources

Guest OS

Hypervisor

Guest OS Guest OS

Memory CPU Network

Virtualization Layer

vMEM vCPU vNIC vDevice vMEM vCPU vNIC vDevice

Apps Apps Apps AppsApps Apps

Figure 1-4 Server Virtualization

Chapter 3, “Hypervisor Considerations for the CSR,” covers in detail the different

hypervisor technologies used for CSR in a virtualizated environment.

Storage Virtualization

In its crudest form, storage involves a device connected to your computer storing all

your data. The computer writes and retrieves data from this storage device. The amount

of data that can be written onto the storage device is limited by the storage capacity

of this device. Needless to say, your computer connected to this storage is dependent

on it for all its storage requirements (assuming that the computer is not connected

to any other storage network). It is evident that this basic form of storage has some

shortcomings:

■ Storage and scalability are limited.

■ There is a single point of failure.

■ The complexity of the storage media must be exposed to the applications/OS or the

device controller.

■ Only one computer can write data to or read data from a storage device.

ptg17123584

10 Chapter 1: Introduction to Cloud

Storage virtualization combines a bunch of networked storage devices into what appears

to the users as a single storage entity. Specialized hardware or software manages the

complexity of a storage network and gives each device wanting access to the storage a

view of being directly connected to the storage media.

The Storage Networking Industry Association (SNIA) technical tutorial document

defines storage virtualization as follows:

The act of hiding, abstracting or isolating the internal functions of a storage (sub)

system or service from applications, host computers or general network resources

for the purpose of enabling application and network-independent management of

storage or data.

A storage system can be on a single disk or on an array of disks in any form, and

specialized hardware or software manages the physical storage. For example, RAID

(redundant array of inexpensive [or independent] disks) combines multiple physical disks

into a single logical unit to be used by applications. This gives the user data redundancy

because the data is stored on physically different devices. Two types of RAID are

possible: hardware RAID and software RAID. With hardware RAID, you set up the

multiple disks to function in a RAID configuration. The hardware RAID controller

presents these multiple disks to the operating system as a single disk. The operating

system is not aware of the multiple disks in RAID configuration. With software RAID,

the OS does the heavy lifting. The operating system knows about the RAID storage and

works accordingly.

A common storage virtualization mechanism is Network File System (NFS). NFS

has been around since the mainframe era. The concept of NFS is simple: A storage

repository on the network that can be accessed by computers on the network as if

it were directly connected. NFS enables remote hosts to mount file systems over the

network and interact with these file systems as though they were available locally.

NFS is typically based on UDP (NFSv2 or older) or TCP (NFSv3). Using RPC (Remote

Procedure Call), the NFS servers and clients communicate with each other, making the

remote file system directly accessible to the local machine.

NFS and RAID are common examples of storage virtualization. Today, NFS and RAID

are so popular that people use them without even being aware that they are using a form

of storage virtualization. Figure 1-5 shows the components of storage virtualization.

Today, storage virtualization is commonly associated with a large SAN (storage area

network) managed by a hardware or software virtualization layer that presents this vast

storage as a single block to the servers requiring storage. The virtualization software and

hardware sitting between the storage and the servers make the applications completely

oblivious to where their data resides. This eases the administrative task because admin-

istrators can manage the storage as if it were an entity. This simplifies the operation and

management of the storage system, offering scalability when there is a need for addi-

tional storage.

ptg17123584

Introduction to Virtualization in the Data Center 11

Physical or virtual servers using virtualized
storage as if it were a local disk.

Software Management Physical Storage

Storage Pools

Server

Virtual
Disk

Virtual
Disk

Server

Virtualization Layer

DrivesTapesDisk

Figure 1-5 Storage Virtualization

Types of Storage Virtualization

Broadly speaking, we can categorize storage virtualization in three ways:

■ Host based—With host-based virtualization, provisioning is done on the server

to define logical volumes. Host-based virtualization presents the underlying

storage to the operating system as a single disk. Regular device drivers manage the

underlying physical storage, while the software layer above those drivers intercepts

I/O calls and redirects them. Logical volume managers are examples of host-based

virtualization.

■ Storage device based—With this type, virtualization is brought to the storage

hardware itself. One master device takes over all the I/O calls and redirects to other

storage devices connected to it downstream. RAID is an example of storage device–

based virtualization.

■ Network based—With this type of virtualization, a network device sits between

the host and the storage device that will virtualize and redirect I/O requests. The

operating system is not aware of the virtualized storage resource it is using for

storage. No changes need to be made in the operating system when working with

network-based storage virtualization. The storage arrays and the network device that

is virtualizing the I/O calls are able to communicate. Network-based virtualization

combines the best features of host- and storage-based virtualization. The

intelligence is centralized to a network device, such as a switch or a router, so the

systems connected to the network can function independently and remain oblivious

to the virtualization taking place. In addition, there is no need to tailor the OS/guest

to make it work with network-virtualized storage.

ptg17123584

12 Chapter 1: Introduction to Cloud

As is the case with server virtualization, storage virtualization helps enterprises reap a

number of benefits:

■ Hidden complexity—With the virtualization layer abstracting the complexity,

it becomes very easy for admins to provision new storage and/or migrate to new

physical storage.

■ Thin provisioning—Most storage virtualization solutions enable you to overcommit

storage space with the help of thin provisioning. The concept enables operating

systems to use only the physical storage they actually need for storing data rather

than reserving all the potential storage they might need at any point in time. Thin

provisioning is based on the presumption that not all applications will access the

entire storage space allocated to them.

■ Performance and efficiency—Virtualization enables you to write portions of

your data across multiple storage devices simultaneously. This enhances the

overall performance and efficiency of the system. Overall performance improves

significantly, while reliability improves through the use of redundant physical

devices.

■ Ease of management—One management interface represents all storage devices; it

can be very easy for network admins to provision, upgrade, and troubleshoot issues

using this management interface.

Network Virtualization

Traditionally , networks have been meshes of routers and switches that forward data

packets and offer services such as firewalls, access control, QoS, and security. Routers

and switches are hardware devices that run specialized software. This combination of

hardware and software provides network services and packet forwarding. But highly

skilled engineers are needed to manage these resources and ensure that they run correctly.

Cisco and other network equipment manufacturers have long shipped routers and

switches loaded with their proprietary software. The network engineering community

felt the need to separate the control and data planes within this proprietary software

architecture. This simply meant decoupling the intelligent (control plane) piece of soft-

ware from the packet forwarding (data plane) logic. Because packet forwarding is a task

that requires speed, it made sense to have it done in hardware, and changing this meant

software could be separated within the router and switch operating systems. The control

plane becomes a place where all the routing and switching decisions are made. Network

devices have their data plane hardware programmed by the control plane to forward

packets accordingly. This provided a good performance and manageability uplift to

previous monolithic software architectures. Now a piece of software essentially pro-

grammed the hardware for network operations. This software to control hardware fea-

tures was limited within a network device.

Well, why should the software to control the hardware features be limited to a single

networking device? Why not do what the server and storage virtualization folks have

ptg17123584

Introduction to Virtualization in the Data Center 13

done and completely decouple the hardware from the service? This is exactly what

network virtualization does: A piece of software manages the hardware and presents the

applications’ virtual resources and services derived from the hardware. Much as in server

virtualization, the OS is presented with vMem, vCPU, and vNIC, and network virtualization

creates virtual networks with vSwitches, vRouters, and virtual services like vFirewalls.

Server virtualization had a head start on network virtualization. It was conceived

and implemented before network virtualization came in. With server virtualization,

computing entered an era of seamless mobility, push-button recovery, snapshotting, and

immensely utilized hardware and automation, to name a few goodies. While computing

and storage gave their applications what they had always longed for, networks

languished in the dark ages without virtualization.

Network virtualization is achieved by running a piece of software over the existing

packet forwarding and software infrastructure and giving virtual network services to

applications requiring them. One of the key factors that need to be considered while

adopting the network virtualization solution is visibility of traffic flow via multiple

systems and the capability to control a channel-based application’s traffic flow.

Development of these features was important for consumption of network virtualization.

Network Virtualization Evolution

It is important to understand that network virtualization did not just crop up recently.

Server and storage virtualization have had a head start when it comes to virtualization at

the macro level. Virtualizing the entire computing spectrum and entire storage areas have

become very common. Although network virtualization has not reached the maturity

of server/computing virtualization at a macro level, it is getting there. However, it is

important to understand that virtualization is not new to the networking world. Features

and functionalities of virtualization technologies have been around for a while. Network

virtualization can be traced back to the early 1980s. There was need for scalable

Ethernet networks to support rapidly expanding network growth, and there was a need

to segment networks without having to use a router or a switch sitting at the edge of

each segment. There was essentially a need for each department within a network to

have its own broadcast domain. Having a router or a switch dedicated to each network

segment was an expensive proposition, and the virtualized network segment was born.

VLANs inserted a tag for each Ethernet packet, and switches had to handle packets of

a particular tag and drop the rest. This meant that networks could be connected with as

many spanning trees as there were tags available.

The VLAN was the first and is by far the most popular virtualization within a network.

It was revolutionary in that it could create broadcast domains with a connected Ethernet

circuit, and during the early 1990s it meant not buying expensive networking equipment.

In 1996, Ipsilon Networks introduced a flow management protocol. The Ipsilon product

IP switch ATM 1600 used Asynchronous Transfer Mode (ATM) with IP routing. It

faded away into oblivion. Cisco said “Why restrict this to ATM?” and went ahead with

the proposal of tag switching. The Cisco proposal was originally called label switching,

ptg17123584

14 Chapter 1: Introduction to Cloud

and after the IETF standardized it, Multiprotocol Label Switching (MPLS) was born.

MPLS was developed to give a switching flavor to routed packets and was envisioned

to provide faster networks. However, it was empirically found not to have performance

benefits. The value was (and still is) in the applications built around it, such as Layer 2

and 3 virtual private networks (VPN). MPLS provided a label-switched path within the IP

network that helped build Layer 3 and 2 VPNs around it.

Within a Layer 3 router, there was a need for multiple routing tables. This not only

provided additional security but also, to a certain extent, eliminated the need to have

multiple routing devices for routing segmentation. Having multiple instances of a routing

table within the same router is called virtual routing and forwarding (VRF) . VRF with

MPLS gives us our present-day Layer 2 and 3 VPNs.

With network virtualization, servers running virtual machines can now reap the benefits

of virtualized networks, including automation, manageability, and decoupled software

and hardware.

Types of Network Virtualization

We can classify network virtualization into two categories:

■ Protocol-based virtualization—With this type of virtualization, a common shared

network is segmented into multiple networks, using VRFs, VLANs, and VPN

technologies such as MPLS L3VPNs and L2VPNs. Essentially, a private network is

carved out of a shared network, using mechanisms that give the endpoints a private

network over a shared network.

In general, if a shared medium is used as transport and networking protocol

infrastructure to tunnel traffic across this shared medium, this would be called

protocol-based network virtualization.

Protocol-based network virtualization involves the following design considerations:

■ Access control—Access control involves giving the user access to a particular

segment of the network based on credentials. Segmented areas of a network have

different authentication mechanisms to allow different classes of user access.

■ Path isolation—This is achieved by using VLANs, tunnels (GRE, IPsec, VPNs),

VRF tables, and applications built around MPLS to isolate the paths within the

shared network.

■ Services—Network services (QoS, security, and so on) are provided based on

who logged in.

■ Device-based virtualization—This is a recent form of network virtualization and

perhaps the more recognized one, too. Device-based virtualization involves running

a hypervisor on a physical network (which is a mesh of routers, switches, and

connection media—a traditional network) and virtualizing the entire network. This

enables you to create network topologies in software, and the network hypervisor

virtualizes the actual physical network and provides handles that can be used to

ptg17123584

Introduction to Virtualization in the Data Center 15

create network topologies. If the network device performs a specific network

functionality (firewall, load balancer, VPN, and so on), this solution is referred to as

network function virtualization (NFV) .

Figure 1-6 shows the building blocks of network device virtualization.

Physical
Platform

Hypervisor

Management

Network Devices (Physical Routers and Switches)

Virtualization: vSwitch

VMs

Load
Balancer Router

WAN
Optimiza-

tion
Firewall

Network Hypervisor Layer

Figure 1-6 Network Device Virtualization

To achieve device-based virtualization, the design should consider the following:

■ Physical infrastructure—The physical network here should be meshed. Routers

and switches should have reachability to create this meshed network. The

virtualization software uses a fully meshed infrastructure to deliver virtualized

network functionality.

■ Network hypervisor—The network-level hypervisor should abstract the physical

infrastructure of network devices. It should be capable of providing virtual

network devices to the software applications running on it.

■ Network applications—Network applications utilize the virtualized network

infrastructure provided to them by the network hypervisor. These provide the

network admin with the necessary interface to connect the network elements

together and build the topology.

Service Virtualization

Service virtualization is mainly used to virtualize an asset that is difficult to procure

physically during the software development life cycle of a product. Development and

testing teams can use this type of virtual asset instead of waiting for the actual physical

resource to be available.

ptg17123584

16 Chapter 1: Introduction to Cloud

For example, consider a small software organization where the development and quality

assurance teams are building an application that requires access to a mainframe in the

back end. It is not cost-effective for the organization to get the engineers access to an

actual mainframe. Even if the organization decides to procure a mainframe, engineering

will have to wait until the resource is available and set up for them to use. The

organization can instead use service virtualization to give the engineering team a virtual

asset. This solution provides a number of benefits:

■ It gives the organization a cost-effective way to procure the asset for its engineers.

■ Engineering is more agile and does not have to wait for the asset to be made

available.

■ The service is available when needed.

■ Downtime due to asset failure is minimized.

■ The asset can more easily be centrally managed.

Keep in mind that service virtualization is not the same as network service virtualization.

With service virtualization, the idea is to emulate a specific component within a modular

application to provide software development and testing access to components that

are required to test an application. Network service virtualization, on the other hand,

involves offering a particular network service, such as a firewall, QoS, or DNS, as a

service to a group of authenticated users.

Note A software router does not fit the device-based network virtualization category

exactly. It is a network element but not a complete network. It actually better fits the

server virtualization category because it involves virtualizing the server to provide virtual

handles for memory, CPU, and I/O port, and running the router software over the

virtualized resources.

As virtualization technologies mature and people get creative with deploying them, it will be

increasingly difficult to fit technologies exactly into previously defined categories. The important

thing here is to use the available virtualization tools to enhance a deployment and make it more

cost-effective.

Introduction to the Multitenant Data Center

The term multitenant data center refers to a data center architecture that provides

the capability to host multiple customers (tenants) and leverage common data center

infrastructure and resources while providing logical and/or physical segmentation.

While multitenancy means that some infrastructure is shared, the degree of sharing and

at what infrastructure layer depend on the type of service model. The highest degree

of multitenancy sharing is SaaS. In this model, all customers are served from a single

infrastructure, and every component is shared, all the way down to computing, storage,

ptg17123584

Introduction to Virtualization in the Data Center 17

application, and database. The degree of multitenancy in SaaS is different compared to

PaaS and IaaS, where the sharing is at the infrastructure—that is, network, compute, and

storage level—and not down to the application and database layer. You will learn about

the details of SaaS, PaaS, and IaaS cloud infrastructures in the next section.

Multitenancy is based on virtualization technology. Virtualization technology enables

multitenancy infrastructure and allows the creation of a virtual environment that

provides logically separated systems on top of the common physical infrastructure.

The concept of multitenancy can be characterized at the different layers within data

center functional blocks:

■ Virtualization enables multiple virtual machines to operate and share resources on a

physical machine.

■ Virtualization provides logical abstraction to physical storage devices, allowing

consistent presentation of storage resources.

■ Network virtualization refers to the logical segmentation of network infrastructure

on top of a common physical infrastructure. Each logical network is isolated from

the others and provides privacy, security, and autonomy of forwarding policies.

The concept of virtualization is not new. In 1970, IBM introduced the mainframe

virtualization system VM/370. It was one of the first examples of virtualization

technology applied to a computing environment. The system provided multiuser access

to seemingly separate and independent IBM VM/370 computing systems. Figure

1-7 shows IBM VM/370 virtualization. The control program (CP) together with the

Conversational Monitor System (CMS) formed the virtual machine environment. CP

was the resource manager of the system, and it was similar to the concept of today’s

hypervisor . The CP created virtual machines with guest operating systems.

...

Mainframe System/370 Control Program

Mainframe Hardware

VM/CMS MVSDOS/VSE

Figure 1-7 Mainframe Virtualization

Virtualization can extend beyond computing service and into the entire data center.

Data center virtualization has enabled cost saving by reducing power consumption and

cooling costs. At the same time, it has improved asset utilization by increasing efficiency

ptg17123584

18 Chapter 1: Introduction to Cloud

and availability to the resource workload. It reduces management touchpoints by taking

advantage of a unified set of integrated management tools for physical, virtual, and

cloud environments. Finally, it accelerates service delivery with IT agility and flexibility.

Introduction to Cloud Services
The following sections introduce the three offerings in the cloud: Infrastructure as a

Service (IaaS) , Platform as a Service (PaaS) , and Software as a Service (SaaS) . Figure 1-8

provides a conceptual view of these services.

Traditional IT PaaS SaaSIaaS

Application

Data

Middleware

OS

Provider Owns You Own

Virtualization (Network,
Servers, and Storage)

Virtualization (Network,
Servers, and Storage)

OS

Middleware

Data

Application

Virtualization (Network,
Servers, and Storage)

OS

Middleware

Data

Application

Virtualization (Network,
Servers, and Storage)

OS

Middleware

Data

Application

OS

Figure 1-8 Conceptual View of Cloud Services

Infrastructure as a Service (IaaS)

IaaS enables a consumer to utilize storage, network, and computing resources. The

consumer can manage these three components to deploy and run specific applications

and software. In this way, the organization that consumes these resources from the cloud

outsources the support operation for maintaining the IT infrastructure and the hardware

cost and moves toward a “pay as you use” model.

An organization using IaaS still needs to have developers design applications and

operations to manage operating systems in these hosted systems. The cost savings are

huge because the organization doesn’t own the physical device. You can think of this

as renting a home instead of buying it. The consumer’s rent is based on an on-demand

model, and the service is provided based on a best-availability basis. With IaaS, it is

possible to use a specific set of network, computing, and storage resources in the cloud

ptg17123584

Introduction to Cloud Services 19

with a specific service level guarantee. These resources can be leveraged based on a

contractual service level agreement (SLA) that is determined and negotiated between

the consumer and provider. Companies tend to prefer this model because the end user

experience can be managed within contractual boundaries. In this model, scaling can be

provided within a limit for spurts in usage patterns.

The consumer using IaaS bears the licensing cost. The cost of using an IaaS infrastructure

depends on the contractual usage of computing, memory, and storage. Another cost to

be considered is data transfer to multiple instances for the same enterprise (IP address

services, VPN services, security, monitoring, and so on).

Note The National Institute of Standards and Technology (NIST) defines IaaS as follows:

The capability provided to the consumer is to provision processing, storage, networks,

and other fundamental computing resources where the consumer is able to deploy

and run arbitrary software, which can include operating systems and applications. The

consumer does not manage or control the underlying cloud infrastructure but has control

over operating systems, storage, and deployed applications; and possibly limited control

of select networking components (e.g., host firewalls).

Platform as a Service (PaaS)

PaaS abstracts many of the standard application stack–level functions and provides

those functions as services. This enables programmers to leverage a tool set that is

readily available in the cloud and lets them focus on the application logic rather than

worry about the underlying infrastructure. PaaS provides programmers with libraries,

services, and tools tied to the infrastructure of computing, network, and storage

resources. Early players in the PaaS space were Google and Microsoft. Enterprises

adopting PaaS should be careful of vendor lock-in. Back in the day, developers of

Google apps had to code in Python, and Azure developers had to use .NET, which

caused a vendor lock-in for the programmers.

Using PaaS, consumers can leverage middleware services without worrying about

alignment with key hardware and software elements. A developer can get access to

the complete stack of developer tools. PaaS in public cloud environments requires the

clients to use the tool set offered by the provider for application development.

Note NIST defines PaaS as follows:

The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages,

libraries, services, and tools supported by the provider. The consumer does not manage

or control the underlying cloud infrastructure including network, servers, operating

systems, or storage, but has control over the deployed applications and possibly

configuration settings for the application-hosting environment.

ptg17123584

20 Chapter 1: Introduction to Cloud

Software as a Service (SaaS)

SaaS enables consumers to utilize a hosted software licensing and delivery model. This

model delivers an application as a service so that an organization can utilize its functions.

SaaS is commonly used for non-core applications, such as WebEx and Salesforce. SaaS

helps an organization offshore maintenance and reduces the initial capital expenditures

on capability inception for non-core applications. Leveraging a provider model means an

organization can use readily available applications without any investment in the initial

infrastructure or licensing cost. This has helped IT departments provision collaboration

and non-core application services to their users. Some of the key areas where this

service is being utilized are customer relationship management (CRM) and corporate

communication, such as WebEx and Cisco Hosted Collaboration Solution.

Note NIST defines SaaS as follows:

The capability provided to the consumer is to use the provider’s applications running

on a cloud infrastructure. The applications are accessible from various client devices

through either a thin client interface, such as a web browser (e.g., web-based email), or

a program interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even individual

application capabilities , with the possible exception of limited user-specific application

configuration settings.

Cloud Deployment Models

Cloud in networking terms refers to storing and accessing data from an off-premise loca-

tion. It provides agility for entities to scale and expand the IT infrastructure based on

demand. This section talks more about characteristics of cloud deployment models.

Three cloud deployment models are common:

■ Public—A public cloud is a multitenant environment that hosts multiple users who

pay for the services they use. The users cannot see any of the other tenants utilizing

the same environment.

■ Private—The private cloud environment has automated provisioning of services for

a single user in a hosted or on-premise location. The usage space is available to only

a single organization. A private cloud reduces the regulatory risk around data secu-

rity because it has a single-tenant deployment model.

■ Hybrid—The hybrid cloud environment, as the name suggests, is a combination of

private and public cloud environments. An organization that leverages two or more

cloud infrastructures, regardless of whether they are private or public, needs to

bind this infrastructure together with standard technology that enables application

portability. By doing so, the organization gains elasticity of the public cloud infra-

structure and can contain data ownership with security ingrained in the asset alloca-

tion model.

ptg17123584

Introduction to Cloud Services 21

The three cloud models can be leveraged for the three service models described earlier

as shown in Figure 1-9.

Public

Deployment Models

Hybrid Private

Services

IaaS PaaS SaaS

Characteristics

Resource Pooling, Elasticity, On-Demand Services

Figure 1-9 Alignment of Deployment and Service Models

Whether an organization leverages a public, private, or hybrid deployment model, the

service offering defined for each environment and its characteristics will be aligned to

general characteristics. Each deployment model can be leveraged to host the services

defined based on elements considered for design.

Cloud Design Considerations

The following are the key essential features of cloud services:

■ On-demand service, pay-as-you-use—Availability of the resource is based on a

business condition.

■ Multitenancy and resource pooling—Asset access is available from multiple

locations across geographic boundaries.

■ Elasticity—The user can scale storage, network bandwidth, and computing based

on user demand.

■ Measured services—The user can monitor flow based on consumer billing and has

better management and reporting ability.

ptg17123584

22 Chapter 1: Introduction to Cloud

The cloud service model is completely different from a web-hosting environment, which

usually leverages a hosting portal. For the deployment of these discussed features in the

cloud, a stacked framework, such as the Cisco Domain 10 framework (see Figure 1-10),

is necessary.

1. Infrastructure * Virtualization

NetworkStorageComputing
Customer
Interface

4

Financials
6

Service
Catalog

5

10. Organization * Governance * Process

9. Security * Compliance

Autom
ation * O

rchestration 3

Ia
aS

Pa
aS

Sa
aS

8. Applications

7. Platform

2. Abstraction and Virtualization

Figure 1-10—Cisco Domain 10 Framework

Cisco covers the stacked overview of cloud design in its Domain 10 framework . It

is essential for you to understand the various domains to develop an effective cloud

framework; the following sections provide details on the domains. Again, this is an

example for understanding building blocks that must be considered for cloud capability.

The Cisco Domain 10 framework provides a cloud architect focus area and details the

dependencies between different blocks of the framework. Data center infrastructure

for the cloud needs rapid provisioning service, and this requires an automation and

orchestration framework to be aligned with computing, network, and storage domains.

Good orchestration ties to the user catalog to speed up provisioning. The user catalog

is a view for the user to provide available services and used services. The cloud has a

pay-as-you-go model, so it is important for user catalog and finance to be integrated

into a portal used for a customer interface. PaaS and SaaS are aligned to a more mature

model of the cloud infrastructure. Security and governance is the top layer that needs to

encompass all the other domains. The Domain 10 framework provides a sequential way

to build a mature cloud model.

Domain 1: Infrastructure and Environmental

The first block of the Domain 10 framework is infrastructure and environmental, which

is the base of any data center environment. The computing, storage, and network

hardware elements and the supporting facilities, such as power and cooling, are part of

this layer. The following are some of the characteristics that should be reviewed:

ptg17123584

Introduction to Cloud Services 23

■ Computing:

■ The platforms considered should have good management and should simplify

deployment in the virtualized environment.

■ The platforms considered should be scalable and should be able to provide

coverage for tenants that require increased performance, security, and visibility.

■ Network:

■ The platforms considered should provide ease of deployment and be manageable.

■ The platforms considered should provide high-speed connectivity and simplify

tenancy.

■ The platforms considered should provide ease of integration of security for the

tenants.

■ The platforms considered should provide modular designs to improve availability

and resiliency.

■ Storage:

■ A rich, functional Fibre Channel SAN or IP-based mechanism should be available

and capable of extending across multiple tenants.

■ The platforms considered should provide a single network with the flexibility

to deploy Fibre Channel or IP-based protocols at any point in the path between

server and storage.

Domain 2: Abstraction and Virtualization

A cloud-based design should involve a combination of abstraction and virtualization.

The virtualization level should be available in networking, computing, and storage. The

way that organizations think of computing resources has changed due to virtualization.

Instead of managing an individual server, you can now manage virtual servers through a

central management tool and concentrate more on new services than on the underlying

server infrastructure. Storage virtualization integrates physical storage from multiple

network storage devices to appear as one logical device. Network virtualization

combines available network resources with computing elements and also allows tenancy

aligned to security segments. While designing virtualization, the abstraction component

hides the complexity of the virtualized elements and provides a simplified view of a data

center’s hardware, network, infrastructure, and storage resources as a single fabric.

Domain 3: Automation and Orchestration

Domain 3 depends on the selection of management automation software and how

multiple domains are managed. A good automation process that lines up with the overall

orchestration framework will replace several repetitive data center processes, such as

provisioning a new server, thereby reducing the time line and cost to perform day-to-day

ptg17123584

24 Chapter 1: Introduction to Cloud

jobs. Workflow templates link multiple domains and help in provisioning new services at

the data center.

Domain 4: Customer Interface

The end users utilize the Domain 4 portal for consuming new services. Users can select

and use the services from the catalog menu. The customer interface should have an

option for the user to select the services and get an overview of the governance. These

two separate functionalities are integral to the customer portal.

The customer interface portal should link up with Domains 5 and 6, the service catalog

and financials, so the users have a complete view of the services leveraged, the services

available, and billing.

Domains 5 and 6: Service Catalog and Financials

Service catalog and financials encompass Domains 5 and 6 in the Domain 10 framework.

Both of these domains must function closely with Domain 4, the customer interface

domain. Customers can view the services by using the services catalog. The user has a

list of orderable services supported by the IT department. The catalog also covers the

service level agreement defined for each service. It is important to understand that the

customer will receive greater operational efficiency and lower cost per unit when using

the standard service catalog.

Financials enable an organization to have service-/usage-based billing. The integration of

a chargeback model should cover all services and should be in alignment for the organiza-

tion utilizing a hybrid cloud model. In a hybrid cloud model, the chargeback scheme for a

public and on-premise private cloud environment should always be viewed and tracked.

Domains 7 and 8: Platform and Application

Domain 7 and 8 are platform and application blocks. As described in the previous sec-

tions, the platform portion provides an environment for developers with the required

toolkit to develop applications.

The application portion is covered under SaaS. This model is commonly used for non-

core enterprise-centric applications such as WebEx and sales force.

Domain 9: Security and Compliance

Security and compliance are top concerns for cloud adopters. The security design model

should have the following criteria defined:

■ Segmentation—You should enforce consistent policies and boundaries to protect

data. This involves establishing boundaries for the network, computing domains,

and policy-enforcement points for these domains.

■ Threat defense—You should protect the asset resources and deploy efficient

monitoring to detect attacks from internal or external sources.

ptg17123584

Introduction to Cloud Services 25

■ Visibility—You should view each security domain and provide insight for

compliance management. The key goal is to simplify operational visibility into

various security zones and simplify compliance reporting.

Domain 10: Organization, Governance, and Process

Domain 10 influences the business objectives for the data center process. Aligning

organization objectives with governance metrics results in efficient business, cost

reduction, and improved user experience.

After cloud adoption, the governance process should be a single thread for computing,

storage, and network as a converged infrastructure, as shown in Figure 1-11.

Traditional Data Center

New Model
Governance

Converged Infrastructure

Governance

Tools

Infrastructure

Governance

Computing

Governance

Storage

Governance

Network

Governance

ToolsTools Tools

Infrastructure Infrastructure Infrastructure

Figure 1-11 Governance Process for Converged Infrastructure

ptg17123584

26 Chapter 1: Introduction to Cloud

The traditional model of governance uses separate tools and processes for computing,

storage, and network. These tools line up to a separate governance model that is

confined to the team managing the respective domain. Governance needs two aspects:

tools and teams responsible for the converged infrastructure. The team looking at

and managing this data also must be collectively representing all the domains of

the converged infrastructure. A core team that includes members and management

representatives from each domain ties the combined governance. This model still

leverages separate tracks of tools, processes, and governance. A data center user has

a unified view of all the domains under a single service umbrella. This unified view is

difficult to manage with the traditional model. Mature cloud governance leverages a

consolidated tool set to view and manage all the domains.

Enterprise Connectivity to the Cloud

In any cloud design, it is essential to understand the enterprise connectivity to the off-

premise cloud provider. The design solution and service level agreement for user access

to the cloud depends on the access selected to connect to the cloud provider.

There are two main categories for connecting to the cloud provider:

■ Internet for transport

■ Direct connectivity to the cloud provider

The following sections describe these two categories.

Internet for Transport

The Internet for transport category involves using Internet access directly. Here, the user

logs in to an application portal that is directly hosted by the provider. The user login

credentials have authentication parameters. Secure transport via SSL capability can be

used based on application requirements. The user utilization and access to the cloud are

restricted to accounts based on the license agreement. This type of access is mostly used

by organizations consuming via the SaaS model.

Accessing the Internet via a VPN has different options, including the following:

■ Hardware VPN access—The customer accesses the cloud provider via VPN tunnel

from the enterprise data center to the VPN edge gateway located at the cloud

provider’s network. After decryption at the VPN edge gateway, the user traffic

traverses to the respective virtual data center (VDC) hosted in the cloud. In this

model, the enterprise can reuse the existing hardware for VPN function and Internet

connection to access the cloud provider. Bandwidth and throughput limitation

needs to be factored here. Figure 1-12 shows the hardware VPN option.

ptg17123584

Introduction to Cloud Services 27

Encrypted
Transfer

Ent
WAN

Cloud ProviderEnterprise
Network

Internet
Tenant
SpaceTenant

SpaceTenant
Space

Figure 1-12 Hardware VPN Option

■ Software VPN access—Software VPN access is popular for small groups of devel-

opers using the cloud infrastructure. To connect to the assets that are being hosted

at the cloud provider, a VPN connectivity option can be leveraged. VPN high avail-

ability is the customer’s responsibility. As shown in Figure 1-13, the termination of a

software VPN is inside the VDC or the tenant zone assigned for the entity.

Cloud Provider
Enterprise
Network

Encrypted
Transfer

User A

User B

User C

Tenant
SpaceTenant

SpaceTenant
Space

Internet
Enterprise/

User
Network

VPN
Con

Figure 1-13 Software VPN Option

■ Hardware hub VPN access—In this type of access, the organization has multiple

connections to the cloud provider. The cloud provider provides a hub VPN service.

Multiple locations within the enterprise space can be connected to the cloud

provider. Here, the key feature is connectivity from multiple enterprise locations,

which reduces the hair pinning of traffic from diverse geographic locations within

the enterprise network. The term hair pinning of traffic is used when the packets

traverse a transitory point between source and destination and is often seen when

no direct path between the source and destination exists. The term is often used in

WAN architectural designs. Figure 1-14 shows a high-level example of a hardware

VPN hub.

ptg17123584

28 Chapter 1: Introduction to Cloud

Cloud Provider

Enterprise
Network

Encrypted
Transfer

Tenant
SpaceTenant

SpaceTenant
SpaceEnterprise

WAN

Internet

Figure 1-14 Hardware Hub VPN Access

Direct Connectivity to a Cloud Provider

With direct connectivity to a cloud provider, the customer traffic is not routed through

the Internet; instead, the customer has a dedicated circuit to the cloud provider space.

This dedicated circuit can be a leased link, such as an MPLS Layer 3 VPN or MPLS

Layer 2 offering. It is recommended to use direct connectivity to meet strict SLA

requirements for enterprise access applications hosted at the cloud provider space. Note

that transport SLA-based access criteria is best suited to this option. Figure 1-15 shows a

high-level example of a hardware VPN hub.

DC1

DC2

Cloud ProviderEnterprise
Network

Tenant
SpaceTenant

SpaceTenant
Space

Dedicated
MPLS L3VPN/

L2VPN
or

Leased Lines

Figure 1-15 Direct Connectivity to the Cloud Provider

Future peer access options will evolve, with close partnerships between the service

providers and cloud providers. The partnerships will enable end users to leverage

geographic cloud provider locations to offload traffic from service providers to a cloud

provider’s localized data centers. This service will benefit large enterprises with global

presence. The enterprise will get better transport SLA in the contractual agreement for

application access through this access approach. The cost of maintaining a transport

infrastructure will be offset to the cloud provider and service provider, thereby reducing

the operating expense for the enterprise customer.

ptg17123584

Introduction to Cloud Services 29

Enterprise Cloud Adoption Challenges

The following challenges need to be considered for cloud adoption:

■ Interoperability:

■ In many cases, the enterprise application needs to implement changes before

getting hosted in the cloud space. A common change such an application

needs to adopt is re-IP addressing the application stack. This is common for

organizations adopting the IaaS model.

■ Provider lock-in should be considered for an enterprise planning to adopt

cloud services.

■ Traditionally practiced provisioning standards need to align with cloud

provisioning standards.

■ Security and compliance:

■ Security is a key factor for an enterprise to adapt to a suitable cloud model.

■ Regulatory factors dictate the adoption of a cloud model.

■ Every organization would like to be able to enforce and control enterprise

security policies in the cloud space, without the management control of the

cloud provider.

■ Visibility:

■ Visibility is very important for enterprise admins to cater to the application

service level agreement in the cloud.

■ It is also important to manage the operational aspect. The enterprise strives for

operational visibility in transport and security spaces in the cloud environment.

Some of these parameters need to be mentioned in the contractual agreement

with the cloud provider.

The challenges of cloud adoption can be mitigated by a good cloud adoption strategy.

These are the key elements of such a strategy:

■ Scalability requirements

■ Application profiling

■ Use case application for cloud adoption

■ Strategy to leverage cloud computing (like IaaS) versus cloud services (like SaaS)

■ Governance and business service level objectives (SLO) for vendor selection and

SLAs to be considered by the provider

■ Metrics and governance roadmaps

■ Visibility to the asset elements managing the enterprise tenant in the cloud

ptg17123584

30 Chapter 1: Introduction to Cloud

Enterprise architects prefer having control of the services in their tenant space within the

cloud infrastructure. The concept of network function virtualization (NFV) comes up

here. NFV elements are prevalent in IaaS cloud services. NFV brings a simple concept of

implementing network service elements in software such as routing, load balancers, VPN

services, WAN optimization, and firewalls. This is possible due to the new capability

of provisioning memory and server facility to the network service elements. The

provisioning of the network services is aligned with server elements. The NFV elements

can be automated in the same workflow related to the application services. This enables

faster provisioning of service with one orchestration device for network and application

services. The data center design with virtual network services reduces the complexity

of placing firewall or load balancing services because they are now closer to the asset.

These virtual services enable an enterprise to launch these capabilities in an on-premises

data center or in the provider cloud .

Software-Defined Networking
Most people understand that software-defined networking (SDN) is a new paradigm for

networking that will foster agility and innovation in network services. However, trying to

get a concise definition of SDN is like the old story about asking a group of blind men

to describe an elephant when each has a different perspective of the animal. In the story,

a group of six blind men encounter an elephant and try to learn what it is. Each of the

men feels a different part of the elephant, and they all therefore describe the elephant a

bit differently because they are influenced by their individual experiences:

■ The first man approaches the elephant’s side and believes it to be a huge wall.

■ The second man, feeling the legs, believes they are trees trunks.

■ The third man reaches out to the tusk and believes it to be a spear.

■ The fourth man, who finds the elephant’s trunk, believes it to be a snake.

■ The fifth man, touching the ear, believes it to be a fan.

■ The last man, who happens to seize the swinging tail, believes it to be a rope.

The moral of the story is that all the men are partly right, but all of them are also

completely wrong. People can interpret SDN differently depending on their technology

perspective. For a network administrator, SDN may mean automation and orchestration

to simplify network operation. An architect may have a big-picture view of the network

and focus on a controller-based protocol like OpenFlow. Here are some common

interpretations of SDN:

■ Network virtualization in the cloud

■ Dynamic service chaining for instantiation of services

■ Dynamic traffic engineering

ptg17123584

Software-Defined Networking 31

■ Simplified network orchestration and configuration

■ Network function virtualization (NFV)

Open Networking Foundation

The Open Networking Foundation (ONF) is a nonprofit industry consortium focused on

improving networking through SDN. The ONF defines SDN as follows:

The physical separation of the network control plane from the forwarding plane,

and where a control plane controls several devices.

ONF focuses on the use of the OpenFlow protocol to drive the decoupling of

network control and the forwarding function. OpenFlow is a standard-based

communication interface between the controller and the forwarding layer of the

SDN network. A controller defines a path that data packets traverse and programs

the forwarding information into the network devices through OpenFlow application

programming interfaces (API). Figure 1-16 shows a logical view of OpenFlow network

programmability.

Server

OpenFlow Controller

Northbound API

App App App

OpenFlow Agent OpenFlow Agent OpenFlow Agent

Figure 1-16 OpenFlow Network Programmability

OpenFlow began as a Stanford University PhD student’s project call Ethane. Ethane was

intended to centrally manage global policy using a flow-based network controller for

network security. The idea led to what is now known as OpenFlow. Stanford University

released OpenFlow version 1.0 as OpenFlow Switch Specification in 2009. It formed

the basis for the subsequent releases of the protocol. ONF released OpenFlow ver-

sion 1.2 in 2012. It was the first release of a specification by ONF after ONF formally

ptg17123584

32 Chapter 1: Introduction to Cloud

charted the project. Since then, ONF has released multiple versions of updates to the

OpenFlow standard.

OpenFlow allows direct access to manipulate the forwarding plane of network

infrastructure devices from different vendors, using a central controller. OpenFlow

leverages the concept of flows to classify network traffic based on predefined rule sets

that are generated either statically or dynamically through the SDN controller. A flow is

a sequence of data packets traversing a network infrastructure that share a set of header

attributes, such as the same source and destination IP addresses or the same protocol

port identifier. The controller verifies that each flow is permitted by network policy

before programming the flow entry in each device along the data path.

A network administrator can leverage OpenFlow to define how data traffic flows

through a network infrastructure based on criteria such as bandwidth requirements,

application usage patterns, and resource requirements. OpenFlow gives network

operators very granular control while enabling the network to respond to real-time

changes at the application and session levels.

Most of the time when SDN is discussed, OpenFlow is used as the interface to program

the forwarding behavior of network devices. ONF views the OpenFlow protocol as an

enabler for SDN and says it has the benefit of increasing interoperability of network

equipment across a multivendor environment. However, there are alternatives to the use of

OpenFlow for programming the network infrastructure, such as Network Configuration

Protocol (NetConf) and Extensible Messaging and Presence Protocol (XMPP) .

OpenDaylight Project

Organizations such as ONF are giving definitions for SDN that focus on the separation

of the control plane and forwarding plane of the network, but the broader interpretation

of SDN is that it’s a framework that provides programmability to the network

infrastructure. SDN enables IT agility, allowing network administrators and engineers

to respond quickly to changing business requirements. Through SDN, application

developers can leverage infrastructure as a platform to easily instantiate and integrate

network services and applications through the use of APIs and scripting languages.

OpenDaylight is an open source project under the Linux Foundation Collaborative

Projects. Industry leaders have formed OpenDaylight with the mutual goal of

accelerating adoption and fostering innovation to the SDN framework. OpenDaylight

can be a nucleus to any SDN architecture because it has a modular and extensible

controller as its core. The OpenDaylight controller is implemented in software and is

contained within its own Java virtual machine (JVM). This means the controller can be

deployed across a wide variety of hardware and operating systems that support Java.

The OpenDaylight architecture has a modular southbound plugin framework for a

multivendor environment. OpenDaylight offers a flexible and extensible interface

for northbound communication, leveraging Java and RESTful APIs for multiple

programming options to build applications to communicate with the controller.

ptg17123584

Software-Defined Networking 33

OpenDaylight Hydrogen is the first release of the modular open source SDN platform.

This release contains support for protocols such as OpenFlow 1.3, Open vSwitch

Database Management Protocol (OVSDB), Border Gateway Protocol (BGP), and Path

Computation Element Protocol (PCEP). As part of the Hydrogen release, OpenDaylight

also contains a plugin for OpenStack Neutron. OpenDaylight uses northbound APIs to

interact with OpenStack Neutron and uses OVSDB for southbound configuration of

vSwitches on compute nodes.

Beryllium is the fourth software release for the OpenDaylight project. This release

takes another step closer to creating an open industry platform for SDN and network

function virtualization (NFV). OpenDaylight Beryllium provides a tighter integration to

OpenStack and allows centralized network orchestration and management from the con-

troller. Figure 1-17 shows the key standards supported by OpenDaylight Beryllium.

Figure 1-17 OpenDaylight Beryllium Framework

Network Function Virtualization

OpenDaylight provides a solid platform for network function virtualization (NFV) . NFV

offers new ways to design, orchestrate, and manage network services. NFV decouples

network functions from underlying hardware so these functions can run as software

images on common hardware as well as custom-built hardware. NFV is a framework

that provides virtualization of network services such as routing, load balancing, firewall

services, intrusion detection and prevention, and network address translation into

building blocks. These services can be chained together to create network service chains

tailored for different use cases.

ptg17123584

34 Chapter 1: Introduction to Cloud

The concept of NFV originated from service providers looking to increase the agility

and flexibility of deploying new network services to support growing customer

demands. NFV is complementary to SDN, and there is no dependency between SDN

and NFV. NFV can be implemented using non-SDN mechanism leveraging techniques

commonly deployed in many data centers. However, combining SDN with NFV

simplifies deployment and operation and maintenance procedures.

OpenStack

OpenStack is an open source solution for building and managing open source cloud

computing platforms that can be used in public and private clouds. OpenStack is

managed by the OpenStack Foundation, a nonprofit organization overseeing both

development and community building of the project.

The following ar e the major component services for OpenStack:

■ Nova—Nova is the primary computing engine behind OpenStack. It is a controller

for deploying and managing large numbers of virtual machines and handling

computing tasks.

■ Glance—Glance provides imaging service for OpenStack and enables images to be

used as templates when deploying new virtual machines.

■ Neutron—Neutron provides the networking capability for OpenStack. It ensures

that the various components in an OpenStack deployment can communicate with

one another effectively and efficiently.

■ Swift—Swift is a storage system for objects and files that allows developers to refer

to a unique identifier associated with a file or data instead of referring to files by

their location on a disk drive. This allows better scaling and enables the system to

manage how data is backed up.

■ Cinder—Cinder is a block storage system that is analogous to traditional files

storage where files are referenced by location on a disk drive. This function is

necessary when data access speed is the most important consideration.

■ Horizon—Horizon is the dashboard interface for OpenStack. It provides a graphical

user interface for managing and orchestration to OpenStack for accessing all the

components of OpenStack through APIs.

■ Keystone—Keystone is the identity service for OpenStack. It consists of a central

list of users mapped against all the components provided by OpenStack that the

users have permission to access.

OpenStack enables users to deploy virtual machines and other component services

previously described to handle various tasks for a cloud data center environment.

OpenStack provides the infrastructure for users to quickly instantiate new services and

allow developers to create software applications that tie into the framework for agile

service delivery to the end users.

ptg17123584

Summary 35

Summary
The intent of this chapter is to provide you with an understanding of the cloud

environment and its key fundamental concepts. In it, you have learned about a number

of concepts, including data center evolution, virtualization aspects for a data center, and

different flavors of cloud services. It is important to understand these concepts to get a

picture of the environment where a CSR 1000V is utilized. The following chapters get

deeper into CSR 1000V.

ptg17123584

This page intentionally left blank

ptg17123584

Now that you have reviewed the concepts of cloud and enterprise trends, this chapter

provides an introduction to CSR 1000V . This chapter starts with some quick background

on Cisco IOS that led to the development of the IOS XE architecture used in the ASR

1000 and ISR 4000 series platforms. This will help you better understand the CSR

1000V architecture.

IOS Software Architecture
The Internetworking Operating System (IOS) has been one of the primary operating

systems for Cisco routers. IOS is a specialized operating system that runs on specialized

hardware. It was first developed back in the 1980s to be a small embedded operating

system for routers and switches. At the time, network devices had limited memory

and CPU processing power. Compared to other types of operating systems, IOS was

designed to be very lean and efficient, to stay within the constraints of routers’ memory

size and CPU performance. To maximize the router performance for forwarding data

packets, IOS was written with minimal operational overhead, by trading the extra

memory fault protection for maximum network performance. To take care of the

overheads, extra processes were added to Cisco IOS routers.

IOS uses cooperative multitasking that offers a simple and efficient scheduling method.

The IOS scheduler is responsible for managing and scheduling all processes in the

multitasking environment. It employs priority run-to-completion scheduling, allowing

each process a chance to run as long as it needs to run before releasing control back to

the scheduler. Each process is a single thread and is assigned a priority value. The high-

priority processes run before the lower-priority processes. The high-priority processes

can jump to the head of the line for CPU runtime, but high-priority processes may

not take CPU cycles away from running lower-priority processes. The IOS scheduler

maintains four separate queues:

Software Evolution of the
CSR 1000

Chapter 2

ptg17123584

38 Chapter 2: Software Evolution of the CSR 1000

■ Critical—Reserved for system processes such as the scheduler itself and memory

management processes.

■ High—Assigned to processes that require quick response time, such as transferring

incoming packets from the network interface to memory.

■ Medium—Assigned to most IOS user-level processes.

■ Low—For all processes running in the background for periodic tasks, such as

logging messages.

To reduce the impact of runaway processes hogging CPU runtime and refusing to

relinquish control back to the scheduler, the IOS scheduler uses a watchdog timer that

can forcefully interrupt and terminate rogue processes.

IOS has a small kernel for CPU scheduling and memory management. Unlike the kernel

for traditional operating system cores that run in a protected CPU environment, the

IOS kernel is a set of components that run in user mode on the CPU with access to

full system resources. There is no special kernel mode for the IOS kernel. The IOS

kernel schedules processes, provides memory resource management, handles hardware

interrupts, maintains buffer resources, traps software exceptions, and manages other

low-level services.

Figure 2-1 provides a conceptual view of the IOS architecture.

IOS

Processes Memory
Buffers Drivers

Kernel

Hardware

Figure 2-1 IOS Software Architecture

Over the decades, Cisco IOS has evolved into a feature-rich operating system powering

Cisco hardware. Generic IOS has a 32-bit monolithic architecture that runs as a single

image with all the processes having access to one flat memory address space; the kernel

ptg17123584

IOS XE Architecture 39

does not support memory paging or swapping. The 32-bit architecture limits the memory

allocation of IOS to 4GB (232 bytes), and the single threading of IOS processes prevents

the kernel from taking advantage of the multithreading capability in today’s multicore

CPU hardware architecture. Multithreading enables an operating system to execute

multiple processes simultaneously. To keep up with the hardware advancements and to

take advantage of the multithreading software capability on new multicore CPUs, Cisco

developed IOS XE software.

IOS XE Architecture
IOS XE is part of the continuing evolution of the Cisco IOS operating system. IOS XE

leverages key architectural components of IOS and at the same time overcomes the

limitation of the 32-bit kernel of IOS. IOS XE retains the look and feel of classic IOS,

while offering improved features and functionality. IOS XE separates system functions

into the following components:

■ IOS XE kernel

■ IOS Daemon (IOSd)

■ Forwarding Manager

■ Interface Manager

■ Platform Manager

Figure 2-2 shows a logical view of the IOS XE software architecture .

Hardware

IOS XE

Processes

IOS Daemon
(IOSd)

Platform
Manager

Interface
Manager

Forwarding
Manager

Linux Kernel

Device Drivers

Figure 2-2 IOS XE Software Architecture

ptg17123584

40 Chapter 2: Software Evolution of the CSR 1000

The IOS XE Kernel

IOS XE is based on a 64-bit hardened Linux kernel that offers significant enhancements

over the classic IOS kernel. The Linux kernel architecture supports larger physical

address space, allowing more than 4GB of memory to be addressed directly. The kernel

offers multithreading support, providing the capability to execute multiple processes

simultaneously across multicore CPUs. The operating system is built on a POSIX

environment, which provides a set of system services targeted at the integration of

network-aware applications.

The IOS XE Linux kernel, sometimes referred as BINOS in Cisco documents, leverages

a scheduler to handle interrupt requests and share processor time among multiple

processes. The IOS XE kernel offers a memory management system to manage process

address space. The kernel resides in an elevated system state compared to regular user

applications. It offers a protected memory management suite, which allows the kernel

and other control plane applications to run in protected memory spaces. The IOS XE

kernel uses symmetric multiprocessing (SMP) architecture, enabling applications to run

across multiple CPU cores for higher performance. Unlike the classic IOS kernel, which

features run-to-completion scheduling, IOS XE has a preemptive kernel that allows

preemption of a task even as another task executes in the kernel. This capability provides

better process response time and prevents a runaway process from hogging the CPU

cycles. IOS XE leverages the Completely Fair Scheduler (CFS) to handle CPU resource

allocation, with the goal of maximizing overall CPU utilization while also maximizing

interactive performance.

The IOS Daemon

The IOS daemon (IOSd) is the classic IOS running as a user-level process scheduled

by the IOS XE kernel. Being its own process allows IOSd to run in protected memory

space, capable of restarting processes. IOSd is responsible for control plane processing,

including network configuration, the command-line interface (CLI), routing protocol

management, routing information base (RIB) computation, management of physical and

logical interfaces, crypto IKE/IKEv2 negotiations, and processing protocols such as

ICMP and SNMP. Communication with other components is done through messaging

service. A shim layer included in IOSd enables it to communicate operations as messages

to and from other components.

IOSd inherits a lot of characteristics from the classic IOS, and because it runs in a

multithreaded 64-bit environment and is responsible for control plane functions, it

enables the system to scale while maintaining backward feature compatibility. Internally,

IOSd provides an environment controlled by its own process scheduler. IOSd runs in a

protected address space that offers fault isolation from other components. IOSd uses

the run-to-completion scheduler model for IOS control plane processes, but the process

IOSd itself can be preempted by the Linux kernel scheduler. The Linux kernel leverages

a CFS low-latency scheduler and preemptable threads to minimize scheduling delays.

ptg17123584

Cisco ASR 1000 System Architecture Overview 41

IOS XE improves the overall security and stability of a system through several

techniques. First, IOSd runs as a user-level process with root permission that has access

only to its own memory and a restricted portion of the file system for enhanced fault

containment. Second, to prevent overloading the IOS daemon, the information sent

to IOSd is filtered and rate limited. Finally, some of the functions that were handled

natively in classic IOS are offloaded to other components. Together, these methods

reduce the likelihood of IOSd becoming overloaded and unable to process critical

control plane packets.

The Forwarding Manager

The Forwarding Manager is responsible for propagating IOSd control plane operations

to the forwarding data plane. It provides a bidirectional communication path between

the IOSd and the data plane through an API setup. The Forwarding Manager programs

the data plane and maintains the forwarding state of the system and is one of many

abstraction layers that allow IOS XE to run on a variety of underlying hardware.

The Interface Manager

The Interface Manager is responsible for communicating IOSd events associated with

the creation and bring-down of interfaces, both physical and logical, to the appropriate

hardware I/O interface. It provides a communication channel for collecting and sending

hardware interface statistics to IOSd.

The Platform Manager

The Platform Manager is in charge of the basic operation of the hardware platform,

including the initialization and booting of the various processes for IOS XE. The

Platform Manager monitors online insertion and removal (OIR) of interface card

components and generates OIR notifications to IOSd. In addition, the Platform Manager

provides a mechanism for periodically monitoring and storing critical data for hardware

devices into nonvolatile memory. This includes board uptime and monitoring of

environment data such as temperature and voltage.

Together, the Forwarding Manager, the Interface Manager, and the Platform Manager

form the middleware that interconnects the major components. These three managers

maintain the state of the overall system in nonvolatile memory and offer the capability

of In-Service Software Upgrade (ISSU) on certain platforms.

Cisco ASR 1000 System Architecture Overview
The Cisco Aggregation Service Router (ASR) 1000 series router is a wide area network

(WAN) and Internet edge routing platform. It was also the first platform for the Cisco

IOS XE network operating system. The ASR 1000 router delivers embedded hardware

acceleration for multiple IOS XE software services without the need for separate service

ptg17123584

42 Chapter 2: Software Evolution of the CSR 1000

modules. It is also the foundation for the virtual routing platform CSR 1000V’s system

architecture.

Now let’s look into the ASR 1000’s high-level system architecture before examining

the CSR 1000V. The ASR 1000 runs on IOS XE and has three main components: route

processor (RP), embedded service processor (ESP), and SPA interface processor (SIP).

Route Processor

A route processor (RP) includes a general-purpose CPU and runs the IOS XE network

operating system. It is an integrated system component for fixed chassis platforms such

as the ASR 1001-X, and it is a separate module on modular systems such as the ASR

1004 and ASR 1006-X.

An RP handles all the control plane traffic and manages the system functions. It runs

routing protocols, builds and distributes forwarding information to the ESP, negotiates

and exchanges encryption keys in IPsec sessions, and monitors and manages power and

temperature for system components including line cards, power supplies, and fans.

An RP is responsible for chassis management, including initialization of the ESP; network

interfaces such as shared port adapters (SPA), SPA interface processors (SIP), or network

interface modules (NIM); IOS XE image management; logging facilities; and distribution

of user configuration to the ESP and SIPs.

Embedded Service Processor

An embedded service processor (ESP) is a centralized forwarding engine for a system.

ESPs are responsible for the data plane processing tasks, and all network traffic flows

through them. The ESP module performs all baseline router packet operations, including

the following:

■ MAC classification

■ Layer 2 and Layer 3 forwarding of data packets

■ Quality-of-service (QoS) classification, policing, and shaping

■ Security access control lists (ACLs)

■ VPNs

■ Load balancing

■ NetFlow statistic reporting

■ Firewall

■ Network-based application recognition

■ Network address translation (NAT)

■ Hardware-assisted encryption

ptg17123584

Cisco ASR 1000 System Architecture Overview 43

At the heart of an ESP is the Cisco QuantumFlow Processor (QFP) . The QFP is a

multicore parallel packet processor on a single silicon chip, designed for scaling and

performance while offering rich data path features and services. The QFP architecture

is non-pipelined, parallel processing with centralized shared memory. The QFP packet

processor engine is responsible for processing all traffic flows in the data-forwarding

path. Inside, the QFP also includes a traffic manager responsible for queuing and

scheduling functions for the forwarding plane. An ESP performs all packet forwarding,

buffering, and output queuing and scheduling for all traffic going through the QFP.

SPA Interface Processor

The SPA interface processor (SIP) is a carrier card that provides the physical and electrical

connectivity for the shared port adapters (SPA). It offers two levels of packet prioritization

for ingress packets from the SPAs and a large buffer for queuing ingress packets going to

an ESP for processing. A SIP has a smaller egress buffer to prevent output interfaces from

overrun by the ESP scheduler and ensures full link utilization in the transmit direction.

A SIP is also responsible for generating an egress queueing event to the ESP, providing a

back-pressure mechanism for engaging the traffic manager for egress packet shaping.

The three components just described have powerful control processers dedicated for

control and management functions. Figure 2-3 illustrates these three system components

of the ASR 1000 hardware architecture.

Control Messaging

IOSd
(Active)

IOSd
(Active)

Forwarding
Manager

Platform
Manager

Interface
Manager

Kernel

Routing ProcessorEnhanced Service
Processor

QFP

Forwarding
Manager

Platform
Manager

Kernel

Forwarding
Manager

Platform
Manager

Kernel

SPA Driver

SPA Interface
Processor

Figure 2-3 Conceptual View of ASR 1000 Architecture

ptg17123584

44 Chapter 2: Software Evolution of the CSR 1000

Cloud Service Router 1000V Overview
Enterprises are increasingly virtualizing their applications and services for cost savings

and leveraging services (that is, computing cycles and storages) hosted by cloud

providers for more agility and flexibility. The need to securely move applications from

a private data center to the cloud to take advantage of the benefits of virtualization and

cloud computing led to development of the CSR 1000V.

The CSR 1000V is an IOS XE software router based on ASR 1001 that runs within a

virtual machine deployed on any general server hardware or x86 server hardware. There

are a lot of commonalities between the system architecture for the CSR 1000V and the

ASR 1000; however, there are some differences as well. Let’s take a look at how the CSR

1000V, which works on the IOS XE software, is different from the ASR 1000:

■ The CSR 1000V is a virtual router that does not have SPA components.

■ The CSR 1000V does not have the hardware interconnects, SPAs, and the few

kernel utilities that relate to SPA.

■ Utilities have been added to the kernel for use by virtual hardware presented by the

virtualization layer, such as vCPU, vMemory, and vConsole.

■ There is no crypto ASIC. The CSR 1000V leverages AES-NI (with compiled

instructions into the crypto library). However, in the future, as chip technology

advances, crypto support can be leveraged from the hardware.

■ Due to the absence of the QFP, it has lower forwarding performance compared to a

traditional ASR 1000 .

Note The CSR 1000V can have good performance values with appropriate hardware and

hypervisor tweaking. You learn more about this in Chapter 3, “Hypervisor Considerations for

the CSR.”

Figure 2-4 provides a high-level overview of the CSR 1000V.

The Cisco CSR 1000V series lowers the barriers to enterprise adoption for cloud. The

primary features include the following:

■ Flexible virtual form factor designed for multitenant, provider-hosted clouds

■ Complete hypervisor-isolated, multiservice router instance for each tenant

■ Proven, familiar, enterprise-class Cisco IOS Software networking services

■ Feature and operational consistency with Cisco physical form-factor routers

■ Component of end-to-end WAN architecture with Cisco Integrated Services

Routers and Cisco Aggregation Services Routers

ptg17123584

Deployment Requirements 45

CSR 1000V

Forwarding Plane (FP)

FPP Client Driver

Forwarding Manager

Control Plane

IOSd

vCPU vMemory vDisk vNIC

Hypervisor

Physical Hardware

CPU NICDiskMemory

Figure 2-4 Overview of the CSR 1000V

Chapter 4, “CSR 1000V Software Architecture,” provides detailed coverage of the soft-

ware architecture for the CSR 1000V.

Deployment Requirements
Deployment of the CSR 1000V requires the following for an infrastructure-agnostic

feature set:

■ Cisco UCS server and any x86 servers

■ vSwitch, OVS, dVS, N1KV (note that there is no dependency on CSR 1000V and

vSwitch)

■ VMware ESXi 5.0 or above, Kernel-based Virtual Machine (KVM), RHEL 6.6,

Ubuntu 14.04 LTS Server, Microsoft Hyper-V, Windows Server 2012 R2, Citrix

XenServer 6.2, Amazon Web Services (AWS)

ptg17123584

46 Chapter 2: Software Evolution of the CSR 1000

The CSR 1000V has the following hardware requirements for deployments:

■ Minimum of one vCPU with scalable up to two, four, and eight vCPU for

performance. This requirement will change in future releases. Please refer to the

release notes for minimum requirements on the latest release.

■ 2.5GB on one vCPU (default) and 4GB on four vCPUs. Memory elasticity is

supported with an 8GB license (expansion from 4GB to 8GB).

■ 8GB hard drive with local, SAN, and NAS resources supported.

Table 2-1 lists the support for various hypervisors by CSR 1000V.

Table 2-1 Summary of CSR 1000V Hypervisor Support

CSR Release
VMware
ESXi

Citrix
XenServer

Microsoft
Hyper-V KVM

3.9S 5.0 Not supported Not supported Not supported

3.10S 5.0

5.1

6.0.2 Not supported Linux KVM based on Red

Hat Enterprise Linux 6.31

Red Hat Enterprise

Virtualization 3.1

3.11S 5.0

5.1

6.0.2 Not supported Linux KVM based on Red

Hat Enterprise Linux 6.31

Red Hat Enterprise

Virtualization 3.1

Ubuntu 12.04.03 LTS

Server 64 Bits

3.12S and 3.13S 5.0

5.1

5.5

6.1 and 6.2 Windows Server

2012 R2

Linux KVM based on Red

Hat Enterprise Linux 6.31

Ubuntu 12.04.03 LTS

Server, 64 bits

3.14S 5.0

5.1

5.5

6.2 Windows Server

2012 R2

Linux KVM based on Red

Hat Enterprise Linux 6.5

Ubuntu 14.04 LTS Server,

64 bits

3.15S and 3.16S 5.0

5.1

5.5

6.0*

6.2 Windows Server

2012 R2

Linux KVM based on Red

Hat Enterprise Linux 6.6

Ubuntu 14.04 LTS Server,

64 bits

ptg17123584

Elastic Performance and Scaling 47

CSR Release
VMware
ESXi

Citrix
XenServer

Microsoft
Hyper-V KVM

3.17S 5.0

5.1

5.5

6.0

6.2 Windows Server

2012 R2

Linux KVM based on Red

Hat Enterprise Linux 7.1

Ubuntu 14.04 LTS Server,

64 bits

* VMware ESXi 6.0 supported on Cisco IOS XE 3.16.1S and later, and 3.17S and later.

The support for newer versions of the hypervisor will be based on software revisions for

the CSR 1000V. Please refer to the following CCO link to verify support of the hyper-

visor on the latest CSR 1000V release: http://www.cisco.com/c/en/us/td/docs/routers/

csr1000/software/configuration/csr1000Vswcfg/csroverview.html#pgfId-1081607.

Chapter 3 describes the CSR 1000V’s interaction with different types of hypervisors.

Elastic Performance and Scaling
The CSR 1000V is licensed based on performance and feature set and can be updated on

the fly to adjust for increased performance requirements. Initially, when the CSR 1000V

first boots up, the router is in evaluation mode. For IOS XE 3.12 and earlier releases,

the network interfaces are activated, but the throughput is limited to 2.5Mbps and the

feature support is restricted until the evaluation license is activated. In IOS XE 3.13 and

later releases, the CSR 1000V boots with maximum throughput limited to 100Kbps but

with the AX feature set enabled by default. The evaluation license can be enabled with

the AX feature set with up to 50Mbps of maximum throughput. Alternatively, the evalu-

ation APPX feature set can be enabled with 10Gbps maximum throughput.

There are several throughput options, ranging from 10Mbps all the way up to 10Gbps.

The CSR 1000V applies a license shaper that restricts the aggregate throughput of

the router’s interfaces. For example, if a 100Mbps license is installed, a maximum of

50Mbps of bidirectional traffic is allowed through the CSR 1000V system.

The CSR 1000V uses a license-based shaper to enforce the throughput on the router.

The licensed bandwidth is measured against the aggregate throughput of the traffic

across all the interfaces on the router. The license shaper regulates both priority traffic

and non-priority traffic. The shaper is implemented at the root of the QoS hierarchy. To

ensure that the license shaper doesn’t drop high-priority traffic, QoS (for example, LLQ)

should be configured. All traffic exceeding the bandwidth licensed for the shaper will be

tail-dropped.

http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/csr1000Vswcfg/csroverview.html#pgfId-1081607
http://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/csr1000Vswcfg/csroverview.html#pgfId-1081607

ptg17123584

48 Chapter 2: Software Evolution of the CSR 1000

The following shows the IOS XE release license shaper behavior:

■ Cisco IOS XE 3.10S and earlier regulate throughput only on the non-management

interface. The traffic going across the GigabitEthernet 0 management interface does

not count toward the aggregate bandwidth for the system.

■ Cisco IOS XE 3.11S and later enforce the license shaper across all interfaces,

including the GigabitEthernet 0 management interface.

The license throughput shaper enforces globally and not on a per-interface basis. This

means the license shaper does not distinguish the different types of traffic going across

the system. When the aggregate bandwidth exceeds the licensed throughput, the excess

packets are discarded. Figure 2-5 shows the three interfaces on the CSR 1000V passing

an aggregate throughput of 120Mbps. This exceeds the 100Mbps licensed throughput,

which means 20Mbps of traffic is discarded.

40Mbps

50Mbps

20Mbps

Bit Bucket

Cisco CSR 1000V

30Mbps

GigE1

GigE3

GigE2

Licensed
Shaper

100Mbps

Figure 2-5 Conceptual Example of the CSR 1000V License Shaper

Table 2-2 shows the server resource requirement for the CSR 1000V for the different

technology packages. Refer to the Cisco.com website for the features covered under the

different technology packages.

ptg17123584

Rapid Deployment and Routing Flexibility in the Cloud 49

Table 2-2 CSR 1000V Resource Requirements for Each Technology Package

Technology Package

Throughput IP Base Security APPX AX

10Mbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB

50Mbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB

100Mbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB

250Mbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB

500Mbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB

1Gbps 1 vCPU/4GB 1 vCPU/4GB 1 vCPU/4GB 2 vCPUs/4GB

2.5Gbps 1 vCPU/4GB 1 vCPU/4GB 4 vCPUs/4GB 4 vCPUs/4GB

5Gbps 1 vCPU/4GB 2 vCPUs/4GB 8 vCPUs/4GB —*

10Gbps 2 vCPUs/4GB —* —* —*

* This performance and feature combination is currently not supported as of the IOS XE 3.16S release.

IP Base, Security, APPX, and AX are the technology packages described in Table 2-3.

Rapid Deployment and Routing Flexibility in the Cloud
The CSR 1000V is a software router that can be deployed as a virtual machine in a

provider-hosted cloud environment or in an enterprise-owned virtual environment. In

a cloud-hosting network, each tenant gets its own CSR 1000V instance that provides

its own VPN connectivities, security, access control rules, QoS policies, and so on.

In addition, the router can be deployed as a multitenant router, using virtual routing

and forwarding (VRF), to maintain routing separation and feature configuration for

each tenant.

The CSR 1000V’s features are tied to the technology package installed on the router,

based on the license purchased. Table 2-3 shows the four technology packages available

and the features of each one. It is a best practice to refer to the Cisco Feature Navigator

at http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp to verify the latest feature support .

http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp

ptg17123584

50 Chapter 2: Software Evolution of the CSR 1000

Table 2-3 Features of the Technology Packages

Technology Package CSR 1000V Features (Software 3.17 Release)

IP Base (Routing) Basic networking: BGP, OSPF, EIGRP, RIP, ISIS, IPv6, GRE,

VRF-LITE, NTP, QoS

Multicast: IGMP, PIM

High availability: HSRP, VRRP, GLBP

Addressing: 802.1Q VLAN, EVC, NAT, DHCP, DNS

Basic security: ACL, AAA, RADIUS, TACACS+

Management: IOS XE CLI, SSH, Flexible NetFlow, SNMP,

EEM, NETCONF

Security (Routing + Security) IP Base features plus the following:

Advanced security: ZBFW, IPsec VPN, EZVPN, DMVPN,

FlexVPN, SSLVPN

APPX/APP IP Base features plus the following:

Advanced networking: L2TPv3, BFD, MPLS, VRF, VXLAN

Application experience: WCCPv2, APPXNAV, NBAR2,

AVC, IP SLA

Hybrid cloud connectivity: LISP, OTV, VPLS, EoMPLS

Subscriber management: PTA, LNS, ISG

AX (Routing + Security +

APPX + Hybrid Cloud)

Security features plus the following:

Advanced networking: L2TPv3, BFD, MPLS, VRF, VXLAN

Application experience: WCCPv2, APPNAV, NBAR2, AVC,

IP SLA

Hybrid cloud connectivity: LISP, OTV, VPLS, EoMPLS

Subscriber management: PTA, LNS, ISG

CSR 1000V Deployment Examples
This section shows some deployment use cases for the CSR 1000V. Chapter 5, “CSR

1000V Deployment Scenarios,” and Chapter 6, “CSR Cloud Deployment Scenarios,” go

into more detail about these use cases.

Secure Cloud VPN Gateway

A large enterprise typically has a central headquarters and a few regional hubs, two or

more data centers, and hundreds (or even thousands) of branch offices. An enterprise

organization needs to secure its connectivity between its private data center and its off-

premise data center in the cloud.

ptg17123584

CSR 1000V Deployment Examples 51

Many public cloud and virtual private cloud services also provide VPN as a capability;

however, this service is typically offered as a black box with little visibility and

troubleshooting capability into the VPN service. In addition, there is a monthly recurring

charge or per-VPN tunnel fee.

In this case, an enterprise can leverage the CSR 1000V in the cloud for secure

connectivity while maintaining a consistent WAN architecture. Using the CSR 1000V

as the VPN gateway in the cloud provides a familiar platform for monitoring and

troubleshooting problems while avoiding any additional VPN service fees. The CSR

1000V can be used in a hub-and-spoke, partial-mesh, or full-mesh network. By leveraging

DMVPN, an enterprise can dynamically connect its branch sites to its data center in the

cloud, thereby minimizing the latency caused by backhaul through the central site while

overcoming the complexity of managing point-to-point IPsec VPNs.

The following features are leveraged for a secure cloud VPN gateway:

■ VPN—IPsec VPN, DMVPN, and FlexVPN

■ Routing protocol—BGP, OSPF, and EIGRP

■ Security—Zone-based firewall (ZBFW), access control list (ACL), and NAT

■ Host connectivity—DHCP

Network Extension from Premises to Cloud

An enterprise that wants to maintain IP address consistency when moving an application

from its private data center to an off-premise cloud environment can leverage the CSR

1000V to provide Layer 2 or Layer 3 network extensions. The CSR 1000V offers features

such as Locator/ID Separation Protocol (LISP) to provide IP mobility and allow virtual

machines to move from the enterprise’s data center to the cloud for resource elasticity.

The Overlay Transport Virtualization (OTV) and Virtual Private LAN Services (VPLS)

features on the CSR 1000V enable an enterprise to extend Layer 2 network and

VLAN segmentation from its data center into the cloud for virtual machine migration.

This provides the enterprise the capability for server backup, disaster recovery, and

computing on-demand scaling.

The following features are leveraged for network extension from premises to cloud :

■ LISP

■ NAT

■ OTV

■ VPLS

ptg17123584

52 Chapter 2: Software Evolution of the CSR 1000

Segmentation Within a Cloud

A service provider can offer managed cloud connectivity to its customers and provide

performance and reliability guarantees by leveraging the CSR 1000V as customer edge

routers. This allows the service provider to extend segmentation and to provide end-to-

end connectivity into the cloud right up to the edge of the customer’s segments within

the cloud.

The CSR 1000V can participate in a Virtual Extensible LAN (VXLAN) network service as

a VXLAN tunnel endpoint (VTEP) and provide a termination point for VXLAN network

identifiers (VNI). For larger enterprise data centers and service provider networks,

this feature overcomes the scaling limitation of 4096 VLANs for increased network

scalability. A VXLAN supports millions of network identifiers and allows a service

provider to support a greatly increased number of tenants on its existing infrastructure.

An enterprise can also deploy the CSR 1000V as a dedicated VXLAN gateway to allow

traffic to be routed or bridged to other VXLAN or non-VXLAN networks.

The following features are leveraged for segmentation within a cloud :

■ MPLS VPN

■ BGP

■ VRF

■ VXLAN

CSR 1000V Key Features
A number of key features of the CSR 1000V are commonly used in the cloud. The

following is an alphabetical list of some of the most important of these key features:

■ Application Visibility and Control (AVC)—Cisco AVC is a solution that enables

application awareness in the network. AVC incorporates into the CSR 1000V

application recognition functions with performance monitoring capabilities that

were traditionally available only on hardware routers and switches. This integrated

approach greatly reduces the network footprint, simplifies network operations, and

reduces total cost of ownership.

The AVC solution leverages multiple technologies to recognize, analyze, and

control more than 1000 applications, including voice and video, email, file sharing,

gaming, peer-to-peer (P2P), and cloud-based applications. There are four functional

components of AVC:

■ Application Recognition via Next-Generation Network Based Application

Recognition (NBAR2) —NBAR2 offers an innovative Deep Packet Inspection

(DPI) technology for more than 1000 applications within the traffic flow. To

address the evolving nature of applications, NBAR2’s application signatures can be

updated through a protocol pack while the router is in service. It is re-architected

ptg17123584

CSR 1000V Key Features 53

based on the Service Control Engine (SCE) with advanced classification

techniques to improve accuracy and increase signatures. Its application

recognition engine supports more than 1000 applications and subclassifications.

NBAR2 provides a field extraction mechanism to export predefined fields from

packet headers via Flexible NetFlow (FNF) for reporting. With the NBAR2

protocol pack, new and updated application signatures can be loaded into routers

without the need to upgrade the system OS. New signatures and signature updates

are released monthly via protocol packs. NBAR2 is also capable of defining

customized applications based on ports, payload values, or URL.

■ Performance Collection and Exporting—AVC utilizes an embedded monitoring

agent to collect application statistics, application response time (ART) metrics

such as transaction time and latency for TCP applications, and packet loss and

jitter information for voice and video applications. These metrics are aggregated

and exported using a standard flow export format such as NetFlow version 9 and

IPFIX.

■ Management Tool—With open flow export formats such as NetFlow version

9 and IPFIX data export, Cisco Prime Infrastructure and other third-party

network management tools can consume data exported by AVC for application

and network performance reporting. This gives users flexibility to utilize Cisco

management tools or to leverage other management tools of their choice.

■ Control—By utilizing NBAR2, AVC devices can reprioritize critical applications

or enforce application bandwidth use using industry-leading Cisco QoS

capabilities. In addition, the routers can provide intelligent application path

selection based on real-time performance with Cisco Performance Routing (PfR).

■ Dynamic Multipoint VPN (DMVPN) —DMVPN is an embedded security feature

on the CSR 1000V for building scalable IPsec VPNs that support distributed

applications. DMVPN is widely used to combine enterprise branch, teleworker,

cloud network, and extranet connectivity. DMVPN offers the capability to allow

branch offices to communicate directly with each other over the public WAN or

Internet by building dynamic, on-demand VPN connections between sites. DMVPN

enables zero-touch deployment of IPsec VPNs and improves network performance

by reducing latency and jitter, while at the same time optimizing bandwidth usage at

the head end locations.

DMVPN offers several major benefits:

■ Lowers capital expenditures (CapEX) and operating expenses (OpEx) and

reduces deployment complexity by providing zero-touch deployment.

■ Simplifies branch office communication by enabling dynamic branch-to-branch

secure connectivity such as voice and video services.

■ Improves business resiliency and data integrity and security by incorporating

routing with Advanced Encryption Standard (AES).

ptg17123584

54 Chapter 2: Software Evolution of the CSR 1000

■ Embedded Event Manager (EEM)—IOS EEM is a powerful and flexible subsystem

running on the CSR 1000V that provides real-time network event detection and

onboard automation. It enables you to adapt the behavior of your network devices

to align with business needs.

EEM supports more than 20 event detectors that are highly integrated with

different Cisco IOS software components to trigger actions in response to network

events. You can inject your business logic into network operations using IOS EEM

policies to enable creative solutions, such as automated troubleshooting, fault

detection, and device configuration.

■ IP Service Level Agreement (IP SLA)—The Cisco 1000V offers embedded IP SLA

capability, allowing customers to understand IP service levels, increase productivity,

and reduce operational costs in the cloud. The IP SLA feature performs active

monitoring of network performance and can be used for network troubleshooting,

readiness assessment, and health monitoring. IP SLA running on the CSR 1000V

can be configured to actively monitor and measure performance between multiple

network locations or across multiple network paths. The IP SLA sends out probes

that can simulate network data, voice, or video services and collect network

performance information in real time. The information collected includes data about

response time, one-way latency, variation in packet delivery (jitter), packet loss, voice

quality scoring (MOS score), network resource availability, application performance,

and server response time. You can use the measurement and statistics provided by IP

SLA for troubleshooting, problem analysis, and network capacity planning.

■ Location/ID Separation Protocol (LISP)—LISP is a routing architecture that offers

new semantics for IP addressing. The current IP routing and addressing scheme uses

a single numbering space, the IP address, to express two pieces of information:

■ Device identity

■ How the device attaches to the network

The LISP routing architecture provides separation of the device identity from its

location. This capability brings enhanced scalability and flexibility to the network,

enabling virtual machine IP mobility (VM-Mobility) for geographic dispersion

of data centers and disaster recovery. In addition, LISP simplifies enterprise

multihoming with ingress traffic engineering capability, multitenancy over Internet,

and simplified IPv6 transition support.

The LISP VM-Mobility solution addresses the challenge of route optimization when

a virtual machine moves from one location to another. It does this by keeping the

server identity (its IP address) the same across moves so the clients can continue to

send traffic regardless of the server’s location, and at the same time, it guarantees

optimal routing between clients and the server that moved .

■ Multiprotocol Label Switching (MPLS) VPN —MPLS is a packet-forwarding

technology that uses labels to expedite data packet forwarding. A label is a short

4-byte identifier inserted between the Layer 2 header and Layer 3 header of a data

ptg17123584

CSR 1000V Key Features 55

packet. One key benefit of MPLS is that the decision about where the packets

are forwarded is based solely on the label and not on the Layer 3 information the

packet carries; this allows for faster lookups for the forwarding decision.

MPLS VPN extends the capabilities of MPLS and supports creation of VPNs across

an MPLS network. MPLS may be used to deliver VPN solutions at either a Layer 2

VPN (L2VPN) or Layer 3 VPN (L3VPN). All solutions enable a service provider to

deliver a private service over a shared network infrastructure.

An MPLS L3VPN provides a full-mesh Layer 3 virtual WAN service to interconnect

customer edge (CE) routers. The segmentation of traffic between the customers is

done through the use of Virtual Routing and Forwarding (VRF) and MPLS VPN

labels for traffic separation.

An MPLS L2VPN offers “switch in the cloud” forwarding service. L2VPN provides

the capability to extend Layer 2 connectivities between sites and the ability to span

VLANs across sites.

■ Performance Routing (PfR) —PfR is a Cisco innovation that delivers intelligent

path control for application-aware routing across the WAN. PfRv3 is the third

generation of this intelligent path control capability. It offers simple, centralized

configuration, improved application monitoring, and faster convergence. PfRv3

monitors application performance on a per-flow basis and applies the statistics

collected to select the best path for that application. PfR provides the capability for

dynamic selection of the best path for application-based business policies, as well as

application-based load balancing across paths for full utilization of bandwidth.

■ Virtual Private LAN Services (VPLS) —VPLS is a Layer 2 VPN service that

provides multipoint Ethernet LAN services to multiple sites, offering a single

bridged domain over a managed IP or MPLS network. Enterprises often use VPLS

to provide high-speed any-to-any forwarding at Layer 2 without the need to rely

on Spanning Tree to keep the physical topology loop free. VPLS leverages the

concept of linking virtual Ethernet bridges using MPLS pseudowires to interconnect

sites in a full-mesh topology and form a single logical bridge domain. Compared

to traditional LAN switching technology, VPLS is more flexible in its geographic

scaling, as the sites may be within the same metropolitan domain or may be

geographically dispersed over a region or a nation.

■ Overlay Transport Virtualization (OTV) —OTV introduces the concept of MAC

routing, whereby a control plane protocol is used to exchange MAC reachability

information between network devices providing LAN extension functionality. This

is a significant shift from Layer 2 switching, which has traditionally leveraged data

plane learning, and it is justified by the need to limit flooding of Layer 2 traffic

across the transport infrastructure. If the destination MAC address information

is unknown, then traffic is dropped (not flooded), preventing wasting precious

bandwidth across the WAN.

In addition, OTV introduces the capability of dynamic encapsulation for Layer

2 flows to be sent to remote locations. Each Ethernet frame is individually

ptg17123584

56 Chapter 2: Software Evolution of the CSR 1000

encapsulated into an IP packet and delivered across the transport network. This

eliminates the need to establish virtual circuits, called pseudowires, between the

data center locations.

Finally, OTV enables multihoming with automatic detection. This is critical in

increasing high availability of the overall solution, allowing two or more devices to

be leveraged in each data center to provide LAN extension functionality without

running the risk of creating an end-to-end loop that jeopardizes the overall stability

of the design.

■ Radio Aware Routing—Radio Aware Routing provides a session-based mechanism

for sharing radio network status such as link quality metrics and establishing flow

control between a router and an RFC 4938–capable radio. RFC 4938 is an IETF

standard that defines PPP-over-Ethernet (PPPoE) extensions for Ethernet-based

communications between a router and a mobile radio or satellite modem that

operates in a variable-bandwidth environment with limited buffering capabilities.

The feature enables optimal route selection based on cross-layer feedback and

faster convergence when nodes join and leave the network.

■ Redundancy Group Infrastructure—Redundancy Group Infrastructure provides

router-to-router high availability, allowing the configuration of a pair of routers to

act as backup for each other. When a failover occurs, the standby router seamlessly

takes over. The CSR 1000V supports the Interchassis Asymmetric Routing Support

for Zone-Based Firewall and NAT feature, which allows the forwarding of packets

from a standby redundancy group to the active redundancy group for packet

handling. If this feature is not enabled, the return TCP packets forwarded to the

router that did not receive the initial TCP synchronization (SYN) message are

dropped because they do not belong to any known existing session.

■ Virtual Extensible LAN (VXLAN) —VXLAN is a network virtualization

technology that solves the scalability problem in large data center or cloud

computing environments. VXLAN encapsulates a MAC frame inside a UDP packet.

It uses a 24-bit virtual identifier called the VXLAN network identifier (VNID) to

provide Layer 2 separation. This 24-bit VNID offers scalability up to 16 million

Layer-2 VXLAN segments. The UDP encapsulation enables these segments to

be routed across Layer 3 networks using equal-cost multipath routing. The CSR

1000V supports this feature and acts as a Layer 2 and Layer 3 VXLAN gateway.

The Layer 2 gateway leverages UDP encapsulation on data plane MAC address

learning and forwarding on multi-destination Layer 2 traffic. The CSR 1000V offers

interoperability, allowing connectivity between hosts on the VXLAN and hosts on a

traditional VLAN network.

■ Zone Based Firewall (ZBFW) —Zone Based Policy Firewall, also known as Zone

Based Firewall, is a stateful inspection firewall running on the CSR 1000V that

offers a flexible advanced security model. With ZBFW, router interfaces are

assigned to security zones, and the firewall inspection policy is applied to traffic

moving between the security zones. ZBFW supports many types of application

inspection, including HTTP, Secure HTTP (HTTPS), Secure Shell Protocol (SSH),

ptg17123584

Summary 57

Simple Mail Transfer Protocol (SMTP), instant-messaging applications, and point -

to-point file sharing. Inter-zone security policy offers the flexibility and granularity

for allowing different inspection policies to be applied to multiple host groups con-

nected to the same router interface.

Existing IT staff will be able to configure these features, and using them allows you

to extend existing enterprise security into the cloud. You can apply security policies

between virtual networks or applications in the cloud as well as between cloud and

external locations.

For a complete list of features supported by the CSR 1000V, please refer to the Cisco

Feature Navigator at http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp.

Summary
Now that you have read this chapter, you should have a fundamental understanding

of the system architecture of IOS and the evolution of IOS XE. The chapter provides

detailed discussion of the operations and the system architectures for IOS and IOS

XE network operating system. The components of IOS XE and the ASR 1000 are

fundamental to understand the operation of the CSR 1000V. This chapter has provided

the background information you need to go deeper into the CSR 1000V’s system

architecture and operation.

http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp

ptg17123584

This page intentionally left blank

ptg17123584

A hypervisor is similar to an operating system in some ways, and it is different in others.

The concept of a hypervisor is an important foundation as it relates to the CSR operation.

The objective of this chapter is to disambiguate the two so that you have a clear under-

standing of an OS and a hypervisor. This chapter covers operating system concepts with a

focus on Linux because a Cloud Service Router’s (CSR) operating system is based on Linux.

Understanding Operating Systems
Computer hardware typically consists of memory, CPU, and I/O devices. They are com-

plex systems, and all computer applications need parts of this hardware. It is possible to

dedicate an entire piece of computer hardware to a single application. However, doing

so may result in a computing resource idling most of the time. If you choose to run

multiple applications, to better utilize computing resources, you may run into a resource

contention issue. You need to find a mechanism to allocate the hardware resources to

your applications when they need them. To avoid resource oversubscription, there has

to be a governor of sorts that acts as the master for scheduling the hardware resources.

Applications talk to this governor and get CPU cycles, memory, and I/O resources when

they need them. This governor is the operating system.

An operating system is software that manages hardware resources and makes them

available to applications. Application developers can write software that talks to the

hardware. However, software that interacts directly with the hardware is complex and

difficult to code. It is best left to people who understand the inner working of the

hardware to write that piece of code. This way, application developers can do what

they do best: write applications without having to worry about how their code will be

scheduled on the hardware it eventually runs on. That scheduling is the domain of an

operating system, which manages and schedules hardware resources for the applications

running on it. But how does the operating system do it? Let us start with how an

operating system is designed.

Hypervisor Considerations for
the CSR

Chapter 3

ptg17123584

60 Chapter 3: Hypervisor Considerations for the CSR

Operating System Design

An operating system’s design must cover two broad elements: physical resource manage-

ment and software access to physical resources. The following sections describe these

elements and their components.

Physical Resource Management

Most modern hardware is designed to support multiple applications. Multitasking is

not possible without the operating system allocating physical resources to multiple

applications at the same time. Memory, CPU, and network interfaces are some very

common hardware resources that need to be made available to applications. The OS

schedules the CPU cycles so that each application gets a piece of the CPU when it

requires it. The OS also needs to manage memory from the physical memory available.

Random access memory (RAM) is the memory that operating systems or applications use

for faster access by the processor.

An OS can schedule the CPU in different ways. At a given instant, most CPUs can

service just one process. With multiple applications competing to get a piece of the CPU

cycles, the OS must service the requests in such a way that each application gets a slice

of the CPU cycle. An OS can achieve this in several ways:

■ FIFO (first in, first out) —In this simplest of scheduling algorithms, a process is

serviced by the CPU on a first-come, first-served basis. It is fairly easy to implement

this in the C language. You just create a circular list to have the OS remove the process

from the front of the queue, run it until completion, and allow the next process to

take the CPU. The advantages of this kind of implementation are that it is easy to

implement and simple to understand. On the downside, however, short processes at

the tail of the queue have to wait a long time to get serviced as the non-preemptive

implementation waits for each process to complete before moving on to the next.

■ Round-robin scheduling—This is a legacy scheduling mechanism wherein each

process is given a fixed amount of CPU time. If the process does not get completed

within the allocated time, the process is moved to the end of the queue, and the

next process is serviced. If the process gets completed, there is a way to relinquish

the time it no longer needs from the allocated quota. This is a good option for some

real-time environments. It gives very good performance, especially for embedded

applications with simple schedulers, and enforces strict fairness, so no process ever

gets starved. The round-robin method, however, suffers from multiple drawbacks.

For example, the system becomes too slow when the CPU time slice allocation is too

small and a lot of processes are waiting to be serviced. If you increase the CPU time

slice allocated for each process, the system becomes unresponsive. The advantage of

this kind of implementation is the simplicity: It’s easy to comprehend and code.

■ SPN (Shortest Process Next) —In the SPN implementation, the CPU schedules

the shortest process first, so the process that takes the least time to get executed is

scheduled first. In this algorithm, the OS needs to know the exact time each process

takes to get done, and the user provides this input. So if the input isn’t accurate, the

ptg17123584

Understanding Operating Systems 61

efficiency of the system suffers. With multiple short jobs, the long ones get queued

up for a while.

■ SRT (Shortest Remaining Time) —SRT is a better version of the SPN algorithm.

Here the process that can be completed in the shortest time jumps to the top of the

queue. So whenever there is a process that requires the least amount of CPU time, it

cuts the queue of scheduled processes and goes right to the start of the queue. This

implementation suffers from the same drawbacks as the SPN algorithm.

■ Preemption—This algorithm allows an OS to relinquish the CPU (currently

processing a task) in favor of a higher-priority process. This means the OS has the

ability to preempt. In case of handling interrupts, scheduling is stopped until the

interrupt is taken care of. For example, the scheduler in the Linux kernel is invoked

regularly within a stipulated time (such as after each timer interrupt). When called,

the scheduler picks up the next process it must service, based on priority and other

factors. This model yields better OS scalability and response.

■ Priority scheduling—In this algorithm, each process is assigned a priority, and the

higher-priority processes are executed first. Some implementations use the time the

process has waited to increase the priority of the process; this prevents the non-

priority processes from being blocked.

As with CPU, memory is another resource that needs to be shared between applications.

The given physical memory (RAM) is managed by the OS. With limited RAM address

space, operating systems will either use segmentation or paging to virtually increase this

address space:

■ Segmented memory—If an operating system opts for segmented memory

allocation, it uses a memory management unit (MMU), which is a hardware device

that translates a logical address (segment with an offset) to a physical address on the

memory chip. This allows computers to present to applications more memory that is

addressable than what is physically available on the memory chip.

■ Paged memory—Segmented memory is not very popular with modern operating

systems, which tend to use paged memory. With paged memory, the MMU is used

to translate virtual addresses to physical addresses. When using this model, an OS

can map multiple 4KB chunks or pages in most x86 architectures or 4MB pages

with a huge pages option turned on. So you can have data at an offset of 0x200 in

the physical memory mapped to an address XYZ (at an offset of 4GB) in virtual

memory even though your RAM isn’t 4GB. This essentially does two things. First,

it gives your application a feeling of operating with much more memory than is

available physically. Second, it allows the OS to give each process its own address

space (albeit virtual address space) that makes the process self-contained within

that address space. Everything else is hidden from the process, and it does not have

access to addresses outside the virtual address space allocated to it. This prevents

it from corrupting the data of other processes and enhances security. Figure 3-1

details the memory paging concept. It illustrates how a virtual address is mapped to

a physical location on the RAM.

ptg17123584

62 Chapter 3: Hypervisor Considerations for the CSR

In most Linux versions, the kernel uses the preemption model when it comes to CPU

scheduling. For memory management, the kernel uses paging.

Page Table RAMVirtual Address

0 00 313116

Pa
ge

 In
de

x

O
ffs

et

31

Page Index Offset

16

Permission

Physical
Page

Physical
Page

Offset

Data

Figure 3-1 Memory Paging Concept

Software Access to Physical Resources

Every OS needs to provide a software interface for the applications to access the

hardware. We discussed the design options available for operating systems when

managing hardware. An OS must provide interfaces for applications to access the

hardware resources it is managing. This is typically done through an application

programming interface (API). It allows an application developer to access the hardware

through software handles. The OS should also give the user an interface to access the OS

software through a shell or a graphic interface. This allows the user to use and monitor

the OS.

Now that we have discussed the design options available when implementing an OS, let

us discuss the different components that are building blocks for an OS:

■ The kernel is at the core of the operating system.

■ Libraries provide services to the applications that run on the operating system.

■ Drivers allow the software to use the hardware.

■ A boot mechanism loads the operating system into the main memory .

ptg17123584

Understanding Operating Systems 63

Kernels

A kernel is at the heart of an operating system. It is the piece of code that sits closest

to the hardware. The kernel is an integral part of an operating system, and its duty is to

bring all devices to a known state and make the computer system ready to be used.

The kernel code provides a layer of abstraction between the hardware and the software

running on the system. Through APIs, applications have the kernel perform hardware

jobs. Kernels allow the hardware to be shared between multiple applications, and

kernels overcommit resources to applications. (You’ll learn more about the Linux

implementation later in this chapter.)

When UNIX was originally designed, it had a simple design wherein the entire operating

system code was one big layer, as shown in Figure 3-2. This was a good approach at the

time, given the limited number of programmers, and it kept things simple .

Applications

Drivers PagingCPU
Scheduling

Virtual
Memory

System Calls

Kernel Interface to Hardware

Hardware Controllers

N
o D

ifference Betw
een Kernel and

U
ser M

odes

Ke
rn

el

Figure 3-2 Original UNIX System Structure

Microkernels

As the demand on the OS increased, there had to be a more modular way to structure

the design of the kernel. Microkernels were introduced to strip off all nonessential

components of the kernel code and move those components to system applications; this

kept the kernel code small, sleek, and efficient. Thus the kernel space and the user space

were segregated from one another; the user space became the code that runs outside

the kernel. The drivers, file systems, and other services are all part of the user space. The

microkernel code provides hardware management (memory and CPU) and messaging

between services. This way, the kernel code is kept intact, and the subsequent enhance-

ments do not involve rebuilding the kernel.

The object-oriented approach to programming brought changes in operating system

design, too. Take, for example, Solaris. It has a small kernel and a set of modules that

can be dynamically linked to the kernel. The kernel can therefore be small and does not

need to take care of interprocess communication (IPC) because the modules are free to

contact each other.

ptg17123584

64 Chapter 3: Hypervisor Considerations for the CSR

Hybrid Kernels

Most of today’s operating systems are a hybrid of the legacy architecture and modern

object-oriented approach. Take, for example, Android, shown in Figure 3-3.

Apps

Libraries (OpenGL) Runtime Libraries

Application Infra

Linux Kernel

Figure 3-3 Android Architecture Approach

In the Android approach, the Linux kernel is used as is. The Linux kernel runs libraries

like OpenGL and WebKit, and it links to certain Android runtime libraries dynamically

at runtime. The runtime libraries allow multiple instances of containers to be created

simultaneously, providing security, isolation, memory management, and threading

support . This runtime support provides improved compilation and runtime efficiency to

applications compared to traditional operating systems.

The Cisco IOS Kernel

The IOS kernel manages system resources such as scheduling and memory management.

However, it’s different from other modern kernels in that it doesn’t have segregation

between the kernel and user mode. Everything in IOS, including the kernel, runs in user

mode, as shown in Figure 3-4. This means that all processes have full access to system

resources.

Kernel Device Drivers

Packet Buffers Fast Switch
SoftwareProcess

Hardware

Figure 3-4 IOS Architecture

The kernel in IOS mainly runs the scheduler and the memory manager.

ptg17123584

Understanding Operating Systems 65

The Scheduler

The IOS scheduler has three main categories of process queues that hold context

information. The scheduler moves the process context from one queue to another, based

on the state of the process. Following are the queues:

■ Idle queue—Holds processes that are waiting on an event to run.

■ Dead queue—Holds processes that have been killed but still need to free up

resources.

■ Ready queue—Holds processes that are run ready. There are four ready queues,

based on priority:

■ Critical—The scheduler first empties this queue. The processes in the critical

queue are run until the queue is empty. Only then does the scheduler schedule

processes from the other queues.

■ High—After all the critical processes have completed, the scheduler picks up

processes in the high queue. The scheduler checks the critical queue in between

running processes from the high-priority queue.

■ Medium—After all high processes have been executed, the scheduler picks up

the processes in the medium queue. Here, too, in between running medium-

priority processes, the scheduler looks for processes in the high-priority queue

(and this is repeated if there are processes in the critical queue).

■ Low—The same algorithm is followed for the low-priority queue as for the other

queues. In between running low-priority processes, the scheduler looks for pro-

cesses that are ready in the medium, high, and critical queues.

show process CPU is the command-line command for checking what processes are run-

ning on the CPU.

The Memory Manager

The IOS memory manager is responsible for managing the memory available to IOS. The

memory manager within IOS has three components:

■ Region manager—This allows parts of IOS to create regions in the memory. It

allows querying memory regions to determine the amount of memory available.

■ Pool manager—Each malloc or free from a process has to go through the pool

manager. It maintains the free memory information from each pool. The pool man-

ager coagulates discontinuous freed-up areas within a memory pool. It tries to allo-

cate a continuous area of memory for each process that asks for memory. Whenever

a process frees up memory fragments, the pool manager tries to coagulate the freed

memory into continuous memory areas to be made available to processes. Every

memory address managed by the pool manager has 32 bytes of overhead associ-

ated with it, because the pool manager gets its memory from multiple blocks of free

memory of varying sizes.

ptg17123584

66 Chapter 3: Hypervisor Considerations for the CSR

■ Chunk manager—The IOS chunk manager manages a large number of random-

sized blocks of memory. It uses a single 32-byte overhead for a large number

of small freed-up memory segments. When a process requests a large block of

memory, the chunk manager fragments this memory chunk into smaller fixed-sized

blocks, which are then used by the process. The advantage here is that there is just

one 32-byte overhead associated with a large memory block (and the chunk man-

ager later fragments it).

IOS scheduling and memory management processes are part of the IOS kernel. However,

all kernel processes and non-kernel processes run in the user space in IOS. IOS was

designed to run on a fixed set of hardware (Cisco routers), and hence this design is easy

to implement and effective, too.

You will see in Chapter 4, “CSR 1000V Software Architecture,” how the IOS XE design

uses a Linux kernel to do all the kernel activities, while IOS runs as a process on a Linux

kernel. The design of IOS XE facilitates portability of code between hardware, and the

implementation is similar to that of a hybrid kernel.

The Boot Process

To boot any computer system, you must first bring to life basic input/output devices.

Then you need to locate and execute code to load drivers to power up all devices con-

nected to the computer. Subsequently, you load the kernel and the operating system.

Here we take Linux as an example to look at how the boot process works. It is important

to understand the boot process when trying to get familiar with Cisco’s CSR because it is

based on IOS XE, which uses a Linux kernel.

On cold start, the computer system first has the boot loader program loaded into a

known place in memory. The boot loader program is located in the beginning of a hard

drive or partition. (The following section details the steps involved in booting.) The boot

loader performs tasks such as initializing the CPU, identifying key pieces of hardware,

and executing the kernel code. Boot loader code may or may not be part of the operat-

ing system. For example, in Windows NT, the boot loader is a part of the operating sys-

tem. In the case of the Cisco CSR, GNU GRand Unified Bootloader (GRUB) is used to

accomplish boot loader functions and isn’t a part of the operating system.

It is important to understand how a computer system boots up its different components.

The operating system becomes the master of the computer resources and provides hard-

ware resources to the applications running on it. But how does the operating system get

on to the computer? A clear understanding of this will help you debug and troubleshoot

CSR issues.

There are six essential steps involved in loading an operating system to a computer

and making it ready to run the applications. Following are the steps in the Linux boot

process; the CSR boot process follows this sequence as well:

ptg17123584

Understanding Operating Systems 67

Step 1. The Basic Input/Output System (BIOS) runs from the ROM and is OS inde-

pendent. It performs a power-on self-test (POST), which is a basic check for

fundamental hardware on the computer system. BIOS looks for the Master

Boot Record (MBR), loads it, and executes it.

Step 2. The MBR is located in the first sector of the bootable disk. It is /dev/sda on

the Linux kernel that is used with the CSR. On most Linux kernel implemen-

tations, it is smaller than 512 bytes in size. The first 446 bytes provide the

primary boot loader info. The next 64 bytes contain the partition table info,

and the last 2 bytes are an MBR validation check. The main job of the MBR

is to load and execute the GRUB boot loader.

Step 3. GRUB gives you an option of multiple kernel images to be executed on a

splash screen. You can choose the kernel images or let it load the default in a

few seconds.

On the CSR, GRUB gets its menu of kernel images from menu.lst, located

under /boot/grub/, as shown in Example 3-1.

Example 3-1 Kernel Images Available to GRUB Are Listed in menu.lst

cat /boot/grub/menu.lst

default 0

timeout 5

serial --unit=0 --speed=9600 --word=8 --parity=no --stop=1

terminal --timeout=10 serial console

fallback 1

title CSR1000v—packages.conf

 root (hd0,0)

 kernel /packages.conf rw root=/dev/ram console=ttyS1,9600 max_loop=64
HARDWARE=virtual SR_BOOT=bootflash:packages.conf

title CSR1000v—GOLDEN IMAGE

 root (hd0,4)

 kernel /csr1000v- csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
 rw root=/dev/ram console=ttyS1,9600 max_loop=64 HARDWARE=virtual
 SR_BOOT=bootflash:csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin

So the main job of GRUB is to load and execute the Kernel and initrd images.

Step 4. The kernel mounts the root file system and executes the /sbin/init

program. Because init is the first program to be executed by the Linux

kernel, it gets a process ID of 1:

ps -ef | grep init
root 1 0 0 2014 ? 00:00:18 init [3]

ptg17123584

68 Chapter 3: Hypervisor Considerations for the CSR

The main jobs of the kernel are to initialize the devices attached to the

computer system, mount the root file system, and run the init process. To

load the drivers, however, the kernel must have a file system. Before the

root file system is initialized, the kernel needs a file system to make sure

the kernel modules are loaded appropriately. This is done by the initrd

(or initial ramdisk) file system. This is a temporary root file system that the

kernel uses when it boots up. After the kernel boots and loads the main root

file system, it takes initrd offline.

Step 5. The kernel runs the init process, which creates all the processes from the

script located in the file /etc/inittab. The main job of the init process is

to set up the user space. It essentially decides the Linux run level. After it is

done creating all the processes from /etc/inittab, it goes into a wait state

until one of three events occurs:

■ Processes die

■ Power failure

■ Request via /sbin/telint for a change in run level

These are the run levels used by most Linux implementations:

■ 0—Halt (Do not set initdefault to this.)

■ 1—Single-user mode

■ 2—Multiuser mode, without NFS (the same as 3, if you do not have

networking)

■ 3—Full-multiuser mode

■ 4—Unused

■ 5—X11

■ 6—Reboot (Do not set initdefault to this.)

Step 6. The run level programs/services get started while your Linux system boots.

Depending on your init level setting, the system executes one of the

following for your run level:

■ 0—Halt: The program executed is /etc/rc.d/rc0.d/.

■ 1—Single-user mode: The program executed is /etc/rc.d/rc1.d/.

■ 2—Multiuser mode: The program executed is /etc/rc.d/rc2.d/.

■ 3—Full-user mode: The program executed is /etc/rc.d/rc3.d/.

■ 4—Unused mode: The program executed is /etc/rc.d/rc4.d/.

■ 5—X11 (full multiuser with GUI): The program executed is

/etc/rc.d/rc5.d/.

■ 6—REBOOT: The program executed is /etc/rc.d/rc6.d/.

ptg17123584

Understanding Operating Systems 69

Under the /etc/rc.d directories you find programs that start with S and K. S stands for

startup, meaning that these are executed during startup. K stands for kill, meaning these

programs are executed during a system shutdown.

On a CSR, the programs shown in Example 3-2 are executed on run level 3 (full-

multiuser mode).

Example 3-2 Programs That Are Executed on the Full-Multiuser Run Level

[CSR:/etc/rc.d/rc3.d]$ ls -lrt

total 212

-r-xr-xr-x 1 root root 4684 Dec 2 15:45 S60nfs

-r-xr-xr-x 1 root root 4131 Dec 2 15:45 S56xinetd

-r-xr-xr-x 1 root root 4958 Dec 2 15:45 S55sshd

-r-xr-xr-x 1 root root 2778 Dec 2 15:45 S28autofs

-r-xr-xr-x 1 root root 2164 Dec 2 15:45 S26pcscd

-r-xr-xr-x 1 root root 1870 Dec 2 15:45 S20virt_support

-r-xr-xr-x 1 root root 8092 Dec 2 15:45 S14netfs

-r-xr-xr-x 1 root root 2615 Dec 2 15:45 S13portmap

-r-xr-xr-x 1 root root 1369 Dec 2 15:45 S12syslog

-r-xr-xr-x 1 root root 10115 Dec 2 15:45 S10network

-r-xr-xr-x 1 root root 7460 Dec 2 15:45 S08iptables

-r-xr-xr-x 1 root root 220 Dec 2 15:45 S99local

-r-xr-xr-x 1 root root 135553 Dec 2 15:45 S80binos

Linux Memory Management

The Linux kernel performs memory management. The following sections cover the key

concepts involved in Linux kernel memory management.

Linux Swap Space and Memory Overcommit

As discussed earlier, virtual memory is the memory that is allocated to a process when

it comes in asking for a malloc() . (malloc() is a subroutine in the C programming

language for performing dynamic memory allocation.) This virtual memory is mapped

to a physical memory location. Whenever a processor executes a program instruction

set, it reads the instructions from a virtual memory location in a virtualized environment.

However, before this can be done, the processor has to map the virtual memory location

to a physical address. This mapping is done using page tables.

This method of memory allocation and addressing is inherently subject to

overcommitment, as shown in Figure 3-5. It means that the operating system can allocate

more virtual memory than is physically available on the RAM. This is based on the

assumption that the process/virtual machine asking for memory will not need all the

memory requested to start with. In a virtualized environment, this means you can create

more virtual machines than your RAM prescribes. This is a very powerful technique, but

ptg17123584

70 Chapter 3: Hypervisor Considerations for the CSR

it needs additional memory management to make sure processes/virtual machines get

physical memory when they actually need it.

4GB 4GB

Physical RAM (8GB)

Virtual Memory for Process C

4GB

Virtual Memory for Process A Virtual Memory for Process B

Figure 3-5 Memory Overcommitment

Figure 3-5 shows 8GB of physical memory available and the memory used by the

virtual process mapped to the physical memory. You can, in theory, create two 4GB

virtual machines on this. However, because two virtual machines will not use the entire

4GB physical address space, it’s better to overcommit and use the memory for hosting

another VM. If there is a surge in the memory requirement, swapping is used to manage

the spike, as shown in Figure 3-6.

Disk
Swapper

Physical MemoryPage TableVirtual Address

0 16 31 0 16 31

Page Permis-
sionOffsetPage

Index

Data

Figure 3-6 Memory Swapping

ptg17123584

Understanding Hypervisors 71

With overcommitting of memory, you run the risk of having a process or virtual machine

want physical memory when the physical RAM space is all used up. In such a case, Linux

has to discard a page residing in RAM to accommodate the new request. If the page to

be discarded is not written into, it can just be removed as it can be easily brought back

when the processes need it. If a page in the cache that has been written into (a dirty

page) needs to be removed (which is done when there are no empty pages left), Linux

removes a dirty page from RAM and puts it in a special file called a swap file . This

is usually on a secondary storage device of a computer system like a hard disk. This

process is called swapping.

Now the obvious question is, how does Linux decide which dirty page to swap? Linux

uses the least recently used algorithm to decide which dirty page can be swapped. Each

page has an age associated with it. The pages that are being accessed are “young” pages,

while the pages that are not accessed a lot get “old.” When Linux has to choose which

dirty page to swap, it chooses the oldest page.

A swap algorithm must be effective; otherwise, you can run in to a situation where your

CPU becomes too busy swapping and is unable to give time to processing real workload.

Such a situation is called thrashing .

Linux Caching

Disk access is time-consuming, and to speed up the access, Linux deploys a cache

mechanism by which it reads from the disk once and then stores the entry in memory

(the Linux swap cache) for subsequent access. A swap cache is a list of page table entries

of the swapped-out pages’ locations in the swap file. Consider a situation where a dirty

page is swapped. It is then brought back to memory unmodified. Now if there is a need

to swap this page again, Linux does not push it back to the swap file. Instead, it simply

discards the page because the swap file already has a copy of the page.

As discussed earlier, an OS maps the virtual address to a physical address using page

tables. These table entries are stored in a hardware cache. This hardware cache has the

translational look-aside buffer (TLB). When a processor wants to map a virtual address

to a physical address, it gets the page table entry from TLB. If the processor finds the

information it is looking for, it gets the physical address from it. However, if it cannot

find the entry there, it asks the OS to update the TLB, using an exception. The OS

subsequently updates the TLB and clears the exception.

Understanding Hypervisors
As discussed in Chapter 1, “Introduction to Cloud,” virtualization allows you to fully

utilize modern hardware that would otherwise not be fully utilized. Just as an operating

system makes hardware resources available to the applications running on it, a manager

is needed to allocate the hardware resources to virtual machines running on it. This is the

job of a virtual machine manager (VMM) , which is a software layer that sits between the

hardware resource and the virtual machines. VMM makes sure the virtual machines get

the hardware resources they require.

ptg17123584

72 Chapter 3: Hypervisor Considerations for the CSR

As mentioned in Chapter 1, virtualization is not new concept. In 1965, IBM engineers

developed software that allowed the IBM360/65 to share memory with the 7080

emulation that ran on the IBM360. Engineers were essentially trying to access memory

that the operating system would normally deny access to. Because operating systems

were referred to as supervisors , the term hypervisor was born for this piece of code

that allowed engineers to override the supervisor. The term hypervisor then replaced

VMM, but essentially the term hypervisor can be used interchangeably with VMM.

How Does a Hypervisor Compare to an Operating System?

Now that you know how the operating system shares hardware resources, we can compare

it to a hypervisor. Broadly speaking, a hypervisor is a piece of software that provides

operating system services to virtual machines running on it. A type 1 hypervisor runs over

bare-metal x86 hardware architecture, as an operating system does, but it also enables

other operating systems to run on it. An operating system creates software handles that

an application uses to access the hardware resources. With a hypervisor, these software

handles enable the user to run not just applications on it but also self-contained operating

systems that think they run on bare metal (unless, of course, in a para-virtualized system).

Note Computer operating systems provide multiple levels of access to shared resources.

There is therefore a hierarchy of privileged resource access in the system. In x86, the term

ring is used to denote the hierarchy of access. Note that ring 0 is the highest privilege

level , and the lowest privilege level has the highest ring number. These are some important

features of x86 ring architecture:

■ Ring 0 has the most privileges and interacts directly with the physical hardware, such as

the CPU and memory.

■ Ring 1 and 2 aren’t used by most chipset architectures, and most chipsets support just

two modes (such as ring 0 and ring 3).

■ Ring 3 runs the user mode and has the lowest privilege level.

When a process running in the user space (ring 3) wants to make a privileged call to I/O

devices (shared resources), it makes a system call to the kernel. The kernel runs a snippet

in ring 0 after receiving the request from the user space to grant this access based on

the security restriction of the drivers. (This is achieved using the SYSENTER/SYSEXIT

instruction set, available on Pentium II+ processors.)

Now consider the case where there are multiple operating systems running on an x86

platform. All processes in the operating system make system calls as if the hardware

belongs to them. So there needs to be a way to make sure that an application running on

a guest OS does not trample over system calls from another OS. This is where hypervi-

sors come in. Because a hypervisor is aware of all the operating systems running on it,

it ensures that the kernel calls are prioritized and one system call does not conflict with

another, as shown in Figure 3-7. Just as a process in user mode makes system calls to the

kernel, a guest OS calls the hypervisor to execute privileged instructions on the chipset.

These processes are called hypercalls .

ptg17123584

Understanding Hypervisors 73

Ring 3 Ring 0

Hypercall

Syscall

Pa
ra

-V
irt

ua
liz

ed
G

ue
st

 O
S

OS Apps

Hypervisor
Kernel

Kernel

Hardware
Files

Network

Figure 3-7 Syscall Hypercall

The previous discussion comparing operating systems and hypervisors assumes that

the operating systems running as guest operating systems are completely oblivious to

the fact that they are not the only ones running on the x86 platform. However, you

can make an OS aware that it is running on a hypervisor and not bare metal (via para-

virtualization, introduced in Chapter 1). The enlightened OS kernel uses hypercalls to

communicate with the hypervisor. With the knowledge that it is running on a hypervisor,

the enlightened OS kernel has optimized code, and this gives it better performance than

unenlightened guest operating systems.

Note Intel x86 platforms starting with the Pentium II series chipset have a

SYSTENTER/SYSEXIT instruction set that enables faster access to user-land processes to

access the kernel.

Intel’s 64 and IA-32 architecture software developer’s manual describes SYSENTER (a fast

system call) as follows:

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a

companion instruction to SYSEXIT. The instruction is optimized to provide the

maximum performance for system calls from user code running at privilege level 3

to operating system or executive procedures running at privilege level 0.

The same software developer’s manual describes SYSEXIT (the fast return form of a fast

system call) as follows:

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion

instruction to the SYSENTER instruction. The instruction is optimized to provide the

maximum performance for returns from system procedures executing at protection

level 0 to user procedures executing at protection level 3. It must be executed from

code executing at privilege level 0.

ptg17123584

74 Chapter 3: Hypervisor Considerations for the CSR

Type 1 Hypervisor Design

As discussed in Chapter 1, type 1 hypervisors run on bare metal, without any operating

system underneath. Type 1 hypervisors have direct access to hardware and hence

provide better performance than type 2 hypervisors (which run on an OS).

Type 1 hypervisor architectures can be classified broadly into two categories, monolithic

architecture and microkernel architecture, as described in the following sections.

Monolithic Architecture

As is the case with operating system design, monolithic architecture is present in

hypervisor design, too. The hypervisor code using this design includes just one instance

of a virtualization stack and supports multiple instances of guest operating systems run

on it. Because all the device drivers are in the kernel, which is the supervisor area, VMs

are given a common pool of virtualized drivers to choose from. There can be no guest-

specific drivers in this design.

Microkernel Architecture

A microkernel approach strips down the actual hypervisor software to essential calls (like

kernel code) and pushes the other components to a management guest operating system

running on the kernel. The kernel talks to the hardware, and the management guest OS

runs the drivers and virtualization stack. The management guest OS handles I/O calls for

all other guest operating systems. This gives console access to the VM.

Xen and Hyper-V are examples of microkernel design. Figure 3-8 compares monolithic

and microkernel architectures.

Monolithic Hypervisor Microkernel Hypervisor

VM3VM1
(Admin)

VM2

Hardware

Virtualization Stack

Drivers

Hardware

VM1(Admin)
Virtualization

Stack

Drivers

VM2

Drivers

VM3

Drivers

HypervisorHypervisor

Figure 3-8 Monolithic/Microkernel Comparison

ptg17123584

ESXi Hypervisor 75

Core Partitioning

Core management is one of the key aspects to consider when selecting a hypervisor.

The basic approach is static partitioning, wherein each VM is permanently dedicated to

a core. In dynamic partitioning, the VMs are allowed to migrate between cores. This is

critical when there are more VMs than there are cores. The hypervisor must optimally

schedule the cores for the VMs. This means timesharing the cores between multiple

VMs. Take, for example, a two-core system. Without core partitioning, a hypervisor

can allocate two cores to a single VM or single core per VM (assuming that there is no

hyperthreading, in which a single processor is split into two logical processors and each

processor then has the capability of executing instruction sets independently). With core

partitioning, the hypervisor can allocate two cores to two VMs because the cores are

time shared and not dedicated to a single VM.

The following sections cover ESXi and KVM, the two major type 1 hypervisors in the

industry today, and provide a brief overview of Hyper-V and Xen.

ESXi Hypervisor
ESXi from VMware is one of the popular hypervisors in the enterprise data center

environment. As a type 1 hypervisor, it runs on bare metal and provides the user a

platform to create a virtual infrastructure.

Architectural Components of ESXi

ESXi architecture mainly comprises the following components:

■ The VMkernel

■ Processes running on the VMkernel

■ Device drivers

■ File systems

■ Management

The VMkernel

In the early days, ESXi was called ESX, and at that point it used a Linux kernel. But after

version 4.1 of ESX, VMware stopped the development of ESX in favor of ESXi, which

did not have a Linux kernel. On an ESX hypervisor, the Linux kernel boots first, and

then a script loads the VMkernel. In versions since ESX 3, the Linux kernel loads the

VMkernel from initrd. With ESXi, VMware got rid of the Linux-based service console.

This resulted in a smaller memory footprint (reduced by 90MB) and allowed ESXi to be

embedded within the host flash, thereby eliminating the need for a local boot disk.

ptg17123584

76 Chapter 3: Hypervisor Considerations for the CSR

The VMkernel is a POSIX-like OS that performs OS functions. It is, however, designed

with virtualization in mind. The design supports running multiple virtual machines by

providing functionalities like resource scheduling, I/O operations, and handling of

device drivers.

Components of the VMkernel

As a type 1 hypervisor, ESXi controls all the hardware resources. The VMkernel is

responsible for carrying out the primary operating system tasks, which include CPU

scheduling, memory management, and I/O operations:

■ CPU scheduler—The CPU scheduler’s role with the VMkernel is the same as that

of a CPU scheduler in an operating system. In a conventional operating system,

the CPU scheduler allocates processes or threads to processors by using fairness,

responsiveness, and scalability as major design criteria. In the VMkernel, the CPU

scheduler does the same thing, but the processor in the case of a hypervisor is a

vCPU (virtual CPU). A vCPU is an execution context or a series of time slots on

a processor. In a multicore environment, the scheduler splits these time slots over

multiple cores. It has to coordinate time slots between multiple physical cores,

and this means overhead. Therefore, just adding more vCPU does not guarantee

improved performance.

■ Memory management—ESXi needs to maintain the translation between the guest

operating system’s physical memory and the host’s physical memory. ESXi does this

by using physical memory mapping data structures (pmap) for each VM. An applica-

tion running on a guest OS is presented with physical memory from the guest OS.

This slab of memory is referred to as a guest’s physical memory . The guest OS’s

memory page table has a mapping of the guest application’s virtual memory to the

guest’s physical memory. However, ESXi lives under the guest OS and gives it virtu-

alized resources. ESXi uses pmap and shadow page table to map the guest physical

memory address to the host’s physical memory. The shadow page table maintains

consistency between the guest’s page table (which maintains the guest virtual

memory to guest physical memory mapping) and the pmap data structure (which

maintains the guest physical memory to the host’s physical memory mapping). The

obvious question that comes to mind here is, why is an additional level of indirec-

tion needed within the pmap data structure? The answer lies in the fact that ESXi

manages a virtualized environment, and this additional level of mapping allows it to

remap a guest application’s physical memory, on the host, without the guest appli-

cation knowing about it. Recently, hardware manufacturers, such as Intel and AMD,

have eliminated the need for having an additional shadow page table in software by

synchronizing the guest page table and pmap in hardware.

Figure 3-9 shows the memory addressing mechanism in ESXi.

ptg17123584

ESXi Hypervisor 77

ESXi

Guest virtual => Guest physical

Guest virtual => Host physical

Guest virtual => Host physical
Shadow Page

Table

Guest OS Page
Table

PMAP

Figure 3-9 Memory Addressing in ESXI

Processes Running on the VMkernel

The following processes run on the VMkernel:

■ Direct Console User Interface (DCUI)—This configuration and management

interface, accessible through the server console, is used for initial configuration.

This DCUI provides the following services:

■ Sets the root password on the ESXi host

■ Configures the management interface after assigning a NIC to it

■ Starts/stops the management services

■ Views system logs

■ VMM and VMX processes—Each virtual machine is assigned a VMM (virtual

machine monitor) process and a VMX (helper) process. These processes are

responsible for providing an environment for virtual machines to run on. These

processes provide an environment where the guest OS interacts with the virtual

hardware provided to it. VMM passes storage and I/O requests to the VMkernel.

Other requests are passed to the VMX process. VMX handles user interface

communication, snapshot managers, remote consoles, and I/O requests to devices

that are not critical to performance.

■ CIM (Common Information Model) system—The CIM system allows remote

applications to manage hardware using a set of APIs. ESXi depends on this for

hardware monitoring and for keeping tabs on system health. CIM is an open

ptg17123584

78 Chapter 3: Hypervisor Considerations for the CSR

standard that provides a framework for monitoring hardware resources for ESXi.

The CIM framework consists of the following:

■ CIM providers—A CIM provider is a piece of code that enables monitoring and

management capabilities of a piece of hardware. A CIM provider is an extremely

lightweight plugin that is written for the purpose of monitoring and managing

a piece of hardware. Hardware and software makers chose one of the several

predefined XML schemas to give management information about their products.

CIM providers run inside the ESXi system.

■ CIM manager/broker—Also called CIM Object Manager (CIMOM), the CIM

manager/broker takes in information from all the CIM providers and makes it

accessible via a set of standard APIs.

■ hostd—This is a very critical process. Together with vpxa (discussed later in this

chapter), it controls management access to the ESXi host. hostd is the process

responsible for communication between the VMkernel and the outside world. It

authenticates users and tracks user privileges. hostd talks to the VMkernel and

invokes all management operations on VMs, storage, and networking. hostd is used

by the vSphere API to make a connection to the ESXi host.

■ vpxa—This process connects to the vCenter. It acts as an intermediate process

between hostd and the vCenter. (The vCenter and other management aspects of the

architecture are covered later in this chapter.)

Device Drivers

In the early days of ESXi, VMware used drivers derived from Linux. This meant that

ESXi could support many hardware devices. However, to use these drivers from Linux,

ESXi required a mechanism to make these drivers talk to VMkernel. VMkernel is not

a Linux kernel, and so VMware had to write an additional layer of software to make

these Linux drivers talk to the VMkernel. This additional shim layer, vmklinux, pro-

vided VMkernel with the APIs needed to communicate to the Linux-based drivers. The

downside with this architecture was an additional layer of indirection that degraded the

performance. ESXi was also limited by the capabilities of the Linux drivers.

With ESXi5.5, VMware decided to do away with the vmklinux shim layer. This means

that a driver, native to ESXi now talks to the hardware and has APIs interacting directly

with the VMkernel. The new native driver architecture means better performance as

it removes the overhead processing of the additional shim layer. You also get better

debugging capabilities because VMware can now develop debugging tools for drivers.

ESXi5.5 is backward compatible and supports legacy Linux drivers.

ptg17123584

ESXi Hypervisor 79

Figure 3-10 compares legacy drivers with native drivers.

vmKernel

vmKernelvmkLinux

Linux Driver

Hardware Hardware

Native Driver

Figure 3-10 Legacy and Native Driver Architectures

File Systems

VMware uses a high-performance clustered file system called Virtual Machine File

System (VMFS). VMFS is custom built for virtualized environments and enables high-

speed storage access for virtual machines. VMFS manages virtual machine storage by

creating a subdirectory for each virtual machine and then storing all its contents within

that directory. The location of the directory is VMhome.

VMFS is a clustered file system, which means it is mounted simultaneously on multiple

ESXi servers. You can therefore access the same set of virtual machines from different

servers. VMFS stores each virtual machine file as a virtual machine disk (VMDK) file on

a large logical unit number (LUN), which identifies a logically separate storage device

that is addressable via SCSI, iSCSI, or Fibre Channel protocols. LUN is typically used

with RAID, wherein a group of disks are presented to the host as one logical entity that

is a mountable volume. With this logical unit addressable via SCSI, VMFS provides SCSI

access to virtual machines. VMFS leverages shared storage to enable multiple ESXi hosts

to write to the VM storage. With on-disk locking, VMFS ensures that multiple servers

accessing the same storage concurrently do not write simultaneously on the same file.

VMFS supports SCSI reservations and atomic test and set locking. SCSI reservations are

used on devices that do not support hardware acceleration. The entire volume is locked

ptg17123584

80 Chapter 3: Hypervisor Considerations for the CSR

during an operation where metadata needs protection. When the operation completes,

the lock is released, and access to all ESXi hosts resumes. Atomic test-and-set (ATS) is

used in data stores where hardware acceleration is available. Unlike in SCSI reservations,

where you lock the entire volume, ATS allows discrete locking per sector .

Figure 3-11 gives an overview of the VMFS architecture.

ESXi Server 1

ESXi Instance

ESXi Server 2

ESXi Instance

VMFS (LUN) VMDK VMDKVMDK VMDK

VM1 VM2 VM1 VM2

Shared
Storage

Figure 3-11 VMFS Architecture

Management

Management of the hypervisor in ESX was done using a service console. However, as

indicated earlier in this chapter, ESXi got rid of the service console, and the management

aspect moved from the service console within the kernel to a remote/central location

that now enables management using standardized APIs rather than the legacy interactive

session service console methodology. In other words, VMware has moved away from

the service console operating system that helped interact with the VMkernel in favor of

a standardized CIM API model that provides APIs to access the VMkernel.

When a system with ESXi hypervisor boots up, ESXi runs immediately and tries to

detect the network by using DHCP. ESXi then spurts out a screen that lets the user

configure networking, administrator access password, and the test management network,

as shown in Figure 3-12. With the networking option, the user can select the vNICs to

assign an IP address and netmask, VLAN, and hostname, for the ESXi host. This enables

remote access to the ESXi host using a vSphere client.

ptg17123584

ESXi Hypervisor 81

Figure 3-12 ESXi Opening Screen

A vSphere client runs on a Windows machine, and VMware now has a web client, too.

The vSphere client provides user access to the ESXi host. Through the vSphere client,

users can create and manage virtual machines. vSphere clients can let you access an ESXi

host directly. However, if you want your vSphere client to manage more than a single

instance of ESXi, you need to use vCenter. vCenter is a tool for centrally managing

vSphere hosts. With vCenter , you can manage multiple ESXi servers and VMs through

a single vSphere client. This makes it possible for a network administrator to take

advantage of virtualization features like vMotion, Storage vMotion, fault tolerance, and

DRS (Distributed Resource Scheduler). Figure 3-13 shows the vCenter architecture.

ptg17123584

82 Chapter 3: Hypervisor Considerations for the CSR

VM1 VM2 VM1 VM2

Can access ESXi instance A
only using vSphere client.

Can access ESXi instance A and
B using vSphere client.

ESXi Server 1

ESXi Instance A

ESXi Server 2

ESXi Instance B

vCenter Server

Figure 3-13 vCenter Architecture

KVM
Kernel-based Virtual Machine (KVM) is part of the Linux kernel. It is, in fact, the first

virtualization solution that has made it to the Linux kernel code. Starting with the 2.6.20

version of the kernel, the KVM module is shipped with the Linux kernel. KVM relies

on a virtualization-capable CPU with Intel’s Virtualization Technology (VT) or AMD’s

Secure Virtual Machine (SVM) extension.

KVM was developed initially by an Israeli company, Qumranet (later acquired by

Red Hat), which made the KVM code available to the open source community. KVM

is a virtualization solution and uses full virtualization to run VMs. KVM’s code has

deliberately been kept lean and designed leveraging hardware assists. KVM developers

wanted to add the bare minimum in terms of components to support full virtualization

and wanted it to be an extension of the Linux kernel. With the addition of the KVM

module within the Linux kernel, Linux effectively became a hypervisor—capable of

hosting virtual machines.

ptg17123584

KVM 83

The Linux kernel, sans KVM, is an operating system kernel that runs processes in either

guest mode or kernel mode. As described earlier in the chapter, in kernel mode the OS

operates with critical data structures or tries to access I/O (also referred to as controlled

resources). User mode, on the other hand, runs applications. Kernel mode prevents

applications in user mode from directly accessing the kernel drivers. KVM achieves this

by extending the Linux kernel capability to isolate a process in such a way that it gets its

own kernel and user mode. This is called a guest mode . Thus a process in guest mode can

run its own operating system.

The KVM module uses hardware assists provided by Intel’s VT and AMD’s SVM proces-

sors to execute the guest code directly. KVM treats all its VMs as processes and relies

on the scheduler to assign CPUs to the VM. Virtual CPUs (vCPUs) are threads within this

VM process. KVM allows the guest user to execute on the physical processor but keeps

control of the memory and I/O management. Consider a scenario in which a guest pro-

cess tries to access a controlled resource. KVM takes control from the guest process and

executes the task on the controlled resource on behalf of the guest process. The guest

thinks it is running on a real hardware resource. It can do memory paging, segmentation,

and interrupt manipulation just as it would if it were running on bare metal. It has its own

user and kernel space defined in the guest memory carved for it by KVM.

Figure 3-14 illustrates the KVM modes of operation.

User Mode

I/O Ops

Guest
Mem

Linux
Processes
Using KVM

Linux
Processes

Linux
Processes

Kernel Mode
KVM
Driver

VM

User

Kernel

Guest Mode

Figure 3-14 KVM Modes of Operation

The guest OS has its own user and kernel modes, and all the user mode functions of the

guest OS are executed within this guest-user mode. When the guest OS tries to access

the guest-kernel mode, the process exits from the guest-user mode. The Linux/KVM

user mode then performs I/O on behalf of this guest.

ptg17123584

84 Chapter 3: Hypervisor Considerations for the CSR

Architectural Components of KVM/QEMU

Figure 3-15 shows the building blocks of KVM.

User Facing Tools

Management Tools

virt-manager virt-toolsvirsh

libvirtd

qemu-kvmGuest
Drivers

KVM - Kernel Module

Hardware

Figure 3-15 KVM Building Blocks

The loadable kernel module consists of three files: kvm.ko, kvm_intel.ko (for

Intel processors), and kvm_amd.ko (for AMD processors). Linux kernel 2.6.20 and

above have these modules included as part of the Linux kernel. kvm.ko provides the

core virtualization infrastructure, while kvm_intel.ko and kvm_amd.ko provide the

processor-specific module. These KVM modules are the ones that get the virtualization

capability to the Linux kernel. This kernel module is responsible for resource

management (memory and CPU) for the virtualized environment. KVM natively

performs only downstream functions, such as managing the hardware memory and CPU

scheduling. It provides a control interface through a set of APIs: ioctl() calls for tools

(such as QEMU) to emulate hardware virtualization.

Linux Kernel runs the guest process over KVM as a normal Linux process. It does a

malloc() to allocate memory, and it frees, swaps, and overcommits memory just like a

normal process memory.

Each guest maintains its own page table, and so it believes it is doing its own memory

management. However, KVM/Linux cannot allow guest operating systems to modify

the page table the kernel uses to write to hardware memory. So the host kernel inter-

cepts all the guest memory management unit (MMU) operations and maintains its own

shadow table, which is a replica of the guest’s page table. The host kernel uses this

shadow table to write to its physical memory. This way, the guest’s virtual memory gets

mapped to the host’s physical address. However, KVM memory is transparent to the

Linux kernel, and Linux treats the memory allocated by KVM no differently than the

memory allocated to other Linux processes. Linux tries to swap, free, or replace this

memory just as it does for regular process memory. Trouble comes when the guest tries

to access the memory Linux just freed. To get around this problem, a feedback mecha-

nism exists with the KVM module that updates the guest of any changes to the shadow

tables. mmu_notifiers updates the guest about changes to the shadow tables. Only

ptg17123584

KVM 85

after the guest has updated its page table is the shadow table updated.

Here is how KVM allocates physical memory to a guest OS:

1. The Guest OS calls for memory. The KVM calls malloc(), and a virtual address

space is allocated with no physical memory to back it up.

2. When the guest OS process first tries to access this virtual memory, a page fault is

generated on the host because there is no physical memory allocated.

3. The kernel calls do_page_fault() where the malloc() was called and thus allocates

physical memory to it. So now the virtual memory has some physical memory to

back it up.

4. KVM links the malloc()ed virtual address to the physical address allocated on the

host and updates rmaps.

5. The kernel calls mmu notifier to create an entry for the new page created.

6. The host returns from page_fault, and the guest resumes regular operations.

As mentioned earlier, the KVM architectural approach is to utilize most of the Linux

kernel functionality and add only what is required for virtualization support. With CPU

scheduling, each vCPU (virtual CPU—that the guest OS schedules its processes on) is

mapped to a Linux process that uses hardware assistance. This means the vCPU is just

like any other Linux process, and Linux uses its CFS (Completely Fair Scheduler) to

schedule it on the hardware CPU.

Note As the name suggests, as CFS deploys the algorithm, it attempts to be fair to all

processes by providing a fair chance to each process to run on the processor. It keeps an

account of time spent by the processor on a process. It tries to prioritize processes that have

had less time on the CPU and deprioritize processes that spend a lot of time on the CPU.

Guest Emulator (QEMU)

KVM does not natively spawn a VM. It is just a kernel module that makes the infrastruc-

ture ready for you to start a VM. In other words, it executes the low-level kernel func-

tionality but does not create or manage a virtual machine for you. The KVM module

makes available within the file system a control interface (/dev/kvm) that enables you

to control the kernel using ioctl() calls. These ioctl() calls allow the user to execute

code that can enable creation of VMs. A separate tool can then create VMs and use this

control interface to schedule memory and CPU for the VMs.

One tool that enables users to emulate virtual machines is Quick Emulator (QEMU).

When the VMs spawned by QEMU want to perform an I/O operation, they are

intercepted and handled by KVM.

ptg17123584

86 Chapter 3: Hypervisor Considerations for the CSR

Note Many people compare QEMU and ESXi host, but this is not really fair. QEMU is

just a machine emulator and not a hypervisor, as ESXi is. QEMU can help you create and

manage VMs when presented with a pool of virtual resources. QEMU, when paired with

KVM within the Linux kernel, is a complete package for running and managing VMs.

When VMware offers functionalities such as creating and managing VMs, it packages

them in ESXi.

QEMU is a free open source tool that emulates the complete hardware of a computer

device. QEMU can run on a variety of operating systems and processor architectures. So,

unlike VMware, it is not limited to an x86 architecture.

As a guest emulator, QEMU should be able to emulate guest operating systems that

run on a physical CPU. In order for QEMU to achieve this, it should be able to do the

following:

■ Run guest code

■ Handle timers

■ Process I/O requests from the guest OS

■ Monitor command responses

To achieve this, QEMU must be able to execute guest code and schedule its resources in

a way that does not pause execution when the I/O response takes a while to complete.

There are two architectures available to achieve this:

■ Parallel architecture—With this architecture, an OS splits the workload into

processes or threads that execute simultaneously.

■ Event-driven architecture—With this architecture, an OS just responds to the

events by running one major loop that forks into event handlers.

QEMU uses an architecture that is an amalgamation of the two mentioned here. Its code

is event driven, and at the same time, it also uses threads.

The QEMU core is mainly event driven. It is based on an event loop, which dispatches

events to handler functions. main_loop_wait() is the main event loop in the QEMU

core. This is what it does:

■ Waits for file descriptors to become readable or writable. You use quemu_set_fd_

handler to add file descriptor. This registers the file descriptor with the main loop

and tells the main loop to wake up whenever certain conditions are met.

■ Runs expired timers. You add timers by using qemu_mod_timer.

■ Runs bottom halves, which are timers that expire immediately. These are used to

avoid overflowing the call stack. You add them by using qemu_bh_schedule.

ptg17123584

KVM 87

When any of these three events occur, main_loop_wait() invokes a callback that

responds to the event. The callback should be quick to prevent the system from being

unresponsive.

For executing guest code, QEMU deploys the following mechanisms:

■ Tiny Code Generator (TCG) —This mechanism emulates guests by using dynamic

binary translation.

■ KVM—As discussed earlier, the KVM module virtualizes the hardware resources

and presents the /dev/kvm interface in the Linux file system.

Both TCG and KVM allow the execution control to be given to the guest and allow the

guest to execute its code.

QEMU has one thread per vCPU plus a dedicated event loop thread. This is called the

IOTHREAD model. In the older non-IOTHREAD model, one QEMU thread executed the

guest code and the event loop. In the new IOTHREAD model, each vCPU thread executes

the guest code, while the IOTHREAD runs the event loop.

Figure 3-16 shows the architecture of a system using KVM and QEMU.

QEMU-KVM

Driver Tools

/dev/kvm

Hardware

Linux Drivers

Passthrough
open() close() ioctl()

Linux User Space

Linux Kernel

x86 Architecture

Linux Scheduler

Guest

Figure 3-16 QEMU KVM Architecture

ptg17123584

88 Chapter 3: Hypervisor Considerations for the CSR

Management Daemon (Libvirt)

Management is an important aspect for virtualization. Libvirt is an open source

management tool that can be used to manage a virtualized environment. Libvirt, written

in C (with bindings to other languages, such as Python), provides an API for managing

multiple hypervisors.

Writing and maintaining applications is expensive. Libvirt allows sharing of applications

between hypervisors and provides security and remote access, too.

Libvirt is designed to mainly manage virtual machines. It offers the following types of

management:

■ VM management—Libvirt can manage the various life cycle operations of a virtual

machine, such as starting, stopping, saving, pausing, moving, and adding/removing

CPUs and memory.

■ Access management—Because Libvirt functionality is available for all machines that

run the libvirtd daemon, you can use SSH (or any remote login mechanism) for

remote access.

■ Network management—Any host that runs the libvirtd daemon can be used to

manage physical or virtual interfaces and physical or virtual networks. When the

libvirtd system daemon is started, a NAT bridge is created. This is called default

and allows external connectivity. For other network connectivity, you can use the

following:

■ A virtual bridge that shares data with a physical interface

■ A virtual network that enables you to share data with other virtual machines

■ A macvtap interface that connects directly to the physical interface on the server

on which you host the VM

■ Storage management—Any host that runs the libvirtd daemon can be used to

manage various storage types and file formats.

Libvirt management is done mainly using virsh and virt-manager.

Figure 3-17 shows the Libvirt architecture.

ptg17123584

KVM 89

VMware

VMware Virtualization Layer

Guest1 Guest2

KVM

x86 Architecture

Linux Kernel (KVM Module)

Guest1 Guest2

User-Space Management Tool

virsh virt-
manager virt-tools Other Tools

libVirt

Figure 3-17 Libvirt Architecture

User Tools (virsh, virt-manager)

virsh is a piece of code that is used for managing VMs. This command-line tool is very

useful for scripting and scaling VM installations. You also get an interactive terminal

with virsh that can be entered if no commands are passed. Unprivileged users can use

virsh in read-only mode.

Table 3-1 shows the command-line tools you can use with virsh to manage guest VMs.

Table 3-1 virsh Quick Reference

Command Description

help Prints basic help information.

list Lists all guests.

dumpxml Outputs the XML configuration file for the guest.

create Creates a guest from an XML configuration file and starts the new guest.

start Starts an inactive guest.

destroy Forces a guest to stop.

define Outputs an XML configuration file for a guest.

domid Displays the guest’s ID.

domuuid Displays the guest’s UUID.

ptg17123584

90 Chapter 3: Hypervisor Considerations for the CSR

Command Description

dominfo Displays guest information.

domname Displays the guest’s name.

domstate Displays the state of a guest.

quit Quits the interactive terminal.

reboot Reboots a guest.

restore Restores a previously saved guest stored in a file.

resume Resumes a paused guest.

save Saves the present state of a guest to a file.

shutdown Gracefully shuts down a guest.

suspend Pauses a guest.

undefine Deletes all files associated with a guest.

migrate Migrates a guest to another host.

You can also use virsh to manage the resources that are given to the guest or

hypervisor with the commands shown in Table 3-2 .

Table 3-2 Commands Used to Manage Resources with virsh

Command Description

Setmem Sets the allocated memory for a guest.

Setmaxmem Sets the maximum memory limit for the hypervisor.

Setvcpus Changes number of virtual CPUs assigned to a guest.

Vcpuinfo Displays virtual CPU information about a guest.

Vcpupin Controls the virtual CPU affinity of a guest.

Domblkstat Displays block device statistics for a running guest.

Domifstat Displays network interface statistics for a running guest.

attach-device Attaches a device to a guest, using a device definition in an XML

file.

attach-disk Attaches a new disk device to a guest.

attach-interface Attaches a new network interface to a guest.

detach-device Detaches a device from a guest and takes the same kind of XML

descriptions as the command attach-device.

detach-disk Detaches a disk device from a guest.

detach-interface Detaches a network interface from a guest.

ptg17123584

Hyper-V 91

With these commands you can manage the guest effectively and automate a lot of guest

bring-up and configuration sequences.

virt-manager provides a graphical way to manage VMs and hypervisors. It does the

same things as virsh but via a user-friendly graphical interface .

Hyper-V
Hyper-V , formerly known as Windows Server Virtualization , can create virtual machines

on the x86 platform. In October 2008, Hyper-V Server 2008 was released, and since then

it’s been used as a hypervisor platform for other members of the Windows Server family.

Hyper-V is a type 1 microkernel hypervisor that resides directly on the hardware. The

microkernel architecture optimizes performance and reduces adoptability issues with the

underlying hardware.

The architecture uses a parent VM that hosts the drivers. The guest operating system

interfaces with the parent partition to access hardware resources’ memory, CPU, storage,

and so on. The guest operating system works within the privileged boundary. Figure

3-18 gives a high-level overview of the Hyper-V architecture.

Hyper Calls

Child Partition

Drivers

Virtual
Service
Provider

Parent Partition

VM Bus

Microsoft Hypervisor

Hardware

Figure 3-18 Hyper-V Architecture High-Level View

ptg17123584

92 Chapter 3: Hypervisor Considerations for the CSR

On the top of the hypervisor is one parent partition and one or more child partitions.

This partitioning creates virtual isolation within the hypervisor for physical memory

address space and virtual processors.

The child partition can host a guest operating system or system func tions for Microsoft

Windows Server. For example, when virtual Hyper-V stack management gets installed in

the parent partition, the subsidiary Windows Server functionality is loaded in the child

partition. Each virtual machine has its own security boundary. Microsoft refers to this as

an operating system e nvironment (OSE) that defines the component of a virtual machine.

The VM has its own identity, computer account, IP address, and network resources.

Child partitions have only the virtual view of the hardware resources. The child partition

sends a request to the virtual devices, which gets redirected to the hypervisor in the

parent partition that handles this request.

The parent partition has access to hardware devices and controls the resources used by

the child partition. The child partition accesses the hardware resource using the drivers

in the parent partition space. The parent partition also acts as the broker among the

multiple child partitions and the hardware for accessing the resources. All data and

instructions between the parent and child partition go through the virtual machine bus.

The architecture allows the user to leverage plugin devices, which in turn allow direct

communication between parent and child partitions .

Xen
Xen is another type 1 hypervisor that supports para-virtualization. Xen originated as a

college research project at the University of Cambridge. Ian Pratt, who was a lecturer in

Cambridge, led this project and later cofounded XenSource, Inc. First available in 2004,

Xen was originally supported by XenSource, Inc. Eventually, Xen was moved under the

Linux Foundation as a collaborative project.

Starting with Xen 3.0, all guest VMs can run their own kernels and take advantage of

para-virtualization, which removes the need to emulate virtual hardware resources,

makes the guest aware of the hypervisor, and enables access to the hardware resources

for I/O efficiency. Instead of the guest spending time and extra cycles performing tasks

to get resources from the virtual environment, these guests can use the hooks of para-

virtualization to allow guest and host to communicate and acknowledge these tasks.

Figure 3-19 gives a high-level architectural overview of the XEN hypervisor.

ptg17123584

Xen 93

Kernel

Domain U

Kernel

Domain U PVDomain 0

Drivers

Kemel

Xen Bus
Xen Hypervisor

Hardware

Figure 3-19 Xen Architecture High-Level View

These are the key components of XEN architecture:

■ Xen hypervisor—The hypervisor sits directly on the hardware. Its key functions

are CPU scheduling and memory partitioning. The VM that requires abstraction of

hardware and resources can leverage the hypervisor for control of shared resources.

The hypervisor does not have knowledge of networking, storage, or the common I/O.

■ Domain 0 —This VM resides on the Xen hypervisor and owns the right to access

physical I/O resources as well as interact with other guest VMs that need access to

these resources. Domain 0 has to be set up before any other guest VMs are spawned.

■ Domain U and Domain U PV —Domain U is an unprivileged guest. Domain 0

uses drivers for the network and storage located in Domain 0. The Domain U guest

must communicate via the Xen hypervisor with Domain 0 to accomplish a network

or disk request. Domain U PV is capable of para-virtualization. Guests have direct

access to the hardware resources for disk and network access. Domain U PV and

Domain 0 can access the shared network and disk resources. This is done using an

event channel that exists between Domain 0 and Domain U PV. This event channel

allows the domains to communicate via asynchronous communication, using

interdomain interrupts in the Xen hypervisor. The Xen hypervisor sends an interrupt

to Domain 0 and allows Domain U PV to access the shared memory resources. The

Xen PCI passthrough feature is used for the Domain U PV to access other non-disk

hardware resources directly.

ptg17123584

94 Chapter 3: Hypervisor Considerations for the CSR

Summary
Now that you’ve read this chapter, you should have a basic understanding of operating

systems and types of hypervisors. This chapter reviews the details of KVM and ESXi

and provides an overview of Hyper-V and Xen. Understanding the hypervisor types is

important for the deployment of CSR 1000V.

Table 3-3 provides a summary of the hypervisor types you need to know about.

Table 3-3 Hypervisor Types

Type of Hypervisor Open Source? Para-virtualization Support?

ESXi Type 1 No Yes

KVM Type 1 Yes Yes

Hyper-V Type 1 No Yes

Xen Type 1 Yes Yes

All of these hypervisors support the key features, so the use cases depend on the

environment and operational support criteria.

ptg17123584

This chapter describes the software design of the CSR 1000V and details the data plane

design. It also illustrates the software implementation and packet flow within the CSR

1000V, as well as how to bring up the CSR 1000V.

System Design
CSR 1000V is a virtualized software router that runs the IOS XE operating system.

IOS XE uses Linux as the kernel, whereas the IOS daemon (IOSd) runs as a Linux

process providing the core set of IOS features and functionality. IOS XE provides a

native Linux infrastructure for distributing the control plane forwarding state into an

accelerated data path. The control and data planes in IOS XE are separated into differ-

ent processes, and the infrastructure to communicate between these processes supports

distribution and concurrent processing. In addition, IOS XE offers inherent multicore

capabilities, allowing you to increase performance by scaling the number of processors.

It also provides infrastructure services for hosting applications outside IOSd.

Originally , IOS XE was designed to run on a system with redundant hardware, which

supports physical separation of the control and data plane units. This design is imple-

mented in the ASR 1006 and ASR 1004 series routers. The original ASR 1000 family

hardware architecture consisted of the following main elements:

■ Chassis

■ Route processor (RP)

■ Embedded service processor (ESP)

■ SPA interface processors (SIP)

The RP is the control plane, whereas the ESP is the data plane. In an ASR 1006 and

ASR 1004, the RP and ESP processes have separate kernels and run on different sets of

hardware. ASR 1000 was designed for high availability (HA). The ASR 1006 is a fully

CSR 1000V Software
Architecture

Chapter 4

ptg17123584

96 Chapter 4: CSR 1000V Software Architecture

hardware redundant version of the ASR, and its RP and ESP are physically backed up by

a standby unit. IOSd runs on the RP (as do the majority of the XE processes), and the

RP is backed up by another physical card with its own IOSd process. The ASR 1004 and

fixed ASR 1000s (ASR 1001-X and ASR 1002-X) do not have physical redundancy of

the RP and ESP.

In the hardware-based routing platform for IOS XE, the data plane processing runs out-

side the IOSd process in a separate data plane engine via custom ASIC: QuantumFlow

Processor (QFP). This architecture creates an important framework for the software

design. Because these cards each have independent processors, the system disperses

many elements of software and runs them independently on the different processors.

Tip The ASR 1000 platform first introduced IOS XE . Multiple products run IOS XE,

including the following:

ASR 1000 family:

■ ASR 1001-X

■ ASR 1002-X

■ ASR 1004

■ ASR 1006

■ ASR 1006-X

■ ASR 1009-X

■ ASR 1013

ASR 900 family:

■ ASR 903

ISR family:

■ ISR 4321

■ ISR 4331

■ ISR 4351

■ ISR 4431

■ ISR 4451-X

IOS XE retains the look and feel of IOS. However, because IOS runs as a Linux process,

it enables the platform-independent code to reside inside the IOSd process running on

the Linux kernel. By moving the platform-dependent code (drivers) outside the IOSd

process, it makes IOS XE a very efficient software delivery model. Different platforms

write their drivers and leverage the existing feature-rich control plane code from IOSd.

Multiple platforms run IOS XE. However, when understanding CSR 1000V architecture

in this chapter, ASR 1000 is used as a hardware example because it was the first platform

to run IOS XE.

ptg17123584

System Design 97

As the need for smaller form factor ASRs arose, a one rack unit (RU) ASR 1000 was con-

ceptualized and developed: ASR 1001 . The ASR 1001 is a 64-bit architecture in which all

processes (RP, SIP, and ESP) are controlled by a single CPU. The SPA interface complex,

forwarding engine complex, and IOS XE middleware all access the same Linux kernel.

This is achieved by mapping the RP, ESP, and SIP domains into logical process groups.

The RP’s process domain includes IOSd, a chassis manager process and forwarding man-

ager. The ESP process domain includes the chassis manager process, QFP client/driver

process, and forwarding manager.

The architecture diagram in Figure 4-1 provides a high-level overview of the major

components.

IOSd Active IOSd Standby

RP

Linux Kernel

SPA ESP

Chassis Manager

SPA Driver

Chassis
Manager

Interface
Manager

ESP

QFP Client/Driver

Forwarding
Manager

Chassis
Manager

Forwarding Manager

Figure 4-1 ASR 1001 Platform Logical Architecture

The details on grouping of the components are as follows:

■ RP—RP mainly contains the IOS daemon (IOSd), the forwarding manager for RP

(FMAN-RP), the chassis manager for RP (CMAN-RP), the kernel, and bootstrap

utilities.

ptg17123584

98 Chapter 4: CSR 1000V Software Architecture

■ ESP (forwarding plane)—ESP contains FMAN-FP and CMAN-FP, as well as QFP

microcode and data plane drivers and crypto offload ASIC for handling hardware

assist encryption.

■ SIP/SPA—SIP/SPA houses the I/O interface for the chassis. It has its own CMAN

and kernel process to handle the discovery , bootstrapping, and initialization of the

physical interfaces.

Virtualizing the ASR 1001 into the CSR 1000V

There are a lot of commonalities between the system architectures of the CSR 1000V

and the ASR 1001, and there are some differences as well. The CSR 1000V is essentially

an ASR 1001 without the hardware. The following measures brought the ASR 1001 into

the software-based design of the CSR 1000V:

■ All the inter-unit communication with the SIP/CC was removed.

■ The entire SIP/SPA interface complex was eliminated.

■ The kernel utilities have been shared across the RP and ESP software complexes.

■ The kernel utilities use the virtualized resources presented to it by the hypervisor.

The CSR is basically the ASR 1000 design stripped of its hardware components. When

you compare the two designs, you find that the data path implementation is very differ-

ent. This is because the ASR 1001 has a physical processor (the QFP) for running data

path forwarding. In a CSR, the IOS XE data path is implemented as a Linux process.

The CSR 1000V is meant to leverage as much of the ASR 1001 architecture as possible.

There are places in the CSR 1000V system where software emulation for hardware-

specific requirements is needed. In general, the software architecture is kept the same,

using the same grouping approach as for the hardware components. One of the major

engineering efforts has been focused on migrating the QFP custom ASIC network pro-

cessor capabilities onto general-purpose x86 CPU architectures and providing the dis-

tributed data path implementation for IOS XE. This effort creates a unique opportunity

for Cisco to package this high-performance and feature-rich technology into the CSR

1000V. Figure 4-2 shows the high-level architecture of the CSR 1000V .

ptg17123584

System Design 99

CSR 1000V

RP Complex

I/O Complex

DP Complex
Ke

rn
el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

Gethd Driver

IO

FP Complex

FMAN-FP

Client

Driver

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

PPE

PPE

PPE

PPE

PPE

PPE

Packet Processing

Figure 4-2 CSR 1000V High-Level Architecture

CSR 1000V Initialization Process

This section examines the initialization of a CSR 1000V running on a type 1 hypervisor.

Refer to Chapter 2, “Software Evolution of the CSR 1000,” for details on the IOSd pro-

cess running on the control plane.

When a CSR boots up as a virtual machine, interfaces are discovered by parsing the con-

tents of /proc/net/dev on the Linux kernel. The gethd (Guest Ethernet Management

Daemon) process performs the port enumeration at startup and then passes the interface

inventory to the guest Ethernet driver within the IOS complex. The IOSd gethd driver

then instantiates the Ethernet interfaces. This is how the I/O interfaces provided by the

virtual NIC are managed by IOS.

The gethd process manages the interfaces on the CSR VM. It takes care of addition,

removal, configuration, states, and statistics of the Ethernet interfaces on the CSR VM.

Figure 4-3 illustrates the CSR 1000V initialization sequence.

ptg17123584

100 Chapter 4: CSR 1000V Software Architecture

Guest VM Boots Up

Gethd Discovers Interfaces

Gethd Driver Within IOS
Receives Interface Info

Instantiate Interfaces on IOSd

Control Plane Programming
Complete

Figure 4-3 CSR 1000V Initialization Sequence

gethd is an important process that handles a variety of interface management functions,

including interface removal/addition. It is an important part of the virtualized I/O used

in CSR.

CSR 1000V Data Plane Architecture

Originally , IOS XE QFP data plane design consisted of four components: client, driver,

QFP microcode (uCode), and crypto assist ASIC. Different ASR 1000 platforms pack-

age these components differently, but in general the four components are the same

across platforms. CSR 1000V leverages the same client, driver, and uCode to support

a multithread-capable packet processing data plane, with the exception of the crypto

assist ASIC.

Figure 4-4 illustrates the CSR 1000V data plane architecture. The HW threads men-

tioned in the figure are packet processing engine (PPE) threads. The terms HW and PPE

can be used interchangeably.

a

ptg17123584

System Design 101

CSR 1000V

RP Complex

I/O Complex

Ke
rn

el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

IO

FP Complex

FMAN-FP

Client

Driver

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

Data Plane Complex

HW Thread

HW Thread

HW Thread

HW Thread

HW Thread

HW Thread

Packet Processing

CSR 1000V

RP Complex

I/O Complex

Ke
rn

el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

IO

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

Figure 4-4 CSR 1000V Data Plane Architecture

The following is an overview of the three main components that make up the packet-

processing data plane for CSR:

■ Client—The Client is software that ties together the control plane and the data

plane. It is a collection of software modules that transform control plane informa-

tion into various data plane forwarding databases and data structure updates. It is

also responsible for updating the control plane with statistics from the data plane.

It allocates and manages the resources of the uCode, including data structures in

resource memory. The QFP Client is also responsible for restarting the QFP pro-

cess in the event of failure. The Client provides a platform API layer that logically

sits between IOSd and the uCode implementing the corresponding features. The

Client API is called from FMAN-FP and then communicates with the uCode via

both Interprocess Communicator (IPC) and shared memory interfaces provided by

the Driver. Within the Client, feature processing support can be broken down into

functional blocks known as Execution Agents (EA) and Resource Managers (RM).

RMs are responsible for managing physical and logical objects, which are shared

resources. An example of a physical object manager is the TCAM-RM, which man-

ages allocation of TCAM resources, and an example of a logical object manager is

the UIDB-RM, which manages the micro Interface Descriptor Block (uIDB) objects

ptg17123584

102 Chapter 4: CSR 1000V Software Architecture

used to represent various forms of interfaces. The data plane (uCode) uses uIDB

objects to see the logical interfaces.

■ Driver—The Driver is a software layer that enables software components to com-

municate with the hardware. It glues the software components to the hardware. The

Driver is made up of libraries, processes, and infrastructure that are responsible for

initialization, access, error detection, and error recovery. The Driver has hardware

abstraction layering known as the Device Object (devobj) Model that allows it to

support different QFP ASICs. Below the devobj API are implementations of various

emulation and adaptation layers. In addition to the emulation and adaptation layers

required to support the RMs listed in the Client section, the Driver is also respon-

sible for coordinating memory access and IPC messaging between various QFP con-

trol plane software components and the QFP data plane packet processing uCode.

The driver is completely segregated from the IOS code in an XE architecture, and

this makes XE a very robust and flexible software architecture that offers complete

separation of the control and data planes.

■ QFP uCode (packet processing) —The uCode is where all the feature packet pro-

cessing occurs. The uCode runs as a single process in the same VM/container as the

Client and the Driver processes. IOSd initiates a packet process request through

FMAN-FP. This request is then driven by the Client and the Driver interacting with

the uCode to control the PPE behavior. The QFP uCode is broken up into four

main components: Feature Code, Infrastructure, Platform Abstraction Layer (PAL),

and Hardware Abstraction Layer (HAL). The PAL and HAL are essentially glue for

the portability of software features to different hardware platforms. Originally, the

PAL and HAL were designed for Cisco forwarding ASICs, such as QFP. In order

for uCode software to run on top of x86 in a Linux environment, a new PAL layer

is needed to support the specifics of the CSR 1000V platform. In addition, a new

HAL is introduced for running QFP software on top of x86 in a Linux environment.

The intention is for the CSR 1000V data plane to leverage as much of the existing QFP

code base as possible to produce a full-featured software data plane capable of leverag-

ing the processing capacity and virtualization capabilities of modern multicore CPUs.

One way to minimize changes to the existing QFP software code base is to emulate QFP

hardware ASIC in such a way that the existing Client, Driver, and QFP uCode are not

aware that they are running on a non-QFP platform. However, due to the complexity of

QFP hardware and the differences in platform requirements, a pure emulation is imprac-

tical. There are some cases where we choose to emulate hardware because doing so is

the straightforward approach for code leverage. In other cases, it is best to replace the

corresponding functionality with an implementation that is compatible at an API level

but may be a completely different algorithmic implementation.

ptg17123584

Life of a Packet on a CSR 1000V: The Data Plane 103

CSR 1000V Software Crypto Engine

Cisco router platforms are designed to run IOS with hardware acceleration for crypto

operations. Like other ASR 1000 platforms, the ASR 1001 includes a crypto acceleration

engine on board to deliver crypto offload and to increase encryption performance. In

this environment, the main processor performing the data path processing is offloaded

from the computing-intensive crypto operations. Once the crypto offload engine com-

pletes the encrypt/decrypt operation, it generates an interrupt to indicate that the packet

should be reinserted back into the forwarding path.

The CSR 1000V runs completely on general-purpose CPUs without an offload engine;

therefore, the software implementation of the IPsec/crypto feature path is needed to

support the encryption function. To that end, the CSR 1000V includes a software crypto

engine that uses low-level cryptographic operations for encrypting and decrypting traf-

fic. The software crypto engine is presented to the IOS as a slower crypto engine. One

thing to note is the software crypto engine runs as an independent process within the

CSR 1000V, and it therefore may run as a parallel process in a multicore environment.

To improve the crypto performance of the CSR 1000V software router, the crypto data

path is implemented to take advantage of the latest Advanced Encryption Standard

(AES) crypto instruction set from Intel (AES-NI) for encryption/decryption operations.

The newer Intel processors, such as the Xeon Westmere-EP family and mobile Sandy

Bridge family, provide instruction sets for enhancing Advanced Encryption Standard

(AES-NI) cryptographic operations performance. These instructions are included in the

CSR 1000V crypto library, along with other cryptographic and hash algorithms for low-

level crypto operations. The crypto library is used by the software crypto engine as well

as by other subsystems within IOS that require cryptographic operations. The inclusion

of Intel’s crypto instruction set allows the CSR 1000V to take advantage of the latest

Intel CPUs for encryption and decryption operations in the data path.

Life of a Packet on a CSR 1000V: The Data Plane
Before we get into the details of packet flow for the CSR 1000V, it is important to

understand the drivers that make it possible for the CSR VM to talk to physical devices

and other software modules. These drivers act as software glue, relaying a packet to and

from the physical wire. We have touched on the different hypervisors that enable the

CSR VM to work on various x86 architectures. Here we discuss packet flow to and from

a CSR VM.

Figure 4-5 shows the virtualization layers of a CSR 1000V VM.

ptg17123584

104 Chapter 4: CSR 1000V Software Architecture

QFP Data Plane

System Call

Netmap Kernel

Virtual NIC Driver

Virtual NIC (VMXNET3)

Software Switch

Physical NIC Driver

Physical NIC

Hy
pe

rv
is

or
CS

R
VM

User
Space

Figure 4-5 CSR VM Layers

From Figure 4-5, you can see that the hypervisor presents a virtual NIC to its guest

VM by using a driver. This driver can either be a para-virtualized driver (for example,

VMXNET3) or a real/emulated driver (for example, e1000). Para-virtualized drivers are

native to hypervisors and perform much better than emulated drivers such as the e1000.

Hypervisors support emulated drivers because they are required for full virtualization.

Recall from Chapter 1, “Introduction to Cloud,” that in full virtualization, guest operat-

ing systems do not require any support from the hypervisor kernel and run as though on

real hardware. Therefore, support for emulated drivers is required. However , the perfor-

mance of emulated drivers is much lower than that of para-virtualized drivers. The CSR

VM supports para-virtualized drivers only.

Netmap I/O

Netmap is an open-source I/O infrastructure package that enables the CSR VM to get

rid of the multiple software layers in the traditional Linux networking stack I/O model.

This results in faster I/O. Understanding the Netmap I/O model will help you better

understand packet flow to and from a CSR VM. This section provides an overview of

the Netmap I/O model and compares it with a Linux I/O model. It is important to under-

stand the I/O model before drilling down to packet flow.

ptg17123584

Life of a Packet on a CSR 1000V: The Data Plane 105

Netmap is designed to strip down software layers and get the frame from the wire to the

data plane process in user space as quickly as possible. Netmap achieves this through the

four building blocks of its I/O architecture:

■ Thin I/O stack—Netmap bypasses the Linux networking stack to reduce overhead.

Since the CSR data plane runs in the user space, when it wants an I/O architecture to

deliver receive (Rx) frames from the NIC to the user space (data plane) and transmit

(Tx) frames from the data plane to the NIC, it leverages Netmap’s thin I/O stack.

■ Zero copy—Netmap maps all memory from rings (pool of memory buffers) in a

way that makes them directly accessible in the data plane (user space). Hence there

is no copy involved in getting the information to the user space. Preventing a copy

operation saves a lot of time in an I/O model, and Netmap’s zero-copy model is

very effective at increasing performance compared to a traditional Linux I/O model.

■ Simple synchronization—The synchronization mechanism in Netmap is extremely

simple. When you have the Rx packets on the ring, Netmap updates the count

of new frames on the ring and wakes up threads that are sleeping to process the

frames. On the Tx side, the write cursor is updated as a signal to announce the arriv-

al of new frames on the Tx ring. Netmap then flushes the Tx ring.

■ Minimal ring manipulation—In the Netmap I/O architecture, the ring is sized such

that the producer accesses the ring from the head end, while the consumer accesses

it from the tail. (Producer and consumer are terms associated with the process that

tries to initiate the I/O process [producer] and a process that gets affected in trying

to serve the producer [consumer].) The access to the ring is allowed simultaneously

for the producer and the consumer. In a regular Linux I/O scenario, you would

have to wait for the host to fill up the ring with pointers to buffers. When the ring

is being serviced, Linux detaches the buffers from the ring and then replenishes the

ring with new pointers.

An over view of the layers of software involved in building a CSR 1000V VM is illustrat-

ed previously in Figure 4-5. Figure 4-6 compares the Linux I/O model with the Netmap

I/O model.

ptg17123584

106 Chapter 4: CSR 1000V Software Architecture

System Call

Socket Layer

Network Protocol

Interface INET/Device

NIC Driver

Physical NIC

System Call

User Space

Linux I/O Architecture Netmap I/O Architecture

System Call

Buffer

Buffer

Buffer

Sh
ar

ed
 M

em
or

y

Ring Ring

NIC Driver

Physical NIC

Ring N

Ring A

Netmap Kernel

Figure 4-6 Linux Versus Netmap I/O Comparison

Packet Flow

There are three major data plane components:

■ Rx thread

■ Tx thread

■ HQF (Hierarchical Queuing Framework) thread

All these components run on a single process within the QFP process umbrella. Multiple

PPE threads serve requests within this QFP process. The following sections discuss the

flow.

Device Initialization Flow

The following events take place to get the NIC (or vNIC, in a para-virtualized environ-

ment) ready for operation:

ptg17123584

Life of a Packet on a CSR 1000V: The Data Plane 107

1. During boot-up, the platform code within IOSd discovers all Linux network

interfaces. The platform code then maps these Linux interfaces—eth0, eth1, and

so on—to Gig0, Gig1, and so on. After talking to the kernel, platform code sets

up the interface state (up or down), sets the MTU, sets the ring size, and sets the

MAC address.

2. The FMAN process creates the FMAN interfaces and then reaches out to the QFP

client process to initialize the data-plane interface.

3. After the QFP process receives the initialization message from the Client process

to create an interface, the QFP process then initializes an interface called micro-

interface descriptor block (uIDB) in the data plane.

4. After the uIDB is created in the QFP process, the FMAN process binds this uIDB to

the network interface name.

5. The component of the data-plane process responsible for interacting with the kernel

now has to make sure that the interface created with the QFP process is registered

and enabled within the Netmap component of the kernel.

6. With the new interfaces registered, the Netmap component communicates with the

virtual NIC driver to initialize the physical NIC.

7. The vNIC driver opens the NIC, initiates the rings, and makes the NIC ready for

operation.

TX Flow

The following events take place when there is a packet to be transmitted (Tx) by the CSR

onto the wire:

1. The HQF thread detects that there are packets to be sent.

2. The HQF thread checks congestion on the transmit interface and checks the inter-

face states.

3. If the transmit interface is not congested, HQF sends the frame. HQF can also

wait to accumulate more frames, batch them, and then send them out.

4. The platform code locates the next available slot in the Tx ring and copies the

frame from the source buffer into the Netmap buffer for transmission.

5. The platform code flushes the Tx ring.

6. Netmap forwards the flushed frames to the vNIC driver.

7. The vNIC driver initializes the NIC Tx slots.

8. The vNIC driver writes onto the Tx registers.

9. The vNIC driver cleans up the Tx ring of done slots.

10. The vNIC sends the frame on the wire and generates a notification on completion.

ptg17123584

108 Chapter 4: CSR 1000V Software Architecture

RX Flow

The following events occur whenever a CSR receives a packet to be processed:

1. The Rx thread (the thread that receives frames from the QFP process) issues a poll

system call to wait for the new Rx frames.

2. When a new frame arrives, the NIC (or vNIC, in this case) accesses the vNIC Rx ring

to get a pointer to the next Netmap buffers.

3. The vNIC puts the frame onto the next Netmap buffers.

4. The vNIC generates an Rx interrupt.

5. The Netmap Rx interrupt service routine runs the Rx threads.

6. The vNIC driver finds the new frame and creates memory buffers for it.

7. The Rx thread pushes the frame to the PPE thread for processing.

Figure 4-7 illustrates packet flow between different XE processes.

IOSd Process FMAN
Process

QFP Client
Process

Kernel

QFP Process

PPE ThreadsPPE Threads

HQF Thread

Rx Thread

Figure 4-7 Flowchart for Packet Flow

ptg17123584

Life of a Packet on a CSR 1000V: The Data Plane 109

Unicast Traffic Packet Flow

The Tx and Rx flows in Figure 4-7 detail how a packet is transmitted from the NIC (or

vNIC, in a para-virtualized driver) to the QFP process. Now we can look at how the QFP

process handles the packet after it gets it. The following steps examine a unicast IPv4

packet flow:

1. The QFP process receives the frame from the Netmap Rx and stores it in Global

Packet Memory (GPM).

2. The Dispatcher copies the packet header from the GPM and looks for free PPE to

assign. The packet remains in the GPM while it is being processed by the PPEs.

3. The Dispatcher assigns a free PPE thread to process the feature on the packet.

4. PPE threads process the packet and gather the packets. The gather process copies

the packets into B4Q memory and sends the HQF thread a notification that there is

a new packet in the B4Q memory.

5. HQF sends the packet by copying it from B4Q into the Netmap Tx ring, and then

releases the B4Q buffer.

6. The Ethernet driver sends the frame and frees the Tx ring once the packet has been

sent out.

7. Multicast IPsec packets are recycled from the HQF thread back to the in/out pro-

cessing of the PPE threads.

Figure 4-8 illustrates the packet flow in the QFP process.

GPM B4Q
Tx

Netmap

Tx

IPC

Rx

Netmap

Rx

IPC
DST

QQ

QQ

Recycled Packet

Packet O
utput

PPE
ThreadPPE

ThreadPPE
Thread

HQF
Thread

DST Credit Return

Figure 4-8 CSR 1000V Packet Flow in the QFP Process

ptg17123584

110 Chapter 4: CSR 1000V Software Architecture

Installing the CSR 1000V on a VMware Hypervisor
The process for installing the CSR 1000V on a VMware hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the VNIC with the CSR 1000V.

These phases can be subdivided into the step-by-step procedures described in the fol-

lowing sections. To learn about automated provisioning using the BDEO (build, deploy,

execute OVF), see Chapter 7, “CSR in the SDN Framework.”

The following steps assume ESXi is already installed. Please refer to the VMware ESXi

installation guide for setting up the ESXi if it is not already installed.

Bringing Up the VM with the CSR 1000V on ESXi

Assuming ESXi is already installed, you can now follow these steps in the first phase of

installing the CSR 1000V:

Step 1. Deploy the OVF template:

1. Download the OVF template from software.cisco.com and select CSR

1000V software.

2. Log on to the vSphere client, as shown in Figure 4-9.

Figure 4-9 Installing the OVF Template for the CSR 1000V

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 111

3. Upload the CSR OVF file you downloaded from cisco.com as shown in

Figure 4-9.

4. Select File, Deploy OVF Template, as shown in Figure 4-9.

Step 2. Upload the CSR OVF file as shown in Figure 4-10.

Figure 4-10 Deploying the OVF Template: Selecting the Source

Step 3. When the OVA upload is done, verify the OVF template details on the

screen shown in Figure 4-11.

ptg17123584

112 Chapter 4: CSR 1000V Software Architecture

Figure 4-11 Deploying the OVF Template: Verifying the Template Details

The release information, product, size, and so on are received from the meta-

data. Follow the directions for creating the VM.

Complete the following deployment configuration, disk formatting, and net-

work mapping screens, as shown in Figures 4-12 through 4-16:

1. As shown in Figure 4-12, select the hardware profile: Small, Medium, or

Large vCPU and RAM, based on the deployment considerations. Refer

to the hypervisor documentation for the exact small, medium, and large

VM configurations. (You can change this configuration for memory

even after the CSR 1000V is brought up.)

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 113

Figure 4-12 Deploying the OVF Template: Selecting the System Memory Profile for
CSR 1000V

2. Select the appropriate type of disk formatting (see Figure 4-13), and

then click Next:

■ Thick Provision Lazy Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk space it has asked for. However, the disk

is not cleaned during virtual disk creation. It is cleaned only when you

create the first VM on it.

■ Thick Provision Eager Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk space it has asked for. However, the disk

is cleaned during virtual disk creation.

■ Thin Provision—Choose this option to save space. Initially, the space

allocated to a thin disk is less. However, the virtual disk keeps growing

as memory requirements grow.

ptg17123584

114 Chapter 4: CSR 1000V Software Architecture

Figure 4-13 Deploying the OVF Template: Choosing the Disk Provisioning Format

Note The OVF used here is for version 3.13. You might see variations in the default

settings with later versions. Please refer to Cisco release documentation.

3. On the screen shown in Figure 4-14, specify network mapping of the

source networks (GigabitEthernet) to the destination networks (VM

Network by default) mapping allocation.

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 115

Figure 4-14 Deploying the OVF Template: Network Mapping

4. Look over the summary of the deployed CSR 1000V configuration, as

shown in Figure 4-15, and click Finish.

ptg17123584

116 Chapter 4: CSR 1000V Software Architecture

Figure 4-15 Deploying the OVF Template: Checking the Settings

Step 4. When the deployment of the CSR 1000V is complete, boot the router by

selecting the VGA console from the GRUB menu on the Console tab shown

in Figure 4-16.

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 117

Figure 4-16 CSR 1000V Console Tab

Step 5. At the router prompt, enter platform console serial, as shown in Figure

4-17. (This command causes the VM to send console information on the

serial port from ESXi in the later steps.)

Figure 4-17 CSR 1000V Command Prompt

ptg17123584

118 Chapter 4: CSR 1000V Software Architecture

Step 6. To add the serial port for console access, access the vCenter web client

and select Virtual Hardware, Network Adaptor, Serial Port, as shown in

Figure 4-18.

Figure 4-18 VM Access from the vCenter Web Client

Step 7. Shut down the guest OS as shown in Figure 4-19. (Note that this serial port

will be used for terminal access to the CSR.)

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 119

Figure 4-19 Configuring the Serial Interface: Shutting Down the Router

Step 8. Select Add New Device, New Serial Port and provide the IP address and ter-

minal port details to access the CSR, as shown in Figure 4-20.

ptg17123584

120 Chapter 4: CSR 1000V Software Architecture

Figure 4-20 Configuring the Serial Interface: Setting the Telnet Address

Step 9. Go to vCenter and select Setting, Security Profile. Edit security configuration

ports 23 and 1024 as shown in Figure 4-21. This is needed because by default

ESXi blocks console access.

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 121

Figure 4-21 Configuring the Serial Interface: Firewall Settings

Step 10. Enable ports 23 and 1024 as shown in Figure 4-22.

Figure 4-22 Configuring the Serial Interface: Security Profile Detail

Step 11. Use Telnet to verify the access from the PC. (It’s a good practice to use SSH

for accessing the CSR VM; however, for the sake of simplicity, this example

shows Telnet access setup.) The EXSi hypervisor defaults the network

connections to the VM Network virtual switch connection. The network

ptg17123584

122 Chapter 4: CSR 1000V Software Architecture

adapters are mapped to CSR interfaces. For example, GigabitEthernet1 is

mapped to Network adapter 1, and so on. You can verify this by comparing

the MAC address as illustrated in Figure 4-23.

Figure 4-23 CSR 1000V Telnet Access Screen

Step 12. To remap the network adapters to corresponding vNICs, you should perform

the following steps. From the vSphere client in the Edit Settings window, select

New Device Add, Networking and add vNICs to the CSR as assigned inter-

faces (from the vCenter web client), as shown in Figures 4-24 through 4-27.

(Allow all VLANs and create a bridgeForVNIC1 label for this connection.)

Figure 4-24 vNICs and the CSR 1000V: Selecting the Connection Type

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 123

1. Select the new vNIC, as shown in Figure 4-25, to create a new standard

switch name.

Figure 4-25 vNICs and the CSR 1000V: Creating a Standard Switch

2. Add VLANs and the network label assigned for the vNIC, as shown in

Figure 4-26.

Figure 4-26 vNICs and the CSR 1000V: Setting the Connection Settings

ptg17123584

124 Chapter 4: CSR 1000V Software Architecture

3. Complete the configuration of the vNIC with a VLAN and label attach-

ment that can be referenced in a vSwitch. Click Finish to complete this

step, as shown in Figure 4-27.

Figure 4-27 vNICs and the CSR 1000V: Completing the Configuration

Step 13. Go to the vSphere web client and select Virtual Machine, Network Adapter.

In the Networking tab, look for the new bridgeForVNIC1 label you created

earlier, as shown in Figure 4-28. You should note that this label acts as map-

ping between the CSR interface and the vNIC.

Repeat Steps 12 and 13 to remap additional network adapters to vNICs avail-

able to the CSR.

ptg17123584

Installing the CSR 1000V on a VMware Hypervisor 125

Figure 4-28 vNICs and the CSR 1000V: Editing the Settings

To map the network adapter to the vNIC created, select the vNIC label cre-

ated in the previous step . The CSR 1000V is now configured and connected

to the physical NIC, as shown in Figure 4-29.

ptg17123584

126 Chapter 4: CSR 1000V Software Architecture

Figure 4-29 vNICs and the CSR 1000V: Interface Summary Screen

Installing the CSR 1000V on a KVM Hypervisor
The process for installing the CSR 1000V on a KVM hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the vNIC with the CSR 1000V.

Bring Up the CSR 1000V as a Guest

Follow these steps to update essential packages on a Linux managed server so it can

work as a type 1 hypervisor and run a CSR 1000V VM :

Step 1. Install the VM packages virt-manager, qemu-kvm, and bridge-utils like

this:

apt-get install virt-manager

apt-get install qemu-kvm

apt-get install bridge-utils

or like this:

yum install virt-manager

yum install qemu-kvm

yum install bridge-utils

Figure 4-30 shows the installation of packages required for CSR creation.

ptg17123584

Installing the CSR 1000V on a KVM Hypervisor 127

Figure 4-30 Package Installation on a KVM Hypervisor

Step 2. Launch Virtual Machine Manager, which is the front end to KVM/QEMU

that allows installation and management of CSR VMs, by selecting

Application, System, Virtual Machine Manager.

Note Virtual Machine Manager could also be on a different path for your Linux server.

Figure 4-31 shows the launch of the virtual machine from QEMU. Make sure you have

XDesktop installed. Also note that VMM is not a mandatory requirement for using

KVM/QEMU, especially when a graphical user interface is not present on a desktop.

Click the Create a New Virtual Machine icon, and the dialog shown in Figure

4-31 appears. Click the Forward button.

ptg17123584

128 Chapter 4: CSR 1000V Software Architecture

Figure 4-31 Creating a Guest VM

Step 3. Load the ISO image (which you download from software.cisco.com) for the

CSR 1000V, as shown in Figure 4-32. Click the Forward button.

Figure 4-32 ISO Image Bootup for the CSR 1000V

ptg17123584

Installing the CSR 1000V on a KVM Hypervisor 129

Note Download the ISO CSR 1000V image to your local hard disk. When you

download it, it is named csr1000v-universalk9.<version>.std.iso, but the file is renamed

ultra.iso in the example shown.

Step 4. Allocate hardware resources for the guest VM as shown in Figure 4-33.

(Refer to Table 2-2 in Chapter 2 for further allocation information.) Click

Forward.

Figure 4-33 Choosing Memory and CPU Settings

Step 5. Select hardware resources, as shown in Figure 4-34, and click Forward.

Figure 4-34 Selecting Hardware Resources

ptg17123584

130 Chapter 4: CSR 1000V Software Architecture

Note If you do not check Allocate Entire Disk Now, only a small portion of memory

asked for will be allocated. It will keep growing as memory requirements increase.

Checking Allocate Entire Disk Now guarantees that much storage.

Step 6. Look over the hardware resources summary (see Figure 4-35) and make any

changes needed. Click Finish.

Figure 4-35 Resources Summary Snapshot

Step 7. To apply changes for the guest VM, select Application, System, Virtual

Machine Manager and highlight the CSR installed in the VMM. Then click

the Show Virtual Hardware Details tab and click the Add Hardware button,

as shown in Figure 4-36.

ptg17123584

Installing the CSR 1000V on a KVM Hypervisor 131

Figure 4-36 Applying Hardware VM Changes

Step 8. To create serial connection access for console access, select Serial, and then

select TCP for Device Type and provide the telnet information, as shown in

Figure 4-37.

Figure 4-37 Creating the Serial Interface

ptg17123584

132 Chapter 4: CSR 1000V Software Architecture

Step 9. In the Virtual Machine Manager , highlight the guest VM and shut it down (if

it is not down already). (See Figure 4-38.)

Figure 4-38 Shutting Down the Guest VM

The guest VM goes down, as shown in Figure 4-39.

Figure 4-39 Shutdown of the Guest VM

Step 10. Access the router from the console, as shown in Figure 4-40. Make sure the

VM is powered up before you try to access it.

ptg17123584

Installing the CSR 1000V on a KVM Hypervisor 133

Figure 4-40 Console Access to the KVM

Step 11. Use the serial interface command for telnet access: platform console

serial and write mem, as shown in Figure 4-41.

Figure 4-41 Router Console for Telnet Access

Step 12. Access the CSR 1000V via the telnet, as shown in Figure 4-42.

ptg17123584

134 Chapter 4: CSR 1000V Software Architecture

Figure 4-42 Telnet Connection to the CSR 1000V

Step 13. Ensure that your virtual machine is shut down, and then start vNIC

provisioning by selecting Show Virtual Hardware Details, NIC, as shown in

Figure 4-43.

Figure 4-43 Accessing CSR 1000V Network Settings

Step 14. In the Virtual Machine Manager , select virtio as the device model (see Figure

4-44) because it is the para-virtualized driver in Linux. Using virtio is the best

way to exploit the underlying kernel for I/O virtualization. It provides an

efficient abstraction for hypervisors and a common set of I/O drivers.

ptg17123584

Installing the CSR 1000V on a KVM Hypervisor 135

Figure 4-44 Selecting CSR 1000V Network Settings

Select the virtual network with NAT to tie all VMs in the same bridge

domain and NAT it to the outgoing physical interface (see Figure 4-45).

Attach the other NIC to the bridge tap.

Figure 4-45 CSR 1000V NIC Settings

In KVM, macvtap is a combination of the macvlan driver and a Tap device.

Here the function of the macvlan driver is to create virtual interfaces and

map virtual interfaces to physical network interfaces. A unique MAC address

identifies each virtual interface to the physical interface. A TAP interface is a

software only interface that exists only in the kernel. You use Tap interfaces to

ptg17123584

136 Chapter 4: CSR 1000V Software Architecture

enable user-space networking and allow passing of datagrams directly between

VMs instead of sending datagrams to and from a physical interface. The

macvtap interface combines these two functions together (see Figure 4-46).

Tap 0 Tap 1

Eth0 on Host Machine

VM-A

eth0

VM-B

eth0

Figure 4-46 macvtap Diagram

Step 15. Configure the mapping of the vNIC to the physical interface:

1. Access the directory /etc/network/interfaces/ifcfg-br0 on the

Ubuntu host and view the bridge type (see Figure 4-47).

Figure 4-47 Bridge Configuration File Output

ptg17123584

Performance Tuning of the CSR 1000V 137

2. Access the directory /etc/network/interfaces/ifcfg-eth4 and con-

figure the vNIC to be in the same bridge type, BR0 (see Figure 4-48).

Figure 4-48 Interface Configuration File Output

To configure the spanning tree mode to promiscuous, use this:

auto eth4

iface eth4 inet manual

up ip address add 0/0 dev $IFACE

up ip link set $IFACE up

up ip link set $IFACE promisc on

Alternatively, access the file /etc/network/interfaces/ifcfg-eth4 and

type this:

PROMISC=yes

This method provides persistent configuration settings for ifcfg-eth4.

Step 16. In the Virtual Machine Manager, select Show Virtual Hardware Details.

Performance Tuning of the CSR 1000V
To improve performance of a guest VM in a hypervisor environment, you improve

availability of the I/O and other hardware resources through para-virtualization. Para-

virtualization allows for a kernel to present a software interface to a guest VM that

is similar but not identical to that of the underlying hardware, thereby improving the

VM performance. If you want to tune the performance further, you need to look at

two components:

ptg17123584

138 Chapter 4: CSR 1000V Software Architecture

■ Hypervisor scheduling

■ CPU pining

This section reviews the common tuning practices for an ESXi host. The scheduler for

ESXi is responsible for vCPU, IRQ (interrupt requests), and I/O threads. To provide

equal treatment to all guest VMs, the scheduler provides allocation of equal resources of

vCPU threads for scheduling. Note that you can relax coscheduling of threads to avoid

synchronization latency.

To tweak the scheduling and resource allocation details, you must access the VM setting

using vSphere client and follow these steps:

1. In the vSphere client inventory, right-click the virtual machine and select Edit

Settings.

2. Click the Resources tab and select CPU.

3. Allocate the CPU capacity for this virtual machine.

The Processor Affinity setting (CPU pining) restricts VMs to a particular set of cores

by defining the affinity set. The scheduling algorithm aligns with process affinity for

assigning the resources used for the tasks. Figure 4-49 assumes two tasks: Task 1 and

Task 2. Task 1 has affinity to processor 1 and is using it. When Task 2 needs a resource,

the scheduler uses a second processor. Task 2 then acquires affinity with the second

processor.

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 1

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 2

vCPU TASK1

vCPU
V
M

vCPU TASK2

vCPU
V
M

Figure 4-49 CPU Pining

ptg17123584

Summary 139

To tweak these settings, access the vSphere client and follow these steps:

1. In the vSphere client inventory panel, select a virtual machine and select Edit

Settings.

2. Select the Resources tab and select Advanced CPU.

3. Click the Run on Processor(s) button.

You achieve CPU pining in KVM by issuing the following command:

sudo virsh vcpupin test 0 6

Hyperthreading by definition allows a single physical core to have two logical cores; that

is, a single core can execute two threads at a given time. Each process from the guest

VM can be split into multiple threads to a logical CPU, and the CPU can handle multiple

threads of independent tasks. The main function of hyperthreading is to increase the

number of tasks in the pipeline by creating parallel pipelines. By tweaking the process

affinity option, you can restrict VMs to a particular set of cores and unhook the VM

from processor scheduling. Most of the hypervisors use BIOS settings to modify the

hyperthreading feature.

For predictable performance, the following best practices are recommended:

■ Ensure that hyperthreading is turned off.

■ Use CPU pining to allow the guest VMs to dedicate one or more physical hardware

CPUs for processing.

■ For CSR 1000V performance optimization, it is important to understand the

concept of DirectPath I/O and SR-IOV (single root I/O virtualization). These are

driver virtualization and are beneficial for achieving very high packet rates with low

latency. In DirectPath I/O, you can map only one physical function to one virtual

machine. SR-IOV allows an admin to share a single physical device, so that multiple

virtual machines can connect directly to the physical function.

These features are supported in all hypervisors, and it is important to understand the

settings on the hypervisor deployed in order to optimize guest VM performance with

features used on the hypervisor.

Summary
Now that you’ve read this chapter, you should have an understanding of the CSR 1000V

data plane architecture, as well as packet flow. You should also have an understanding of

the steps for bringing up a CSR 1000V on ESXi and KVM hypervisors.

ptg17123584

This page intentionally left blank

ptg17123584

This chapter introduces some of the common deployment scenarios for the CSR 1000V

software router. After reading this chapter, you will be able to apply the CSR 1000V to

multiple deployment scenarios, such as VPN services extension, route reflector design,

branch designs, and Locator/ID Separation Protocol (LISP).

VPN Services
A virtual private network (VPN) is an extension of a private network that enables an orga-

nization to securely deliver data services across a public or untrusted network infrastruc-

ture such as the Internet. A VPN connection is a logical connection and can be made at

either Layer 2 or Layer 3 of the OSI (Open System Interconnect) model. In today’s envi-

ronment, a VPN typically uses encryption for data privacy and integrity protection.

Layer 2 VPNs

Layer 2 VPNs (L2VPN), as the name suggests, operate at Layer 2 of the OSI model. They

provide virtual circuit connections that are either point-to-point or point-to-multipoint.

The forwarding of traffic in L2VPN is based on Layer 2 header information such as

MAC address. One of the advantages of L2VPN is that it is agnostic to the Layer 3 traf-

fic protocol that is carried over it because the L2VPN operates at a lower OSI layer.

The following are some examples of L2VPN services:

■ Point-to-point L2VPNs —Frame Relay, ATM PVC, Layer 2 Tunneling Protocol ver-

sion 3 (L2TPv3), and Virtual Private Wire Service (VPWS)

■ Multipoint L2VPNs —Virtual Private LAN Service (VPLS) and Provider Backbone

Bridging Ethernet Virtual Private Network (PBB-EVPN)

CSR 1000V Deployment
Scenarios

Chapter 5

ptg17123584

142 Chapter 5: CSR 1000V Deployment Scenarios

Layer 3 VPNs

Layer 3 VPNs (L3VPN) provide IP connectivity between sites and operate at Layer 3 of

the OSI model. L3VPNs have many flavors and can be either point-to-point or multi-

point connections for site-to-site route exchanges.

The following are some examples of L3VPN technologies:

■ MPLS VPNs—Multiprotocol Label Switching (MPLS) offers a cost-effective

method for replacing dedicated leased-line circuits such as Frame Relay or ATM

networks. L3 MPLS VPN service requires that the enterprise peer with the service

provider (SP) at the IP Layer 3 level. In this scenario, the SP network is involved

in the routing of the IP packets from the enterprise. This capability, coupled with

Virtual Routing and Forwarding (VRF), allows the SP to provide traffic segmenta-

tion between the customer’s IT services. VRF is a technology embedded in routers

that allows multiple instances of a routing table, one for each VPN, to exist on a

provider edge (PE) router. Because the routing instances are independent, the same

or overlapping IP addresses can be used without conflict. MPLS L3VPNs offer sev-

eral advantages, including flexibility, scalability, QoS, and any-to-any connectivity.

Figure 5-1 shows different components of an MPLS L3VPN network.

Customer Edge
Router (CE)

Customer Edge
Router (CE)

Provider Edge
Router (PE)

Provider Core
Router (P)

Provider Edge
Router (PE)

Figure 5-1 MPLS L3VPN Components

■ GRE tunnels—Generic Routing Encapsulation (GRE) is a standardized tunneling

protocol originally developed by Cisco for encapsulating non-IP protocols (such as

IPX and AppleTalk) and transporting them across an IP network. GRE tunnels pro-

vide virtual point-to-point links between sites, allowing the sites to see one another’s

private networks as if they were all one homogenous connection. GRE tunnels are

capable of transporting multiple protocols and no routable protocols across an IP

network. For example, MPLS frames are not routable over an IP network but can be

encapsulated inside a GRE tunnel for transport across an IP core.

■ IPsec VPNs—IP Security (IPsec) is a suite of protocols that provides data privacy

and integrity protection. IPsec uses cryptographic security services to ensure that

communications over public networks such as the Internet stay confidential. As

ptg17123584

VPN Services 143

described in the following sections, IPsec VPNs can be classified into two catego-

ries: site-to-site VPNs and remote access VPNs.

Site-to-Site VPNs

Site-to-site VPNs offer secure connections between enterprise branch locations and

enable secure communication between the branch offices, the head office, and data

center. Site-to-site VPNs offer several advantages:

■ They provide higher-bandwidth performance by using dedicated network devices

for hardware encryption.

■ The IP addresses of branch LANs and head office/data center’s network information

are hidden inside IPsec-encrypted headers, away from external prying eyes.

■ They offer greater scalability, because it is easy to add a new site or an office to the

network, and it is very cost-effective as well because a new office can leverage pub-

lic Internet circuits for connection over the Internet.

There are several flavors of site-to-site IPsec VPNs, each with unique characteristics. The

following sections cover the various IPsec VPN services supported on the CSR platform.

Classic IPsec with Crypto Maps

A classic IPsec VPN with a static crypto map offers the most basic secure transport

option for data traffic. It protects unicast traffic from one subnet to another and is usu-

ally the lowest common denominator for interoperability between devices from differ-

ent vendors. The IPsec encryption policy is applied to the egress interface where the

encryption process is the last function to be applied to the data traffic.

The crypto access control list (ACL) in the IPsec policy determines what traffic will

be encrypted and what traffic will be left alone, without encryption. The data traffic

matching the permit statement in the crypto ACL is the “interesting traffic” to which the

encryption algorithm is applied. Network administrators must explicitly define a protec-

tion profile for every potential subnet that requires data encryption protection.

Classic IPsec is sometimes referred to as static routing VPN or policy IPsec VPN

because it is statically configured based on the security policy defined by network

administrators. The IPsec protection profile in the crypto map essentially acts as routing

entries and determines which traffic will be sent over the encrypted tunnel, while the

rest of the traffic will follow the existing routing rules. However, there are complexities

to be aware of with IPsec profiles. For example, the addition of a single subnet in the

VPN network requires configuration updates to the other VPN gateways in the network

that interact with the subnet. In addition, classic IPsec with crypto map lacks support for

IP multicast traffic as the original IPsec RFCs did not accommodate multicast traffic in

the IPsec requirement.

ptg17123584

144 Chapter 5: CSR 1000V Deployment Scenarios

Because classic IPsec requires a network admin to explicitly define every potential IP

flow on every VPN gateway and because of the lack of multicast traffic support, this is

not a viable method for building a large complex network for an enterprise with hun-

dreds or thousands of subnets. A large IPsec VPN may require N2 IPsec crypto profile

configurations at the head end VPN gateway.

Dynamic Multipoint VPN (DMVPN)

DMVPN is the preferred IPsec VPN solution for enterprises requiring encrypted con-

nectivity between branch offices as it offers dynamic spoke-to-spoke communication

without the need to build fully meshed tunnel configurations. DMVPN enables estab-

lishment of direct spoke-to-spoke connectivity over IPsec on demand, without having

the traffic hairpin at the hub location.

DMVPN offers a scalable IPsec VPN solution with flexible deployment topology. It

supports hub-and-spoke, partial-mesh, or dynamic full-mesh topology. DMVPN com-

bines several standards-based protocols:

■ IPsec

■ Multipoint GRE (mGRE) interface

■ Next Hop Resolution Protocol (NHRP)

The DMVPN architecture is based on remote spokes establishing connections into a

headend VPN gateway, forming dynamic adjacencies between the hub and the spokes.

The hub does not need to know any information about the remote spokes ahead of time

as that information is exchanged during the initial spoke-to-hub registration. Through

the spoke-to-hub GRE over IPsec tunnel, the remote spokes dynamically advertise the

tunnel address and the LAN subnets behind the spoke router. The destination LAN

addresses and their next hops are learned through routing protocols such as OSPF,

EIGRP, and BGP. Figure 5-2 shows the high-level architecture for DMVPN.

DMVPN uses the mGRE interface, which is a point-to-multipoint interface where a sin-

gle tunnel interface can terminate multiple GRE tunnels from the spokes. This effectively

reduces configuration complexity and allows incoming GRE tunnel connections from

any spoke, including the ones using dynamically allocated tunnel addresses. The mGRE

interface drastically simplifies the hub setup, allowing the hub tunnel interface configu-

ration to stay the same while more spoke routers are incrementally added.

The hub identifies a remote spoke’s tunnel endpoint address through NHRP. When the

remote peer builds the permanent tunnel to the hub router, it also sends an NHRP regis-

tration message to the hub over the tunnel. The NHRP registration message identifies the

tunnel endpoint address of the spoke router, thus preventing the hub router from hav-

ing to know the remote peer’s tunnel IP address in advance. Leveraging NHRP messages

provides the freedom for the spoke router to use dynamically assigned addresses as well

as to build dynamic site-to-site tunnels between the spokes for traffic communication

between the branches. The DMVPN topology is shown in Figure 5-2.

ptg17123584

VPN Services 145

DMVPN Spoke-1 DMVPN Spoke-2

10.0.3.0/2410.0.2.0/24

DMVPN Hub-1 DMVPN Hub-2

10.0.1.0/24

mGRE
Interface

Dynamic
Spoke-to-Spoke

Tunnel

Permanent Tunnel

Figure 5-2 Dynamic Multipoint VPN (DMVPN) Topology

From a high-availability standpoint, DMVPN offers active-active redundancy. Dual

WAN links and redundant hub routers provide a high-availability DMVPN design.

DMVPN supports dual-hub design, where the spoke routers are peered with two hubs,

providing active-active redundancy where both hubs can be used simultaneously, offer-

ing rapid failover if one of the hubs fails.

DMVPN supports hierarchical hub deployment and allows a network to scale to tens

of thousands of branch nodes while offering any-to-any communication between the

branch sites. Incrementally adding more hubs for additional throughput performance or

scaling requirements can gain additional performance.

Group Encrypted Transport VPN (GET VPN)

GET VPN addresses the need for enterprises to provide data encryption over private

WANs managed by service providers. Such encryption is often motivated by a regulato-

ry compliance requirement such as the Health Insurance Portability and Accountability

Act (HIPAA) and the Payment Card Industry Data Security Standards (PCI DSS).

GET VPN is a tunnel-less VPN technology that offers end-to-end encryption for data

traffic and maintains full-mesh IPsec VPN topology without prior negotiation of point-

to-point tunnels, as shown in Figure 5-3. Like the other VPN technologies discussed so

far in this chapter, GET VPN leverages the same IPsec protocol suites to provide data

confidentiality and integrity protection. In addition, it introduces Group Domain of

Interpretation (GDOI), an IEFT standards-based protocol (RFC 6407), as the security

key management protocol.

ptg17123584

146 Chapter 5: CSR 1000V Deployment Scenarios

Group
Member

Group
Member

Group
Member

Group
Member

Routing
Members

Primary
Key Server

Cooperative
Protocol

Secondary
Key Server

Figure 5-3 GET VPN Components

Two group security functions have been introduced for devices participating in GET

VPN communication:

■ A Group Member (GM) is a device that is responsible for securing data traffic. It is

in charge of encrypting and decrypting the data traffic. The GM registers with a Key

Sever to obtain key materials for data encryption and decryption.

■ A Key Server (KS) is responsible for authenticating the GMs, managing the security

policies, creating group keys (GK), and distributing the GK material to the GMs.

On a periodic basis, a KS would send out new key material to refresh the keys prior

to their expiration. The most important function for a KS is the generation of the

encryption keys. A KS generates two types of keys:

■ Key-Encryption-Key (KEK)—KEK is used to secure the control plane messaging

between the KS and the GMs.

■ Traffic Encryption Key (TEK)—This key is used for encrypting the data traffic

between the GMs.

Unlike the traditional IPsec VPN model, which is a bilateral trust model in which a pair

of VPN gateways mutually authenticate each other and set up IPsec sessions between

them, an important aspect of GET VPN is that it does not set up any IPsec tunnel

between the GMs. GET VPN uses a group trust model in which every GM shares the

same security policy and encryption keys obtained from the KS. The security policy

defines what traffic will be encrypted, the encryption algorithm to use, and the encryp-

tion keys to use.

GET VPN uses a tunnel mode called “address preservation,” which copies the original

source and destination IP addresses from the original IP header. Address preservation

allows packets to traverse asymmetric paths in a private MPLS WAN network. In

ptg17123584

VPN Services 147

addition to the IP address, other fields from the original IP header, such as the Type

of Service (ToS), Identity (Id), and Don’t Fragment (DF) fields, are also preserved. The

interesting property of address preservation allows IP multicast packets to be routed

natively over the provider network because GET VPN applies this method to both

multicast and unicast traffic for optimal packet delivery.

High availability is achieved by using a set of KSs running in cooperative mode, where

they jointly accept registration from GMs and distribute GDOI rekeys. The Cooperative

Key Server Protocol enables the KSs to communicate among themselves and exchange

active group policy and encryption keys. If the primary KS becomes unreachable, the

remaining KS continues to distribute group policy and group keys to the GMs. This

ensures that the GET VPN encryption domain is uninterrupted and continues to func-

tion as long as one of the KSs is reachable.

The group trust model for GET VPN is most suitable when the VPN gateways are part

of the same network domain and all VPN gateways are trusted to decrypt any packet

encrypted and forwarded by other GET VPN gateways. It leverages a centralized entity,

the KS, for authentication and distribution of security policy and encryption keys. Most

importantly, Network Address Translation (NAT) is not present along the network paths

between the GMs or KSs. These characteristics are usually found in MPLS networks. If

there are NAT devices present along the network paths between the GMs, then the net-

work is not suitable for deploying GET VPN.

Remote Access VPNs

The CSR 1000V offers a Secure Sockets Layer (SSL) VPN gateway that allows remote

user access to corporate data resources and empowers employees to work from anywhere

on corporate laptops as well as personal mobile devices, regardless of physical location.

With the CSR SSL VPN solution, in conjunction with the Cisco AnyConnect VPN client,

end users gain access securely from home, from the road over 4G and wireless hotspots,

or from any Internet-enabled location. SSL VPN offers three modes of SSL VPN access

(though only the tunnel mode is supported with a CSR SSL VPN gateway):

■ Clientless mode provides secure access to web resources only and is useful for

accessing resources that are on corporate web servers.

■ Thin client mode extends the capability of secure web access, with a port-

forwarding Java applet allowing remote access to TCP-based applications such as

POP3, SMTP, IMAP, and SSH that are not web-based protocols.

■ Tunnel mode delivers a lightweight and centrally configured SSL VPN service

that offers extensive application support through a Cisco AnyConnect Secure

Mobility Client. Full tunnel mode provides secure network access to virtually

any applications on the enterprise network. During the establishment of the VPN

with the CSR SSL VPN gateway, the Cisco AnyConnect Secure Mobility Client is

downloaded and installed on the remote user device. When the user logs into the

SSL VPN gateway, it establishes the tunnel connection, and the network access is

determined by the group policy configured on the gateway. After the user closes

ptg17123584

148 Chapter 5: CSR 1000V Deployment Scenarios

the connection, the AnyConnect Secure Mobility Client is removed from the cli-

ent device by default; however, there is an option to keep the AnyConnect Secure

Mobility Client installed on the client equipment.

Use Cases for the CSR 1000V as a VPN Service
Gateway

The following sections describe common use cases for the CSR 1000V functioning as a

VPN gateway in an enterprise environment.

Enterprise Data Center Network Extension

One approach to cloud data center access is to provision a single VPN backhaul connec-

tion between an existing data center and the data center in the cloud. This type of solu-

tion is simple to set up, but the drawback is that all the traffic to the data center in the

cloud requires backhauling through the existing data center. This can potentially increase

latency and may require an expensive private WAN link between the two data centers.

The CSR 1000V as a VPN Gateway

When you deploy the CSR 1000V router in the cloud, every branch office, campus,

and data center location can access the cloud service directly and securely. This design

reduces latency and eliminates the expensive dedicated WAN link.

Figure 5-4 illustrates the use of the CSR 1000V as a VPN gateway to extend an enter-

prise network into cloud providers.

Cloud Provider

APP
OS

APP
OS

APP
OS

CSR 1000V

IPsec/
DMVPN

Figure 5-4 The CSR 1000V as a VPN Service Gateway

ptg17123584

Use Cases for the CSR 1000V as a VPN Service Gateway 149

Examples 5-1 and 5-2 show DMVPN hub and spoke configuration examples, respectively.

Example 5-1 Confi guration Example: CSR 1000V as a DMVPN Hub

hostname Hub-1

!

crypto ikev2 keyring VPNKey

peer WANVPN

 address 10.10.0.0 255.255.0.0

 pre-shared-key cisco123

!

crypto ikev2 profile VPN-PROFILE

match identity remote address 10.10.0.0 255.255.0.0

 authentication remote pre-share

authentication local pre-share

keyring local VPNKey

!

crypto ikev2 dpd 60 25 on-demand

!

crypto ipsec security-association idle-time 120

!

crypto ipsec transform-set AES256 esp-aes 256 esp-sha-hmac

 mode transport

!

crypto ipsec profile DMVPN

set transform-set AES256

 set ikev2-profile VPN-PROFILE

!

interface Tunnel1

description DMVPN

bandwidth 10000

ip address 172.16.1.1 255.255.255.0

no ip redirects

ip mtu 1400

ip nhrp authentication VPN123

ip nhrp map multicast dynamic

ip nhrp network-id 101

ip nhrp holdtime 600

ip nhrp redirect

ip tcp adjust-mss 1360

load-interval 30

tunnel source GigabitEthernet1

tunnel mode gre multipoint

tunnel protection ipsec profile DMVPN

!

ptg17123584

150 Chapter 5: CSR 1000V Deployment Scenarios

interface GigabitEthernet1

description WAN interface

ip address 10.10.1.2 255.255.255.252

!

interface GigabitEthernet2

description LAN interface

ip address 172.16.1.1 255.255.255.0

!

!

router eigrp WAN

!

address-family ipv4 unicast autonomous-system 100

 !

 af-interface default

 passive-interface

 exit-af-interface

 !

 af-interface Tunnel1

 summary-address 172.16.0.0 255.255.0.0

 no passive-interface

 exit-af-interface

 !

 topology base

 exit-af-topology

 network 172.16.0.0 0.0.255.255

exit-address-family

!

end

Example 5-2 Confi guration Example: ISR as a DMVPN Spoke

hostname Spoke-1

!

crypto ikev2 keyring VPNKey

peer WANVPN

 address 10.10.0.0 255.255.0.0

 pre-shared-key cisco123

!

crypto ikev2 profile VPN-PROFILE

match identity remote address 10.10.0.0 255.255.0.0

 authentication remote pre-share

authentication local pre-share

keyring local VPNKey

!

ptg17123584

Use Cases for the CSR 1000V as a VPN Service Gateway 151

crypto ikev2 dpd 60 25 on-demand

!

crypto ipsec security-association idle-time 120

!

crypto ipsec transform-set AES256 esp-aes 256 esp-sha-hmac

 mode transport

!

crypto ipsec profile DMVPN

set transform-set AES256

 set ikev2-profile VPN-PROFILE

!

interface Tunnel1

description DMVPN

bandwidth 10000

ip address 172.16.1.10 255.255.255.0

no ip redirects

ip mtu 1400

ip nhrp authentication VPN123

ip nhrp map multicast 10.10.1.2

ip nhrp map 172.16.1.1 10.10.1.2

ip nhrp network-id 101

ip nhrp holdtime 600

ip nhrp shortcut

ip tcp adjust-mss 1360

load-interval 30

tunnel source GigabitEthernet1

tunnel mode gre multipoint

tunnel protection ipsec profile DMVPN

!

interface GigabitEthernet1

description WAN interface

ip address 10.10.2.2 255.255.255.252

!

interface GigabitEthernet2

description LAN interface

ip address 172.16.2.1 255.255.255.0

!

!

router eigrp WAN

!

address-family ipv4 unicast autonomous-system 100

 !

 af-interface default

 passive-interface

 exit-af-interface

ptg17123584

152 Chapter 5: CSR 1000V Deployment Scenarios

 !

 af-interface Tunnel1

 summary-address 172.16.0.0 255.255.0.0

 no passive-interface

 exit-af-interface

 !

 topology base

 exit-af-topology

 network 172.16.0.0 0.0.255.255

exit-address-family

!

end

CSR for Secure Inter-Cloud Connectivity

Enterprise cloud consumers may have limitations on communication for a virtual pri-

vate cloud between different regions that is under the control of the enterprise, making

multi-region deployment challenging. With a CSR 1000V virtual router instance running

in every virtual private cloud region interconnected through a VPN, you can create a

secure network that spans the globe. Figure 5-5 shows a CSR 1000V virtual router con-

necting multiple locations with enterprisewide VPN service.

CSR 1000V

Cloud Provider West Cloud Provider East

Secure Inter-Cloud
Connection

APP
OS

APP
OS

APP
OS

APP
OS

APP
OS

APP
OS

CSR 1000V

Enterprise Network

Figure 5-5 CSR 1000V for Secure Inter-regional Cloud Connectivity

ptg17123584

Use Cases for the CSR 1000V as a VPN Service Gateway 153

Remote VPN Access into the Cloud

The CSR 1000V offers secure remote VPN access for administrative connection to the

virtual servers in the cloud (see Figure 5-6). A CSR virtual router offers an SSL VPN

gateway solution that allows remote user access to corporate data resources and empow-

ers employees to work from anywhere on corporate laptops as well as personal mobile

devices. In addition, the CSR 1000V offers FlexVPN with the Cisco AnyConnect

Secure Mobility Client to offer a more robust remote access VPN solution. FlexVPN is

a consolidation of multiple VPN frameworks, such as crypto maps and Virtual Tunnel

Interface (VTI) into a common set of command-line interface (CLI) configurations. It

uses Internet Key Exchange version 2 (IKEv2) as the default protocol for more secure

protocol negotiation. FlexVPN running on the CSR 1000V, when combined with

AnyConnect Secure Mobility Client, offers end users secure access to resources inside

the cloud network from any Internet-enabled location. Example 5-3 shows a sample

configuration of this scenario.

Remote
Access VPN

CSR 1000V

Cloud Provider West Cloud Provider East

Secure Inter-Cloud
ConnectionAPP

OS

APP
OS

APP
OS

APP
OS

APP
OS

APP
OS

CSR 1000V

Figure 5-6 CSR for Remote VPN Access into the Cloud

Example 5-3 Confi guration Example: CSR as a Remote Access VPN Server with an
AnyConnect Client

hostname CSR-RA-VPN-Gateway

!

aaa new-model

!

!

radius server FLEXVPN-RADIUS

 address ipv4 10.10.1.21 auth-port 1645 acct-port 1646

 key 7 01300F175804575D72

ptg17123584

154 Chapter 5: CSR 1000V Deployment Scenarios

!

aaa authentication login FLEXVPN-AAA-LIST group radius

aaa authorization network FLEXVPN-AAA-LIST local

!

clock timezone EST -5 0

clock calendar-valid

!

! Generate an RSA Key with key length of 2048 bytes

crypto key generate rsa general-keys label FLEXVPN-KEY modulus 2048

!

ip domain name cisco.com

!

!Enable IOS CA server for local certificate enrollment

crypto pki server CA

 no database archive

 grant auto

 hash sha256

 eku server-auth client-auth

 no shutdown

!

! Enable HTTP server for certificate enrollment over SCEP

ip http server

!

!Creating a certificate for use of FLEXVPN with AnnyConnect Client

!to support Extended Key Usage (EKU) Requirement.

crypto pki trustpoint FLEXVPN

 enrollment url http://10.10.1.1:80

 fqdn FLEXVPN-HUB.cisco.com

 ip-address none

 subject-name CN=FLEXVPN-GWY.CISCO.COM, OU=IT, O=CISCO

 revocation-check none

 rsakeypair FLEXVPN-KEY 2048 2048

 eku request server-auth client-auth

!

crypto pki authenticate FLEXVPN

!

crypto pki trustpoint CA

 revocation-check crl

 rsakeypair CA

!

!

crypto pki certificate chain FLEXVPN

crypto pki certificate chain CA

 certificate ca 01

!

ptg17123584

BGP Route Reflector Use Case for the CSR 155

!Create FLEXVPN local authorization policy on the router with parameters

!to push out to the clients

crypto ikev2 authorization policy FLEXVPN-POLICY

 pool FLEXVPN-CLIENT-POOL

 dns 10.0.0.120

 netmask 255.255.255.0

 def-domain cisco.com

!

!Configure IKEv2 profile that defines the authentication and authorization

!method and the trustpoint to be used during VPN negotiation

crypto ikev2 profile FLEXVPN-PROFILE

 match identity remote key-id cisco.com

 identity local dn

 authentication remote eap query-identity

 authentication local rsa-sig

 pki trustpoint FLEXVPN

 dpd 60 2 on-demand

 aaa authentication eap FLEXVPN-AAA-LIST

 aaa authorization group eap list FLEXVPN-AAA-LIST FLEXVPN-POLICY

 virtual-template 10

!

!Create IPsec profile that links back to the IKEv2 profile for FLEXVPN

crypto ipsec profile FLEXVPN-IPSEC-PROFILE

 set ikev2-profile FLEXVPN-PROFILE

!

!Define the virtual template from which the VPN session will be using

!and tie the interface to IPsec encryption profile

interface Virtual-Template10 type tunnel

 ip unnumbered GigabitEthernet1

 tunnel mode ipsec ipv4

 tunnel protection ipsec profile FLEXVPN-IPSEC-PROFILE

!

interface GigabitEthernet1

 ip address 10.10.1.1 255.255.255.0

 negotiation auto

!

ip local pool FLEXVPN-CLIENT-POOL 172.16.10.2 172.16.10.254!

BGP Route Reflector Use Case for the CSR
Border Gateway Protocol (BGP) is an exterior gateway protocol. BGP is designed to

exchange routing and reachability information among autonomous systems (AS) on the

Internet or in a large enterprise network. BGP is used to carry large routing tables. All

BGP speakers within a single AS must be fully meshed for routing information to be

ptg17123584

156 Chapter 5: CSR 1000V Deployment Scenarios

available on all routers within that AS. There are multiple features and design options

available to reduce this requirement of full mesh, and BGP route reflector is one that is

prevalent in many deployments.

The route reflector function is a part of Cisco IOS but often requires a dedicated hard-

ware router for optimal scale. On the route reflectors, the intern al BGP (iBGP) loop-

prevention rule is relaxed for these routers, and they are allowed to re-advertise or

reflect routes from one iBGP speaker to another iBGP speaker. The route reflector is a

control plane function running on the CSR and requires very minimal data-plane func-

tion for sending routing updates to the BGP route-reflector clients. The following rules

for route propagation are applied to a route reflector:

■ Routes received from an iBGP peer (not a part of the route reflector client), locally

generated routes, and routes received from external BGP (eBGP) neighbors are

selected as best routes.

■ The route received from the route reflector client that is selected as the best route is

propagated to all peers.

There are several reasons BGP route reflector design is gaining popularity. BGP is

increasingly being deployed in large networks. The need for BGP has also increased

due to the deployment of MPLS Layer 3 VPNs. The concept of autonomous systems

inheriting the functionality of Layer 3 VPN virtual routing instances between provider

edge routers has increased the usage of BGP deployment within a single AS, and route

reflectors are leveraged to simplify BGP deployments. The use of route reflectors in this

design is mainly to handle the control plane for the BGP routing table. The CSR 1000V

offers a cost-effective way to scale the route reflector functionality and handle the BGP

control plane, removing the need to deploy dedicated route reflector hardware for this

functionality. The actual number of sessions that a route reflector can service depends

on a number of factors, such as the number of routes per session, the use of peer groups,

the CPU power, and the memory resources of the route reflector.

Table 5-1 provides a comparison between the CSR 1000V and Route Processor 2 (RP2)

and shows that the two are similar in terms of handling the route reflector function.

Table 5-1 CSR 1000V and RP2 Scalability Comparison

CSR 1000V (8GB) CSR 1000V (16GB) RP2 (8GB) RP2 (16GB)

IPv4 routes 8.5MB 24.8MB 8MB 24MB

VPNv4 routes 8.1MB 23.9MB 7MB 18MB

Number of BGP
sessions

4000 4000 8000 8000

Network Functions Virtualization (NFV) is a cost-effective method to provide virtual

route reflector (vRR) functionality compared to traditional deployment using physical

hardware. The important thing to keep in mind is to ensure that the deployment of CSR

ptg17123584

BGP Route Reflector Use Case for the CSR 157

1000V as a route reflector is not in the data path; you can thereby provide cost-effective

capability to manage the BGP control plane that can scale the number of routes in the

BGP RIB. Table 5-1 should be used as a mere reference point since these numbers can

change based on software release cycle and enhancement in the BGP protocol. Any

use case of the CSR 1000V to replace hardware functionality in the design should be

done with careful tuning of the hypervisor environment, as discussed in Chapter 3,

“Hypervisor Considerations for the CSR.” By default, the IOS XE uses about 50% of the

memory for the IOSd process and the remaining memory for other IOS XE processes

(valid for RPs with 4GB of memory). Because BGP route reflector is a control plane

functionality that runs on the IOSd process only, by default out of 4GB memory avail-

able to the CSR 1000V, only 50% of the memory (2GB) will be used for route reflector

functionality. To optimize this functionality in the CSR 1000V and to enhance the scal-

ability of the route reflector function, the CSR 1000V with a route reflector license uses

the entire 4GB of memory to run the IOSd. The route reflector license available for the

CSR 1000V increases its scalability as a route reflector.

The CSR 1000V in a Hierarchical Route Reflector Use Case

Using a hierarchical route reflector concept enhances route reflector design scalability.

The cluster concept enables a network admin to add groups of clients to a single route

reflector. The router ID of the route reflector identifies the cluster. To increase redun-

dancy and avoid single points of failure, a cluster can have more than one route reflec-

tor. The cluster ID is a 4-byte field used to identify the routes and updates within the

same cluster or within the iBGP domain.

The concept of cluster ID and hierarchy is used in Figure 5-7 to achieve route reflector

redundancy, localization of policies, and route updates within the iBGP domain.

AS 65111

lo0 192.168.1.5

lo0 192.168.1.6

lo0 192.168.1.3 lo0 192.168.1.4

R1

lo0 192.168.1.1 lo0 192.168.1.8

RR 1 RR 2

East
Cluster ID 1000

R2

lo0 192.168.1.9 lo0 192.168.1.10

lo0 192.168.1.7 lo0 192.168.1.2

RR 3 RR 4

R4

Cluster ID 1001
West

R3

R5-1 & R5-2

Figure 5-7 Hierarchical Route Reflector Use Case with the CSR 1000V

ptg17123584

158 Chapter 5: CSR 1000V Deployment Scenarios

In this example, AS 65111 is split into two domains: East (cluster ID 1000) and West

(cluster ID 1001). Each subdomain has its own route reflectors for the local route reflec-

tor clients. The CSR 1000V as a route reflector fully utilizes the hardware resource for

the control plane. Very minimum data plane traffic flows between the route reflectors.

The following setup illustrates hierarchical route reflector design:

■ R1 and R2 are route reflector clients for RR1 and RR2.

■ R3 and R4 are route reflector clients for RR3 and RR4.

■ R5-1 and R5-2 are conventional routers and form iBGP relationship with the route

reflectors in the East and West domains.

The configurations for this route reflector design are listed in Examples 5-4 through 5-14.

Example 5-4 RR1 Confi guration

interface Loopback0

 ip address 192.168.1.1 255.255.255.255

router bgp 65111

 bgp cluster-id 1000

 bgp log-neighbor-changes

 neighbor RR-East peer-group

 neighbor RR-East remote-as 65111

 neighbor RR-East update-source Loopback0

 neighbor RR-East route-reflector-client

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.2 peer-group IBGP

 neighbor 192.168.1.3 peer-group RR-East

 neighbor 192.168.1.4 peer-group RR-East

 neighbor 192.168.1.5 peer-group IBGP

 neighbor 192.168.1.6 peer-group IBGP

 neighbor 192.168.1.7 peer-group IBGP

 neighbor 192.168.1.8 peer-group IBGP

Example 5-5 RR2 Confi guration

interface Loopback0

 ip address 192.168.1.8 255.255.255.255

router bgp 65111

 bgp cluster-id 1001

 bgp log-neighbor-changes

 neighbor RR-West peer-group

 neighbor RR-West remote-as 65111

ptg17123584

BGP Route Reflector Use Case for the CSR 159

 neighbor RR-West update-source Loopback0

 neighbor RR-West route-reflector-client

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.1 peer-group IBGP

 neighbor 192.168.1.2 peer-group IBGP

 neighbor 192.168.1.5 peer-group IBGP

 neighbor 192.168.1.6 peer-group IBGP

 neighbor 192.168.1.7 peer-group IBGP

 neighbor 192.168.1.9 peer-group RR-West

 neighbor 192.168.1.10 peer-group RR-West

Example 5-6 R2 Confi guration

interface Loopback0

 ip address 192.168.1.3 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 network 192.168.40.40 mask 255.255.255.255

 neighbor 192.168.1.1 remote-as 65111

 neighbor 192.168.1.1 update-source Loopback0

 neighbor 192.168.1.1 route-reflector-client

 neighbor 192.168.1.2 remote-as 65111

 neighbor 192.168.1.2 update-source Loopback0

 neighbor 192.168.1.2 route-reflector-client

Example 5-7 R1 Confi guration

interface Loopback0

 ip address 192.168.1.4 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 neighbor 192.168.1.1 remote-as 65111

 neighbor 192.168.1.1 update-source Loopback0

 neighbor 192.168.1.1 route-reflector-client

 neighbor 192.168.1.2 remote-as 65111

 neighbor 192.168.1.2 update-source Loopback0

 neighbor 192.168.1.2 route-reflector-client

ptg17123584

160 Chapter 5: CSR 1000V Deployment Scenarios

Example 5-8 R5-1 Confi guration

interface Loopback0

 ip address 192.168.1.5 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.1 peer-group IBGP

 neighbor 192.168.1.2 peer-group IBGP

Example 5-9 R5-2 Confi guration

Interface Loopback0

 ip address 192.168.1.6 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.1 peer-group IBGP

 neighbor 192.168.1.2 peer-group IBGP

Example 5-10 RR-3 Confi guration

interface Loopback0

 ip address 192.168.1.7 255.255.255.255

router bgp 65111

 bgp cluster-id 1001

 bgp log-neighbor-changes

 neighbor RR-West peer-group

 neighbor RR-West remote-as 65111

 neighbor RR-West update-source Loopback0

 neighbor RR-West route-reflector-client

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.1 peer-group IBGP

 neighbor 192.168.1.2 peer-group IBGP

 neighbor 192.168.1.5 peer-group IBGP

 neighbor 192.168.1.6 peer-group IBGP

 neighbor 192.168.1.8 peer-group IBGP

 neighbor 192.168.1.9 peer-group RR-West

 neighbor 192.168.1.10 peer-group RR-West

ptg17123584

BGP Route Reflector Use Case for the CSR 161

Example 5-11 RR-4 Confi guration

interface Loopback0

 ip address 192.168.1.2 255.255.255.255

router bgp 65111

 bgp cluster-id 1000

 bgp log-neighbor-changes

 neighbor RR-East peer-group

 neighbor RR-East remote-as 65111

 neighbor RR-East update-source Loopback0

 neighbor RR-East route-reflector-client

 neighbor IBGP peer-group

 neighbor IBGP remote-as 65111

 neighbor IBGP update-source Loopback0

 neighbor 192.168.1.1 peer-group IBGP

 neighbor 192.168.1.3 peer-group RR-East

 neighbor 192.168.1.4 peer-group RR-East

 neighbor 192.168.1.5 peer-group IBGP

 neighbor 192.168.1.6 peer-group IBGP

 neighbor 192.168.1.7 peer-group IBGP

 neighbor 192.168.1.8 peer-group IBGP

Example 5-12 R3 Confi guration

interface Loopback0

 ip address 192.168.1.9 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 neighbor 192.168.1.7 remote-as 65111

 neighbor 192.168.1.7 update-source Loopback0

 neighbor 192.168.1.8 remote-as 65111

 neighbor 192.168.1.8 update-source Loopback0

Example 5-13 R4 Confi guration

interface Loopback0

 ip address 192.168.1.10 255.255.255.255

router bgp 65111

 bgp log-neighbor-changes

 neighbor 192.168.1.7 remote-as 65111

 neighbor 192.168.1.7 update-source Loopback0

 neighbor 192.168.1.8 remote-as 65111

 neighbor 192.168.1.8 update-source Loopback0

ptg17123584

162 Chapter 5: CSR 1000V Deployment Scenarios

Example 5-14 Snapshot of BGP Update at R4

r57#sh ip bgp 192.168.40.40 255.255.255.255

BGP routing table entry for 192.168.40.40/32, version 3

Paths: (2 available, best #2, table default)

 Not advertised to any peer

 Refresh Epoch 1

 Local

 192.168.1.3 (metric 41) from 192.168.1.8 (192.168.1.8)

Origin IGP, metric 0, localpref 100, valid, internal

Originator: 192.168.40.40, Cluster list: 0.0.3.233, 0.0.3.232

rx pathid: 0, tx pathid: 0

 Refresh Epoch 1

 Local

 192.168.1.3 (metric 41) from 192.168.1.7 (192.168.1.7)

Origin IGP, metric 0, localpref 100, valid, internal, best

Originator: 192.168.40.40, Cluster list: 0.0.3.233, 0.0.3.232

rx pathid: 0, tx pathid: 0x0

The highlighted cluster ID in Example 5-14 shows the path of origination of the route in

the BGP AS.

Planning for Future Branch Design with the CSR 1000V
This section provides an overview of the enterprise branch router and its evolution from

a traditional hardware branch router. You will also learn about the functionality of an

integrated router that uses NFV elements and its evolution.

The traditional network components that impact the branch design are routing, firewall,

and encryption. Today, the network is being converged as a platform to launch IT servic-

es. As this trend continues, branch solutions will need to scale these multiple technology

domains, moving a branch from a single node in a high-availability domain to a multiple-

node environment.

In Figure 5-8, notice that the branch router’s role is more than just a normal routing

functionality. The transition in basic routing is seen in the introduction of performance-

based routing (Cisco Performance Routing [PfR]), where the routing concept has evolved

from prefix-based routing to more intelligent path selection. Performance-based routing

allows the router to make an intelligent path decision based on application service level

requirements.

The current WAN branch router supports VPN, voice, WAN optimization engine, a

router-based firewall, integrated switches, and UCS computing blades. All these ele-

ments are added to the router as features in the IOS code and interface cards. The rapid

deployment of these features has driven the need for using services outside the device.

Leveraging computing infrastructure present in the router to spawn network virtual

devices reduces cost factors such as power, space, and cabling.

ptg17123584

Planning for Future Branch Design with the CSR 1000V 163

Router Features

WAN Access Types

Branch
Router

Branch Location

V
Integrated

Switch
Module

UCS-E

VMVM

Figure 5-8 Current Branch Router Capabilities

By using NFV, you can spawn virtual devices to scale to new feature requirements. In

Figure 5-9, the branch router has a security gateway (firewall and Sourcefire) that pro-

vides functionalities such as firewall services, Advanced Malware Protection (AMP),

Application Visibility and Control (AVC), and URL filtering. Instead of using firewall

functionality in the router, you have an option of using an NFV element that provides

additional security functionality.

Router Features NFV Elements

Prevalence
NFV Elements

in Enterprise
Branch

Deployments
WAN Access Types

Branch
Router

Branch Location

V Integrated Switch
Module UCS-E

vWAAS Source
Fire

VM

Figure 5-9 Adoption of NFV Elements

The introduction of computing as an integrated router platform provides a new para-

digm for launching services and NFV from this platform. The UCS E-Series blade server

that runs in ISR has two internal Gigabit Ethernet interfaces connecting to the router and

at least one external Gigabit Ethernet interface:

■ One of the internal interfaces is a Layer 2 interface that connects the server blade

directly to the backplane switch for traffic destined to the virtual server. The

other internal interface is a Layer 3 interface that connects the blade to the Cisco

ptg17123584

164 Chapter 5: CSR 1000V Deployment Scenarios

ISR route engine for management traffic such as Cisco Integrated Management

Controller (CIMC) and the host operating system configuration.

■ The external Gigabit Ethernet port takes care of external connection use cases. (One

of them is WAN connectivity, or connectivity to the external firewall.)

The UCS E-Series uses a bare metal hypervisor platform that is a joint Cisco and

VMware solution to create a virtualization-ready platform. The ESXi is optimized to

function on the UCS E blade server hardware and is the beginning of a new thought in

designing an NFV solution for the branch. These are some of the benefits of having an

integrated computing platform in the routers:

■ Virtual servers can be provisioned more quickly than their physical counterparts.

■ Virtual servers require less space, power, and cooling.

■ The integrated solution design is easy to operate within a single domain.

Evolution of Branch Virtualization

You should know by now that the branch router plays a more vital role than just a nor-

mal routing functionality and adds services to the branch for taking care of IT require-

ments. This evolution is a cost-effective consolidation of services within a domain. The

evolution of orchestration and management for NFV technology helps network archi-

tects leverage NFV technology to meet the same network requirements within a single

box rather than using multiple dedicated appliances. The use of the CSR 1000V removes

the need for dedicated routing hardware, and a complete suite of NFV elements can

replace IT service functionality needed at the branch.

The NFV approach to branch virtualization opens up new technology avenues by pro-

viding a platform for customers to deploy virtualized network elements as required.

Coupling this with an easy-to-use end-to-end orchestration and management framework,

enterprises are able to significantly reduce costs and get better return on investment

(ROI) by avoiding expensive truck rolls to enable services at their branches. These are

the key aspects of branch virtualization:

■ Programmability—You can leverage open APIs to enable better automation of net-

work services while improving visibility.

■ Agility—You gain flexibility in deploying services quickly in a timely manner. You

can improve business efficiency in capital and operations by meeting the evolving

business requirements, including traffic growth, diversity of traffic types, perfor-

mance, reliability demands, and expectations.

■ Simplicity—You can reduce complexity from services and operations and endorse

more nimble business models. You gain the ability to manage all branches with a

single pane of glass.

ptg17123584

Planning for Future Branch Design with the CSR 1000V 165

Branch virtualization leverages a specialized platform customized to take care of NFV

requirements and offload special functions, such as encryption and customized drivers,

to provide increased performance for different NFV elements. You will see the terms

NFV and VNF (Virtual Network Functions) throughout this chapter. It is good to under-

stand the difference between the two terminologies. NFV is a complete virtual service

paradigm, while VNF is a virtual network element or service that is part of the NFV

framework. These are the foundation blocks for this next-generation networking gear:

■ Customized x86 hardware to host VNF elements

■ Optimized hypervisor platform to launch VNF elements

■ Solid foundation of orchestration engine

■ Flexible options for I/O

Figure 5-10 shows an optimized hypervisor with special drivers for network services

(aligned to the hardware platform) that facilitates performance throughput for NFV ele-

ments. The hardware platform also takes care of special functions like crypto accelera-

tion to provide increased performance.

Flexible I/O Options

Optimized Hypervisor

Customized Hardware Platform

CSR ASAv WAAS VM

Figure 5-10 High-Level Conceptual Block: Next-Generation Branch

An internal virtual switch provides connectivity between VMs or VNFs and is used

to switch traffic between service elements. This internal path offers optimal traffic

forwarding between the VNF elements running inside the platform. Availability of

different types of external I/O interfaces allow the deployment of this device in

different use cases.

One of the challenges in offering new services at a branch is that connecting up the

service chain and deploying new applications takes a great deal of time and effort. It

means racking and stacking network devices and cabling them together in the required

ptg17123584

166 Chapter 5: CSR 1000V Deployment Scenarios

sequence. Each new service requires a specialized hardware appliance that has to be indi-

vidually configured. The chances for errors are high, and a problem in one component

could disrupt the entire network.

NFV enables on-demand service and centralized orchestration for integrating the new

service into the existing ones—in essence creating a service chain. For example, a

customer who desires firewall functionality can use a portal to choose among a list of

VNFs (ASAv, vWAAS, and so on), which will then be deployed dynamically on the

platform. Enterprises gain the ability to choose “best of breed” VNFs to implement a

particular service.

When scaling virtual network functions, it is important to consider the performance fac-

tor. The hardware drivers will be available only on limited VNF devices to optimize their

performance. These drivers fit within the hypervisor code, enabling it to interact with the

I/O function. Figure 5-10 calls this optimized hypervisor. The branch virtualization plat-

form has hardware-assisted binding to create and configure the hardware path for the

flow in the data plane between the VNF elements. The future branch design with NFV

will be similar to the high-level concept of ISR design, where a single box takes care of

multiple functions.

Virtual network services need to have simple management and orchestration. These ser-

vices leverage an auto-provisioning agent (for zero-touch deployment) that connects to

the server in the cloud. Zero-touch provisioning plays an important role in a software-

defined WAN (SD-WAN) framework for VNF elements. This offers the capability for a

centralized controller to manage a multitude of VNF elements at scale.

As shown in Figure 5-10, the branch virtualization is not complete without a good

orchestration solution. Some of the key characteristics of the orchestration solution are

to provide role-based access to admins, ability to instantiate new VNF elements, and

configuration management from a centralized management tool. The use of tools like

Cisco Network Service Orchestrator enabled by Tail-f improves the management and

deployment of VNF elements.

The network service orchestrator shown in Figure 5-11 contains a service manager com-

ponent and a device manager component. The service manager maintains information on

different domain components required for the service, and the device manager keeps the

configuration of each device type. The network element drivers provide several options

that can leverage NETCONF, CLI, SNMP, and REST, thereby providing a multitude of

automation coverage.

It is important to understand the new phase of orchestration using NETCONF and

YANG. A detailed use case of NETCONF and YANG with Tail-f is provided in Chapter

8, “CSR 1000V Automation, Orchestration, and Troubleshooting.” NETCONF is a pro-

tocol that is defined by the IETF for installing, modifying, or deleting configuration

from network devices. One can argue that SNMP also does the same functionality on

a network device. The reasons for the new NETCONF protocol were lack of a defined

discovery process, nondefined framework to get the MIB, UDP-based limitation, and

standard security mechanism. NETCONF uses a structured layering concept, as shown in

Figure 5-12.

ptg17123584

Planning for Future Branch Design with the CSR 1000V 167

Administrator

NETCONF, CLI, SNMP, REST, etc

Virtual
Appliance

Virtual
Appliance

Service
Models

Device
Models

NSO

Service Manager

Device Manager

Network Element Drivers

Database

Figure 5-11 Tail-F Framework

Content
Function: Configuration Data

RPC

Transport Protocol: SSH, SSL,
etc.

Operations
Function: functions <get>

<Modify> <replace>

Figure 5-12 NETCONF Framework

ptg17123584

168 Chapter 5: CSR 1000V Deployment Scenarios

This layering concept provides a structured approach for configuration templates used

in user-defined operations to get or modify the configuration. The delivery method used

here is RPC. An RPC message gets transported using different protocols, such as SSL,

to reach the network device. This layered approach provides the flexibility needed for

multiple use cases.

The YANG data modeling language is used to create user-defined functions for the data

modeling in the NETCONF model . The configuration data in the top layer is modeled

by YANG. The YANG model provides easy representation that can be read by anyone, a

hierarchical configuration model that can be scaled and reused based on user needs, and a

protocol supporting the underlay RPC operations. With the rapid adoption of NETCONF,

the modeling language YANG that provides a simple, structured, and scalable approach for

modeling the data has a promising future in the field of network orchestration.

This next-generation solution framework will provide the following deployment

advantages:

■ It will lead to increased adoption of network functional virtualization.

■ It will simplify deployment of IT services in branches.

■ It will align network services with the virtual computing and network domains.

■ It will leverage the x86-based platform.

■ It will consolidate multiple domains into a single network appliance.

■ It will bring integrated switching capability with orchestration tools.

■ It will provide agility in deploying new services and making changes to existing

services.

■ Enterprises will be able to deploy best-of-breed virtual network services from dif-

ferent vendors.

LISP and CSR
Locator/ID Separation Protocol (LISP) is a schema for IP addressing and routing that

essentially separates the endpoint address space from the routing locator. To understand

LISP and the issues it tries to address, it is appropriate to draw a metaphor to DNS.

DNS, like IP routing, has to deal with a large number of database entries. With DNS, the

end user has a name that it tries to resolve to reach a particular endpoint. DNS servers

within an authoritative zone make this resolution possible for you. However, all DNS

entries may not be present on the local DNS server. If the entry an end user is looking

for is not present on the local DNS, the DNS server queries an upstream server for the

information. The idea here is not to have all entries present on all servers at all times but

to query and resolve an end point request on demand. Figure 5-13 illustrates the basic

concept of DNS .

ptg17123584

LISP and CSR 169

Who is www.cisco.com?

23.211.3.42

DNS

Figure 5-13 DNS Diagram

The IP routing entries across the Internet are present on all Internet routers. All rout-

ers hold the entire Internet’s routing entries. Summary routes reduce these entries to a

certain extent. However, it is still a very large database. LISP tries to address this prob-

lem by creating two address spaces. The first address is the routing endpoint identifier,

which is the entry the Internet routers use to forward the packet. The second address

is the actual endpoint identifier that sits behind the routing endpoint identifier. Figure

5-14 illustrates the basic LISP concept.

Where can I find 23.211.3.42?

162.151.78.208

Router MAP Resolver

Figure 5-14 Basic LISP Diagram

To illustrate using DNS, say you have a router requesting your MAP resolver for an IP

address it does not have a routing entry for. The MAP resolver tells the router to send

the packet to a “routing endpoint,” which can forward the packet to the end host the

router wants to reach. The router then encapsulates the original IP packet to send it to

the routing endpoint the MAP resolver provided.

The fact that a MAP server is instructing a router which routing endpoint connects to

the end device is reminiscent of IP mobility. An end device can keep its IP address intact

and move to a completely different administrative domain. All you need to do is update

the MAP resolver for the new routing locator entry for the endpoint! This mobility use

case is particularly useful when it comes to managing and moving VMs across adminis-

trative domains.

LISP Terminology
Figure 5-15 illustrates IP mobility simplified, using LISP. You can use the scenario illus-

trated in this figure to become more familiar with LISP terminologies. The router that

receives packets from the hosts (in this case, router SJ 162.1.1.5, which receives packets

from host 15.1.1.2) to be sent to remote LISP sites is called the ingress tunnel router

(ITR). The ITR encapsulates packets for remote LISP sites; for non-LISP sites, it just

forwards packets natively. The egress tunnel router (ETR) receives LISP packets, decap-

sulates them, and sends them to the end device. As illustrated in the example in Figure

5-15, the ETR and ITR are usually the same device and can be referred to as xTR. The

host or endpoint (15.1.1.2 in Figure 5-15) is called an endpoint identifier (EID).

http://www.cisco.com?23.211.3.42
http://www.cisco.com?23.211.3.42

ptg17123584

170 Chapter 5: CSR 1000V Deployment Scenarios

Admin Domain DC

LISP XTR

Router A
192.1.1.210.1.1.2

Map
Resolver

Admin Domain SJ

15.1.1.2

15.1.1.2

162.1.1.5

162.1.1.5

LISP XTR
Router SJ VM

Admin Domain CH

Router CH

Admin Domain DC

LISP XTR

Router A
192.1.1.210.1.1.2

Map
Resolver

Admin Domain SJ

15.1.1.2

162.1.1.5

17.1.1.8

LISP XTR
Router SJ

Admin Domain CH

LISP XTR
Router CH

172.1.1.8

VM
15.1.1.2

172.1.1.8

Figure 5-15 Preliminary LISP Use Case (IP Mobility)

The ETR’s IP address is called the Routing Locator (RLOC). The RLOC in Figure 5-15 is

162.1.1.5 for administrative domain SJ. The xTR registers this RLOC as the IP address for

reaching 15.1.1.2, which is the EID. This registration is stored in the Map Server (MS). The

MS keeps a table of this EID-to-RLOC mapping, which it receives from the ETR.

The MAP Resolver (MR) is the server that gives you the RLOC-to-EID mapping.

(Customers usually configure the same device as MS and MR.)

An ITR encapsulates traffic for LISP sites and natively forwards traffic for non-LISP

sites. However, in certain cases, an ITR may have to encapsulate packets that are com-

ing in from a non-LISP site but are destined for a LISP site. This is a special functionality

that an ITR needs to support and is referred to as PITR, where P stands for proxy. PITR

is required to connect non-LISP sites to LISP sites.

Similarly, PETR is a functionality supported by an ETR when it accepts LISP-

encapsulated packets from an ITR or PITR for non-LISP sites. The PETR in this case

must decapsulate the LISP packet and forward it natively to the non-LISP sites. The

PETR is useful when dealing with routers that have Unicast Reverse Path Forwarding

(uRPF) configured in strict mode. uRPF drops packets from unknown source addresses.

Consider a situation where a host is sending packets from a LISP site to a non-LISP site.

Because the LISP EIDs are not advertised, the LISP encapsulated packets have a source

address of EIDs that are not known to the routers outside the LISP site domain. Routers

ptg17123584

LISP and CSR 171

with uRPF configured drop these packets. PETR functionality comes in handy in such a

scenario.

Table 5-2 shows a summary of the key LISP abbreviations.

Table 5-2 Key LISP Abbreviations

Abbreviation Description

RLOC Routing locator

ITR Ingress tunnel router (responsible for encapsulating LISP packets for remote LISP
sites)

PITR Proxy ingress tunnel router

ETR Egress tunnel router (responsible for decapsulating LISP packets for local EIDs)

PETR Proxy egress tunnel router

xTR ETR and ITR as the same device

PxTR Proxy xTR, which allows communication between the LISP sites and non-LISP
addresses

EID Endpoint identifier

MS Map server EID-to-RLOC mapping

MR Map resolver RLOC-to-EID mapping

The following sections cover the LISP data plane and control plane flows using Figure

5-15.

The LISP Data Plane
Note in Figure 5-15 that a host 10.1.1.2 within admin domain DC (a LISP site) wants to

send a packet to 15.1.1.2 within admin domain CH (another LISP site).

Host 10.1.1.2 sends a packet with a source IP address of 10.1.1.2, which is the EID in

domain DC and a destination IP address of 15.1.1.2, which is the EID of the host within

domain CH. The host sends this packet to router A, which is the ITR. The router encap-

sulates this packet in a LISP header after it looks up the RLOC to reach the destination

EID. To reach 15.1.1.2, the router needs to use RLOC router CH (172.1.1.8). It then

takes the original IP packet (with source IP 10.1.1.2 and destination IP 15.1.12) and

imposes a UDP header followed by a new IP header with source and destination as the

RLOCs (here with source 192.1.1.2 and destination 172.1.1.8).

The LISP Control Plane
Before data plane encapsulation and forwarding can take place, there is an additional

lookup involved. The EID-to-RLOC mapping needs to be done in order for the ITR to

encapsulate the packet and spurt it over the WAN. Since EIDs can be within a private

ptg17123584

172 Chapter 5: CSR 1000V Deployment Scenarios

address space from RFC 1918, they are not routable over the Internet. So the ITR has

the LISP header imposed on it with the routable RLOCs to ensure proper routing over

the WAN.

Three kinds of packets can be used to make this mapping possible: data probe, map

reply, and map request. A data probe is used to send to the MAP server to get an RLOC

for an EID. When an authoritative ETR gets this packet (the data probe packet has the

inner destination address copied to the outer, which means the outer header carries the

EID), it sends a map reply to the ITR. The ITR uses this authoritative ETR’s IP address as

the RLOC IP address and encapsulates the packet and sends it over. An ITR can send a

map request packet to the map server to get the EID-to-RLOC mapping, too.

Figure 5-16 illustrates the LISP packet, including the inner header, the outer header, and

the LISP headers.

O
u

te
r

IP
 H

e
a
d

e
r

In
n

e
r

IP
 H

e
a
d

e
r

L
IS

P
 H

e
a

d
e

r Used to indicate ETR reachability

for locator in the source site.

1 means RLOC is associated

with ETR reachability.

32-bit random value generated

by the ITR used for route reachability.

This need not be an IPv4

packet; can be IPv6.

Payload

Payload

SRC Port DST Port 4341

DST EID

SRC EID

Nonce

Locator Reach Bits

UDP Length UDP Checksum

SRC RLOC

DST RLOC

Figure 5-16 LISP Packet Header

Figure 5-17 shows the LISP control plane packet format.

ptg17123584

LISP and CSR 173

UDP Map-Request: Source port is chosen by the sender; destination port is 4342.

UDP Map-Reply: Source UDP port number is set to 4342. Destination UDP
port number is copied from the source port of either the
Map-Request or the invoking data packet.

UD
P

0 31

Total LengthIHL

Header Checksum

LISP Message

UDP ChecksumUDP Length

Destination PortSource Port

Destination Routing Locator

Source Routing Locator

TTL

Version Types of
Service

Identification Flags Fragment Offset

Protocol =
17

Figure 5-17 LISP Control Plane Packet

Figure 5-18 illustrates the LISP map request message format and the special bits in the

header and their functions :

■ A—This is the authoritative bit, set to either of the following:

■ 0 for UDP-based map requests sent by an ITR

■ 1 when an ITR wants the destination site to return the map reply rather than the

mapping database system

■ M—This is the map-data-present bit. When set, it indicates that a map reply record

segment is included in the map request.

■ P—This is the probe bit, which indicates that a map request should be treated as a

locator reachability probe. The receiver should respond with a map reply with the

probe bit set, indicating that the map reply is a locator reachability probe reply,

with the nonce copied from the map request.

■ S—This is the solicit-map-request (SMR) bit.

■ p—This is the PITR bit. It is set to 1 when a PITR sends a map request.

■ s—This is the SMR-invoked bit. It is set to 1 when an xTR is sending a map request

in response to a received SMR-based map request.

ptg17123584

174 Chapter 5: CSR 1000V Deployment Scenarios

0 31

Type=1 IRC Record CountReserved

EID-Prefix-AFI

ITR-RLOC-AFI n

ITR-RLOC-AFI 1 ITR-RLOC Address 1 ...

ITR-RLOC Address n ...

Map-Reply Record ...

Source-EID-AFI Source EID Address

EID-Prefix

Reserved

A P p sSM

EID mask-len

...Nonce

Nonce...

....

R
EC

Figure 5-18 LISP Map Request Message Format

Figure 5-19 illustrates the LISP map reply message format.

LO
C

R
EC

O
R

D

0 31

Type=2 P Record CountReserved

ACT

Locator

LOC-AFIRpLUnused Flags

Weight M WeightPriority M Priority

EID-Prefix

EID-Prefix-AFIMap-version NumberRsvd

ReservedAEID mask-lenLocator Count

Record TTL

Authentication Data

Authentication Data LengthKey ID

...Nonce

Nonce...

SE

Figure 5-19 LISP Map Reply Message Format

ptg17123584

LISP and CSR 175

RFC 6830 details the packet field descriptions on different LISP packets, such as map

reply.

Typical LISP Use Cases

The following sections examine common LISP use cases, detailing only the network-to-

network interconnectivity feature. The configuration for this deployment is included at

the end of the chapter.

In the following use cases, the CSR is being used as an MS/MR router, xTR, and PxTR.

IP Mobility

As is evident from the LISP protocol overview in this chapter, LISP encapsulation cre-

ates a dynamic control plane that does not require the user to preconfigure the endpoint

for mobility. The ITR queries the MS/MR and gets the RLOC dynamically for each EID

it needs to reach. This enables the endpoint device to keep its identity and not have a

region-based identity. For example, the endpoint can have an IP address within a data

center in San Jose and keep the same IP address when moved to a New York data center.

All the endpoint needs to do is to update the MS/MR (that is, register itself to the new

MS/MR). This is particularly useful in a virtualized data center environment. These days,

EIDs are virtual machines. With LISP, they can move to a new data center and retain

their IP addresses.

In a cloud environment, to abstract the IP addresses within the cloud, the CSR offers the

capability of using LISP as a feature to accomplish this IP mobility function.

IPv6 Migration

LISP supports both IPv4 and IPv6 addressing. The secret is in the way the LISP header is

designed. In Figure 5-16, it is evident that it does not matter what the inner IP packet looks

like. It can be an IPv6 packet, and LISP will encapsulate it with a UDP header and tunnel it

across to the RLOC, where it is decapsulated and forwarded as a native IPv6 packet. This is

very useful for sites that want to migrate to IPv6 and still have an IPv4 backbone for trans-

port. LISP is therefore a low-cost IPv6 migration option for enterprises.

Network-to-Network Connectivity

LISP enables the reduction of the routing table size by aggregating networks/hosts

behind the RLOC with just the RLOC address. This is ideally suited for network-to-

network connectivity. A large network, when connecting to a smaller network, does not

need to inject its entire routing table into the smaller network. LISP enables smaller net-

works to have just one route to reach the LISP gateway within the larger networks. This

not only prevents smaller networks from being overwhelmed with large routing tables

but also helps the bigger providers encapsulate their TOS value within a UDP packet.

This way, the transit networks are unable to modify the TOS value.

ptg17123584

176 Chapter 5: CSR 1000V Deployment Scenarios

In the use case described here, CSR is being used for all the following:

■ LISP-to-MPLS Gateway (LMGW) —This is the router that terminates the MPLS

connection. After the LMGW terminates the MPLS connection, it encapsulates the

packet into LISP and sends it to the ASBR. This is for west-to-east traffic in Figure

5-20. For east-to-west traffic, the LMGW decapsulates the LISP packet, tags it with

an MPLS label, and puts it on the MPLS core.

■ Map server (MS) —The MS receives a MAP request from an ITR and finds the cor-

responding ETR RLOC mapping for the EID.

■ Map resolver (MR) —The MR receives map requests from the ITR and uses the

mapping database to find the corresponding ETRs to answer those requests.

■ Route reflector (RR) —The RR is a BGP route reflector that reflects BGP routes

to route reflector clients within an iBGP network, enabling route learning without

requiring full-mesh neighbor adjacency.

Network-to-Network Interconnection Topology and Configuration

This section details the network-to-network interconnection topology and configuration.

Figure 5-20 illustrates the LISP network-to-network connectivity topology.

MSMR

PE1 PE2 12.0.0.011.0.0.010.0.1.0LMGW1
LISP-CPE2

ASBR29.0.0.0

Smaller Partner
Network AS 100

Large Provider
Network AS
300

Figure 5-20 LISP Network-to-Network Connectivity Example

Example 5-15 details th e LISP-to-MPLS Gateway (LMGW) configuration.

ptg17123584

LISP and CSR 177

Example 5-15 LMGW Configuration

vrf definition Trans_blue

 rd 1000:1001

 !

 address-family ipv4

 exit-address-family

!

vrf definition blue

 rd 1000:1

 route-target export 1000:1

 route-target import 1000:1

 route-target import 1000:1001

 !

 address-family ipv4

 exit-address-family

!

interface Loopback0

 ip address 102.1.1.1 255.255.255.255

 ip ospf 1 area 0

!

interface Loopback1

 vrf forwarding Trans_blue

 ip address 10.100.8.2 255.255.255.255

!

interface Loopback100

 vrf forwarding blue

 ip address 192.168.1.2 255.255.255.255

!

interface LISP1

!

interface LISP1.101

!

interface GigabitEthernet1

 description connected to AVPN PE

 ip address 9.0.0.2 255.255.255.0

 ip ospf 1 area 0

 negotiation auto

 mpls ip

!

interface GigabitEthernet2

 description connected to AVPN PE

 no ip address

 ip ospf 1 area 0

 negotiation auto

ptg17123584

178 Chapter 5: CSR 1000V Deployment Scenarios

 mpls ip

!

interface GigabitEthernet2.100

 encapsulation dot1Q 100

 vrf forwarding blue

 ip address 10.10.11.1 255.255.255.252

!

interface GigabitEthernet2.101

 encapsulation dot1Q 101

 vrf forwarding Trans_blue

 ip address 10.10.1.1 255.255.255.252

interface GigabitEthernet3

 no ip address

 negotiation auto

!

interface GigabitEthernet3.2

 description connected to Partnet ASBR

 encapsulation dot1Q 2

 vrf forwarding Trans_blue

 ip address 10.0.1.2 255.255.0.0

!

router lisp 1

 locator-table vrf Trans_blue

 eid-table vrf blue instance-id 101

 ipv4 route-import map-cache bgp 200 route-map CUST-EID

 exit

 !

 no ipv4 map-cache-persistent

 ipv4 proxy-etr

 ipv4 proxy-itr 10.100.8.2

 ipv4 itr map-resolver 10.100.1.2

 exit

!

router ospf 1

!

router bgp 200

 bgp log-neighbor-changes

 neighbor 101.1.1.1 remote-as 200

 neighbor 101.1.1.1 description iBGP

 neighbor 101.1.1.1 update-source Loopback0

 !

 address-family ipv4

 network 10.0.0.0 mask 255.255.0.0

 network 102.1.1.1 mask 255.255.255.255

 neighbor 101.1.1.1 activate

ptg17123584

LISP and CSR 179

 neighbor 101.1.1.1 next-hop-self

 exit-address-family

 !

 address-family vpnv4

 neighbor 101.1.1.1 activate

 neighbor 101.1.1.1 send-community extended

 neighbor 101.1.1.1 next-hop-self

 exit-address-family

 !

 address-family ipv4 vrf Trans_blue

 redistribute connected

 neighbor 10.0.1.1 remote-as 100

 neighbor 10.0.1.1 activate

 neighbor 10.10.1.2 remote-as 300

 neighbor 10.10.1.2 activate

 neighbor 10.10.1.2 send-community both

 exit-address-family

 !

 address-family ipv4 vrf blue

 neighbor 10.10.11.2 remote-as 300

 neighbor 10.10.11.2 activate

 neighbor 10.10.11.2 send-community both

 exit-address-family

!

ip bgp-community new-format

ip community-list 1 permit 991:1177

no ip http server

no ip http secure-server

ip route 10.0.0.0 255.255.0.0 Null0

!

!

route-map CUST-EID permit 10

 match community 1

Example 5-16 details the MS/MR configuration for the network-to-network connectiv-

ity use case.

Example 5-16 MS/MR Confi guration

vrf definition Trans_blue

 rd 1000:1001

 !

 address-family ipv4

 exit-address-family

!

ptg17123584

180 Chapter 5: CSR 1000V Deployment Scenarios

vrf definition blue

 rd 1000:1

 route-target export 1000:1

 route-target import 1000:1

 route-target import 1000:1001

 !

 address-family ipv4

 exit-address-family

!

ip vrf CustomerA

 rd 8000:1

 route-target export 8000:101

 route-target import 8000:101

!

interface Loopback1

 vrf forwarding Trans_blue

 ip address 10.100.1.2 255.255.255.255

!

interface Loopback100

 ip vrf forwarding CustomerA

 ip address 192.168.1.100 255.255.255.255

!

interface GigabitEthernet1

 ip address 2.10.38.7 255.255.0.0

 negotiation auto

!

interface GigabitEthernet2

 no ip address

 negotiation auto

!

interface GigabitEthernet2.2

 encapsulation dot1Q 100

 vrf forwarding blue

 ip address 10.10.11.2 255.255.255.252

!

interface GigabitEthernet2.3

 encapsulation dot1Q 101

 vrf forwarding Trans_blue

 ip address 10.10.1.2 255.255.255.252

!

!

router lisp 1

 locator-table vrf Trans_blue

 eid-table vrf blue instance-id 101

 ipv4 route-export site-registration

ptg17123584

LISP and CSR 181

 exit

 !

 site PCE2

 authentication-key cisco123

 eid-prefix instance-id 101 14.1.1.0/24

 exit

 !

 ipv4 map-server

 ipv4 map-resolver

 exit

!

router bgp 300

 bgp log-neighbor-changes

 redistribute lisp

 !

 address-family ipv4 vrf Trans_blue

 network 10.100.1.2 mask 255.255.255.255

 redistribute connected

 neighbor 10.10.1.1 remote-as 200

 neighbor 10.10.1.1 activate

 neighbor 10.10.1.1 send-community both

 exit-address-family

 !

 address-family ipv4 vrf blue

 redistribute lisp route-map CUST-EID

 neighbor 10.10.11.1 remote-as 200

 neighbor 10.10.11.1 activate

 neighbor 10.10.11.1 send-community both

 neighbor 10.10.11.1 route-map CUST-EID out

 neighbor 10.10.11.1 filter-list 1 in

 exit-address-family

!

ip route vrf Trans_blue 0.0.0.0 0.0.0.0 10.10.1.1

!

route-map CUST-EID permit 10

 set community 991:1177

Example 5-17 details the show commands you need to verify the proper functioning of

LISP.

ptg17123584

182 Chapter 5: CSR 1000V Deployment Scenarios

Example 5-17 show Commands

LMGW1# show run | sec router lisp

router lisp 1

 locator-table vrf Trans_blue

 eid-table vrf blue instance-id 101

 ipv4 route-import map-cache bgp 200 route-map CUST-EID

 exit

 !

 no ipv4 map-cache-persistent

 ipv4 proxy-etr

 ipv4 proxy-itr 10.100.8.2

 ipv4 itr map-resolver 10.100.1.2

 exit

LMGW1# show ip lisp 1 instance-id 101 map-cache

LISP IPv4 Mapping Cache for EID-table vrf blue (IID 101), 1 entries

14.1.1.0/24, uptime: 00:01:37, expires: 23:58:22, via map-reply, complete

 Locator Uptime State Pri/Wgt

 12.0.0.2 00:01:37 up 1/100

LMGW1# show ip route vrf Trans_blue

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks

C 10.0.0.0/16 is directly connected, GigabitEthernet3.2

L 10.0.1.2/32 is directly connected, GigabitEthernet3.2

C 10.10.1.0/30 is directly connected, GigabitEthernet2.101

L 10.10.1.1/32 is directly connected, GigabitEthernet2.101

B 10.100.1.2/32 [20/0] via 10.10.1.2, 01:56:11

C 10.100.8.2/32 is directly connected, Loopback1

12.0.0.0/24 is subnetted, 1 subnets

B 12.0.0.0 [20/0] via 10.0.1.1, 01:50:19

LMGW1#

ptg17123584

Summary 183

Summary
With the transition to virtual data centers and cloud services, enterprises are looking

for a secure and consistent design to extend the network connection to these locations.

With the multitude of security and network segmentation features embedded, the CSR

1000V is in a prime position to tackle these enterprise requirements in the cloud. This

chapter has discussed using the CSR to extend data center networks and to secure inter-

cloud connectivity, for providing remote VPN access into the cloud, and for dynamic

site-to-site VPNs with DMVPN technology.

In addition, this chapter provided a use case for a route reflector with the CSR 1000V.

A route reflector is primarily control plane driven, which makes it a perfect use case for

the CSR 1000V. You have learned about using the CSR 1000V in the NFV framework

and looked at the evolution of the branch architecture that we will soon be seeing. This

chapter’s LISP with the CSR 1000V use case has helped you understand the importance

of IP mobility and segmentation requirements for enterprises in the cloud environment.

This chapter provides an overview of different use case scenarios and the technology

associated with the deployment use cases. The use of the CSR 1000V is not limited to

these use cases, and you can find many more with evolving functionality applicable in

the future of computer networking. Further simplification of management will create

more use cases for deployment of the CSR 1000V.

ptg17123584

This page intentionally left blank

ptg17123584

This chapter describes the landscape you need to understand to fit the CSR 1000V amid

your architecture. It discusses using CSR in a multitenant data center, with OpenStack,

and in a public cloud environment.

CSR in a Multitenant Data Center
Data center designs have evolved, and the changes in technology have provided a mul-

titude of options to design engineers. Today we commonly see network virtualization

tied to security segmentation in the data centers. These network domains have localized

services aligned to security segmentation. For example, it is common for enterprises to

deploy virtual firewalls or load balancing services that are customized to their require-

ments inside the data center. This virtualization has evolved based on the availability of

software and hardware features.

Chapter 1, “Introduction to Cloud,” describes virtualization in terms of server, network,

and computing, as well as how things are brought together in the data center domain to

create a multitenant data center environment. Virtual domains in a data center enable

the data center to host multiple instances of virtual domains (that is, tenants) with the

same physical hardware. Methods for virtualization can be hardware-based virtual logical

units, like the virtual device concept of the Cisco Nexus 7000, or virtual routing instanc-

es in software. The multitenant data center infrastructure provides end-to-end logical

separation for traffic flow and assets for multiple tenants. A multitenant data center is a

cradle for IaaS that can be developed on this platform.

Multitenancy refers to logical separation of shared virtual computing, storage, and net-

work resources. A tenant uses a logical separation—which can be a business unit, depart-

ment, or workgroup—on the same physical hardware.

Figure 6-1 shows a logical overview of a multitenant data center .

CSR Cloud Deployment
Scenarios

Chapter 6

ptg17123584

186 Chapter 6: CSR Cloud Deployment Scenarios

Security-Based
Isolation

Tenant A

Tenant B
Zone 1

Network B

Computing B

Storage B

Zone 2
Network B1

Computing B1

Storage B1

Network A

Computing A

Storage A

Multitenant Data Center

Figure 6-1 Multitenant Data Center Logical Diagram

Most data centers have tenant isolation and zones aligned to security policy to create

further separation within the tenant infrastructure. These zones can be aligned for regu-

latory compliance of lines of business that require data privacy. In Figure 6-1, each zone

in tenant B has separate network, computing, and storage infrastructures. However, in

complex designs, zone resources in a single tenant domain can be shared. For example,

zone 1 and 2 in tenant B could share the same storage domain.

The key design factor in a multitenant data center is the placement of the service block.

This placement affects the characteristic of a virtual zone. Figure 6-2 shows a simple ten-

ant zone with security and load balancing services aligned to it. Tenant A is a completely

isolated, contained environment without services, whereas Tenant B and Tenant C have

load balancing or a combination of load balancing and firewall services aligned with the

contained zone environment.

A service block can be a physical or virtual device in a virtual zone. The segregation of

traffic and isolation of the flow depend on the virtualization technology used in the

zones. To have a simple traffic flow, it is recommended that the service block be placed

near the server (asset). Placing the service block with the firewall close to the server helps

simplify the plan to extend the domain across a single location as is normally done for

disaster recovery. This simplifies the flow across the security infrastructure and prevents

asymmetric flows that would be seen across firewall infrastructure.

Figure 6-3 shows microsegmentation within a single tenant, based on the policy of the

security gateway.

ptg17123584

CSR in a Multitenant Data Center 187

Tenant A Tenant B Tenant C

Network

Load Balancer

Storage

Computing

Network

Storage

Computing

Network

Load Balancer
Firewall

Storage

Computing

Figure 6-2 Virtual Service Block Design in a Multitenant Data Center

Network

Tenant A

Microsegmentation

Load Balancer
Firewall

Computing

Storage

Computing

Storage

Computing

Storage

Figure 6-3 Service Block Placement

The following design methods can be used to achieve segmentation at the service level:

■ A single context service block that aligns the traffic to various logical segments

■ Virtual domains within the service block devices that are aligned to each logical

segment

If the service block is deployed away from the computing and storage assets, network

virtualization technologies such as virtual routing and forwarding (VRF) need to be used.

Network segmentation can be done to carry the traffic with logical isolation to the

computing and storage assets. With the rapid adoption of computing virtualization, the

simplicity and flexibility of service block deployment is due to NFV elements such as

firewalls, routers, or load balancers. The use of the CSR 1000V here allows an architect

ptg17123584

188 Chapter 6: CSR Cloud Deployment Scenarios

to provide network elements (with extensive routing features, such as NAT and IPsec)

and security elements (such as zone-based firewalls) in one virtual device instance. One

of the main reasons for data center architects to consider physical service block devices

is data throughput.

Figure 6-4 shows a classic traditional data center deployment with the service block

(security gateway) creating multiple zones extended via VRF (Layer 3 segmentation) and

VLAN (Layer 2 segmentation) technologies to create logical isolation.

Non-
secureSecure

Data Center
Core Load Balancing

Service Block

WAN I/O

Firewall

Top of Rack
Switch

Figure 6-4 Classic Data Center Deployment with a Service Block

The CSR 1000V can be used to extend the security container to other data centers or

cloud environments. The use of the CSR 1000V helps simplify traffic flow by creating

a symmetric path across the security gateway segments. Features like overlay transport

virtualization (OTV), VxLAN, and MPLS over GRE are used to extend the multitenant

container across the WAN to another data center or cloud environment. This extension

can be for Layer 2 or Layer 3 domains. Figure 6-5 shows connectivity of zones in a mult-

itenant data center environment using the CSR 1000V.

ptg17123584

CSR in a Multitenant Data Center 189

TOR

Non-
secureSecure

Data
Center
Core

LB
FW

Service Block

WAN I/O

TOR

Non-
secureSecure

Data
Center
Core

LB
FW

Service Block

WAN I/O

Secure

DC1

DCI

DC2

CSR 1010v
CSR 1000V

CSR 1010v
CSR 1000V

CSR 1010v
CSR 1000V

Cloud - IaaS

WAN

Figure 6-5 Connectivity of Zones in a Multitenant Data Center with CSR 1000V

In the example shown in Figure 6-5, the paths for the enterprise traffic to access the

secure zones in the data center (DC1 and DC2) are via the local firewalls. The service

block is localized within the data center. There are multiple options for maintaining

the symmetric traffic flow to take care of the state inspection of the security gateway.

The commonly deployed methods are NAT, selective routing, and firewall clustering.

The different options for the systemic traffic flows between security gateways are not

described in this book. The packet inside the secure tenant can access resources destined

for this tenant. This tenant is extended between two data centers and a virtual data cen-

ter (VDC) provisioned in the cloud. The traffic flow between the secure domains in each

ptg17123584

190 Chapter 6: CSR Cloud Deployment Scenarios

of the data centers, through the physical firewall, needs to have policy set for the flow

that increases the operational overhead on provisioning applications in the secure zone

and increases complexity during troubleshooting. By adding NFV components for the

CSR 1000V at these zones, you can isolate the traffic flow between these zones from

the egress security gateway points. The CSR 1000V offers multiple overlay technologies,

including the following:

■ OTV (Overlay Transport Virtualization) and VxLAN (Virtual Extensible LAN) —

Used for extension of Layer 2 domains across a DC or the cloud.

■ MPLS over GRE —Used for extension of tenants’ Layer 3 subdomains or Layer 2

extensions.

■ DMVPN overlays —Commonly used for multipoint GRE with encryption.

■ LISP —Provides overlays for location identification, device mobility, and carrying

multitenant Layer 3 networks.

Apart from overlay, security gateway and VRF-Aware Software Infrastructure (VASI)

functionalities, other technologies can be used to provide a multitude of services in the

security domain. By using the CSR 1000V in the zone design, a data center architect can

build preset logical communication between the zones within the data center owned by

the enterprise and extend it to the cloud to leverage cost-effective provisioning within

the boundaries of the security container defined and controlled by the enterprise fire-

wall policy.

Cloudburst
The concept of leveraging the public cloud for deploying applications needing resources

in spurts is called cloudburst. In this model, the application runs in a private cloud or

data center and, based on demand, provisions assets into a public cloud environment.

This is done to handle sudden spikes in the computing power. This model is also called

the hybrid cloud environment, and an organization pays for extra computing resources

only when they are needed.

Consider the following when planning for a hybrid cloud infrastructure that has cloud-

burst capability:

■ Network connectivity :

■ Unified user access to the asset segment, regardless of where the asset is located

(private or public cloud infrastructure)

■ Secure tenant space extension between the private and public infrastructures (the

policy enforcement of both environments should be handled by a single manage-

ment tool)

■ Management of the user experience via complete communication visibility

ptg17123584

Cloudburst 191

■ Data synchronization :

■ The ability of an application to run and the stored data to be synchronized

(based on application need) for a uniform user experience

■ Workload migration :

■ The ability of the server and application-provisioning environment to leverage

the same portal to host services in a private or public cloud (note that in a pri-

vate cloud environment, you tend to use management tools for an enterprise

server block)

The user access to the asset, whether hosted in a public or private cloud, needs to be

uniform from a flow perspective, aligned to the application stack (web, middleware, and

database deployment). This needs to be well planned. Two main models can be lever-

aged based on requirements for traffic flow: the direct access model and the redirection

access model.

Direct Access Model

The direct access model defines IP transport connectivity from the user to the asset

located in the private data center, or on-premise data center. This model is depicted in

Figure 6-6. The cloudburst model is used for asset provisioning for computing resources

on demand by the computing asset provisioning module. The traffic flows from the pri-

vate data center to the enterprise asset in the public cloud.

Application
Asset

Application
Asset (Burst)

Computing Asset
Provisioning

User A

Private Data Center
or

Virtual Private Data Center

Enterprise WAN
WAN Connectivity to

Cloud Provider

Public Cloud

Figure 6-6 Direct Access Model

The enterprise connectivity to the public cloud is via the WAN connection from the

service provider to the public cloud environment. In this example, the enterprise traffic

access flows via the enterprise DC (or VDC for the tenant) to the WAN. In this case, the

ptg17123584

192 Chapter 6: CSR Cloud Deployment Scenarios

cloudburst model considers only scaling of the computing resources. This model does

not provide a seamless user experience for application access due to hair-pinning of traf-

fic. However, this model does provide scaling of on-demand computing resources to the

public cloud, and it thereby reduces the capital and operational costs for maintaining

hardware resources to take care of the scaled demand. The tenant extension and isola-

tion, if required, are covered by deployment of NFV components .

Redirection Access Model

The redirection access model is similar to the direct access model in terms of computing

asset provisioning or scaling from a private data center to the public cloud, but it also

provides a few extra capabilities to the enterprise, such as the following:

■ Unified user experience for application access for data in the on-premise/private

data center environment and to the public cloud

■ Use of cloudburst for disaster recovery for active/active or active/standby

Using cloud-based on-demand or static assets for disaster recovery, especially for active/

standby, gives the end user a cost-effective DR strategy that can be offered to multiple

application tiers. Application stack design should be reviewed before cloud adoption.

There might be limits to traditional applications that are not cloud ready to adapt to this

model (see Figure 6-7), and this model applies only for cloud-ready applications that

require locational availability.

Application Asset (Burst) or
Based on Prescriptive DR

Strategy

User A

WAN Connectivity to
Cloud Provider

Private Data Center
or

Virtual Private Data Center
Application

Asset

Public Cloud

Computing Asset
Provisioning

Enterprise WAN
Asset

Redirection
Block

Figure 6-7 Redirection Access Model

ptg17123584

Cloudburst 193

Figure 6-7 shows the redirection access model. The asset redirection block is a key ele-

ment that provides redirection of traffic to the private or public cloud. The asset redirec-

tion block is an architectural module that can reside in the private data center environ-

ment or at WAN hub locations at the enterprise data center. The use case of adding the

asset redirection blocks at the enterprise WAN is for networks that are geographically

spread around the world, with the logic abstracted to regional WAN hub locations. If

the logic for redirection is based on DNS and location-based proximity, you can use

hierarchical load balancer design. In this design, a global site selector redirects traffic to

the local load balancer, based on different load balancing algorithms. The local load bal-

ancer can distribute traffic to local assets based on a defined algorithm taking care of the

local load balancing criteria. The load balancer method is beneficial if you use applica-

tion-centric probes to redirect traffic. Another way to achieve the distribution and intel-

ligence from a network perspective is to use LISP. You have already read about the use

case of LISP with the CSR 1000V in Chapter 5, “CSR 1000V Deployment Scenarios.”

You can also use LISP for detecting asset mobility of a host from a private data center to

a public data center. LISP is a more IP-centric approach for redirecting traffic based on

asset location.

There are several use cases for the redirection access model, and two of them are

described here:

■ Active/Active flow distribution to cloudburst —In this scenario, the traffic

from the user is directed to a private data center as the primary preference. The

redirection can either be DNS based, using a hierarchical load balancer, or it

can use network-based traffic redirection with LISP. The asset redirection logic

is abstracted to the architectural block. In the event of an application demand

increase, new computing resources are provisioned at the public cloud location, and

the asset redirection block logic is changed to active/active flow. The user latency

dependence is based on the access link types (see Chapter 1) from the private data

center to the public cloud. By distributing this intelligence in the WAN aggregation

block of enterprise customers, the user experience can be localized based on

access connectivity of the region. The assets moved to the cloud would include the

complete application stack for the user function. The database writes conditions

between the locations, and usage in active/active model needs to be considered

before selecting this method for active/active flow.

■ Disaster recovery using cloudburst —In this scenario, the concept of cloudburst is

used for asset provisioning during a failure scenario. This use case allows an enter-

prise to reduce the cost of its disaster recovery (DR) strategy. The asset redirection

block directs traffic based on the application DR strategy. Unavailability of the

asset at the primary location is determined by the probe (generated by a network or

hierarchical load balancer), which redirects the traffic to the new location. The pro-

visioning of the asset in an active standby scenario depends on the computing asset

provisioning portal.

ptg17123584

194 Chapter 6: CSR Cloud Deployment Scenarios

The Cisco Inter-Cloud Fabric

The Cisco inter-cloud fabric framework handles cloudburst use cases. This fabric takes

care of separate individual functionalities, such as extension of tenant domains, API

mapping from private to public cloud, traffic control, and ability to dynamically spawn

network services and create user-defined traffic flow within a single management view.

Inter-cloud fabric provides the following benefits:

■ Provides on-demand provisioning of services

■ Is simple to manage and deploy

■ Creates automated extension of Layer 2 domains that helps in preserving the IP

space aligned to the data center

■ Allows for a single management portal for all the technical domains

■ Offers easy deployment of security and network features

Figure 6-8 shows the important elements of the inter-cloud fabric framework. This sec-

tion describes the functionality of these elements, which contribute to the simplification

of the inter-cloud solution and enable enterprises to cloudburst.

CAG: Cloud Access Gateway

Cisco Prime

Inter-Cloud
Director: ICD

Private Cloud

Host A
10.1.1.1

Secure Zone–
Tenant A

Inter-Cloud
Exchange: ICX

Host A
10.1.1.2

Public Cloud: VDC

Tenant A
VPC

WAN

Inter-Cloud
Switch: ICS

Driver

CAG CAG

Figure 6-8 Inter-Cloud Fabric

Figure 6-8 shows the components of the inter-cloud fabric. The inter-cloud director is an

OVA file that launches a VM that is used for management and provides a single opera-

tional view of the inter-cloud solution. This file is also used for API mapping between

different cloud providers or private clouds by creating a template. The template is a

user-defined profile for a tenant asset that pulls all APIs into a user-defined grouping.

This grouping has a parent and a child profile. The parent profile is the cloud (public or

ptg17123584

Private Cloud Deployment with CSR in OpenStack 195

private) API index, and the child template is the new inter-cloud template for the tenant

that pulls in all the attributes into one single template.

The inter-cloud exchange (ICX) is an inter-cloud switch (ICS) extension of the tenant trans-

port segment between the private and public clouds on a carrier transport between the

cloud domains that has already been provisioned. The inter-cloud exchange is positioned

on the private cloud that connects to multiple public cloud providers. At the public cloud,

the ICS is provisioned. The data plane for the tenant extension from the private cloud to

the public cloud data flows between the ICX and ICS, across an encrypted path that has

the capability to carry Layer 2 domains. The encrypted domain is maintained for the host

of the driver at the public cloud. The host driver in the Cisco inter-cloud framework at the

remote end encrypts and decrypts the data plane. The communication between the hosts

at the public cloud is contained within the tenant domains maintained at the private cloud.

Each tenant domain has a separate encryption key that isolates the communication in the

public cloud. The communication needs to traverse through the ICS.

The ability to host virtual services for networking and security is possible from the inter-

cloud fabric director, which can instantiate the CSR 1000V or virtual security domain

appliance at the public cloud. The ability to add the CSR 1000V on demand enables a

data center admin to take care of different use cases, where the traffic flow might need

to use the public cloud exit point and where NAT will be necessary for the enterprise IP

address to preserve and use the cloud provider as an exit point. The NAT policy masks

the enterprise IP address to the public cloud’s IP address.

Host A (10.1.1.1) in Figure 6-8 at the private data center needs to communicate with

the 10.1.1.2 host ported in the public cloud. The traffic pattern needs to follow the

same security rule set. The secure tenant zone has a network connection to the cloud

access router; the inter-cloud exchange device builds a Layer 2 encrypted tunnel to

the inter-cloud switch hosted in the public cloud. If the 10.1.1.2 computing asset has

not been provisioned, it is possible to use the inter-cloud director to spawn a new VM

from a single portal. The communication between 10.1.1.1 and 10.1.1.2 is encrypted.

In the future for the same enterprise, if another VM is provisioned outside the secured

container at the public cloud—say 10.1.2.1—the communication between 10.1.1.2 and

10.1.2.1 is not possible because they are in two separate security zones extended to the

public cloud. Both the hosts will have encrypted communication with the ICS. Because

they exist in two separate security domains, the encryption key will be different and will

be considered mutually exclusive.

Private Cloud Deployment with CSR in OpenStack
The following sections provide an overview of OpenStack and how the different

OpenStack components come together to create a private cloud.

ptg17123584

196 Chapter 6: CSR Cloud Deployment Scenarios

Introduction to OpenStack

With open source software gaining momentum, customers want software that is free

of cost and open for changes so that they can tailor the software to suit their needs.

OpenStack is a cloud operating system that is a free and open source cloud computing

platform. Written in Python, OpenStack consists of different software components that

were developed as separate projects but come together to work as a single cloud operat-

ing system designed to manage a cloud environment.

OpenStack is managed by a nonprofit entity called the OpenStack Foundation, which

has 500 member companies. OpenStack is released under the terms of the Apache

license and has a release every six months.

OpenStack enables the end user to automate and manage infrastructure. It has become

very popular for private clouds because it enables the user to maintain its own IaaS.

Primary Use Case for OpenStack

OpenStack, as a cloud operating system, was primarily designed to address the comput-

ing needs of groups of users. It is therefore best suited for automating an IT infrastruc-

ture that caters to the needs of an organization or a group of users.

Linux is a very powerful operating system, and the KVM module in Linux enables it to

virtualize. As discussed in Chapter 3, “Hypervisor Considerations for the CSR,” Linux

(along with KVM and QEMU) is a fully functional type 1 hypervisor. It enables you to

manage your hardware infrastructure, spawn VMs, and automate. So if you already have

Linux, why do you need OpenStack as an operating system? As mentioned earlier in this

chapter, it’s a cloud operating system, which makes it very distinct from regular operat-

ing systems like Linux.

Linux, along with KVM and QEMU, gives you a fully functional hypervisor and allows

you to create virtual machines. However, Linux can do this only for the single server

blade that it runs on. If you have multiple server blades and you want to pool in the

memory, CPU, storage, and network resources of all of them, you cannot use a single

instance of Linux to do that. Even if you run Linux on all servers, you still do not

have a way to get the resources of all servers together and manage them as one entity.

OpenStack solves this problem. It gives you one holistic view of all the resources at

your disposal. It pools the hardware resources available and manages them for you, as

an operating system would. Since OpenStack has the ability to do this for a bunch of

resources and you can replace hardware at will without impacting the functioning (and

thus scale), it is rightly called a cloud operating system.

Figure 6-9 compares the capabilities of Linux and OpenStack. You can see here that

Linux is used to manage a single server, while OpenStack is used to manage pooled com-

puting, network, storage, and memory resources.

ptg17123584

Private Cloud Deployment with CSR in OpenStack 197

x86 Server

x86 Server

x86 Server

x86 Server

x86 Server

RAM CPU I/O

RAM CPU I/O

Physical Resources

Physical Resources

Linux OS with
KVM and

QEMU

OpenStack

Linux Being Used as Type 1 Hypervisor

OpenStack has pooled in the resources
and enables the user to use it as a single
pool of resource.

VM1vMEM

vCPU

vNIC

vStorage

GUI
VM2

VM1

VM2

vCPU

vNIC

vStorage

GUI

vMEM

Figure 6-9 Linux Versus OpenStack

OpenStack Components

OpenStack is an operating system that enables you to create, automate, and moni-

tor your cloud. OpenStack is made up of individual components written in Python.

Each component, developed as an individual project, performs a specific role in the

OpenStack framework, as shown in Figures 6-10 and 6-11.

Keystone
(Authorization

and
Authentication)

Horizon (Dashboard)

Heat (Orchestration)

Nova
(Computing)

Glance
(Image
Store)

Swift
(Object
Store)

Cinder
(Block
Store)

Neutron
(Network)

Ceilometer
(Metering)

Trove
(Database

as a Service)

Sahara
(Analytics

as a Service)

Figure 6-10 OpenStack Projects

ptg17123584

198 Chapter 6: CSR Cloud Deployment Scenarios

Public Network

OpenStack
Object Store

Op
en

St
ac

k I
de

nt
ity

 A
PI

OpenStack Identity API OpenStack Identity API OpenStack Identity API

OpenStack
Block Storage

OpenStack
Image Service

OpenStack
Compute

OpenStack
Networking

OpenStack Identity API

AMQP

OpenStack
Networking
API

HTTP(S) OpenStack
Block Storage
API

OpenStack
Compute API,
EC2 API

OpenStack
Networking API

OpenStack
Image API

OpenStack
Image API

OpenStack
Object API

OpenStack
Object API

• CLI
• Mgmt

Services
• GUI Tools

Keystone

OpenStack Block
Storage API
OpenStack Block
Storage API

Horizon

Figure 6-11 OpenStack Architecture; Each Project Is Accessible via a Project API, and
Users Can Access OpenStack via the Dashboard (Horizon) or Through Project-Specific APIs

Nova (Computing)

Nova sits at the heart of the OpenStack framework. It is the computing engine that is

responsible for creating and maintaining virtual machines. It is a complex and distributed

component of OpenStack. Multiple processes constitute the Nova computing project.

Here is a brief description of some of the processes in the Nova project:

■ nova-api—This process accepts and responds to the end user’s computing API

calls. It is responsible for orchestrating events like running a virtual machine. It is

also responsible for enforcing policy.

■ nova-compute—This process creates and terminates virtual machines. It uses hyper-

visor calls to create and terminate VM instances :

■ With KVM/QEMU, it uses libvirt

■ With XenServer/XLP, it uses XenAPI

■ With VMware, it uses the VMware API

Figure 6-12 shows logically how this is achieved.

ptg17123584

Private Cloud Deployment with CSR in OpenStack 199

Computing Node1

VM1VM1

Nova
Computing

KVM

Computing Node2

VM1 VM1

ESXi
Hypervisor

Nova-api

Nova
Computing

Control Node

vSphere
Control

vSphere Node

Figure 6-12 Hypervisor Interaction

■ nova-scheduler—This process is the scheduler for the Nova computing engine. It

determines which host is best suited to spawn the next VM request.

■ nova-network—This process picks up a task from the queue and executes the task

in a way similar to nova-compute. It targets the networking piece of OpenStack,

like provisioning Layer 2 and Layer 3 circuits, setting up IP addresses, and handling

NAT and other network functionalities. nova-network functionality moved on into

a separate project, called Neutron. Neutron is a full software-defined networking

stack. However, nova-network is still used for simple use cases where the network-

ing requirements are limited.

■ nova-xvpnvncproxy—This process daemon is a proxy used to access the virtual

machine instances through a VNC connection.

■ The queue—The message queue connects daemon processes and serves as a cen-

tral repository for passing messages between processes . It is implemented using

Advanced Message Queuing Protocol (AMQP), a standard message queuing proto-

col for passing messages between applications.

Note There are multiple other processes in the Nova project. Covering all of them is

beyond the scope of this book. OpenStack projects are well documented online at

http://docs.openstack.org.

Keystone (Identity Service)

Keystone provides authentication and authorization services in OpenStack. It is the proj-

ect that’s responsible for setting access rights and making sure only authorized users are

able to access the system. It also guards access rights between projects in OpenStack. All

services in OpenStack rely on Keystone to verify requests. Keystone takes care of API

http://docs.openstack.org

ptg17123584

200 Chapter 6: CSR Cloud Deployment Scenarios

requests and provides users with a catalog of available offerings, enforces policy, and

administers token and identity services.

Keystone issues a token, which essentially defines the scope of access in OpenStack.

The token issued is based on the user’s credentials. Figure 6-13 illustrates how keystone

works at a very high level. These are the steps shown in the figure:

1. User wants to launch an
instance; sends credentials.

2. Keystone creates a

temporary token and sends

this user a generic catalog.

3. User sends this temporary

token requesting a list of

tenants it has access to.

5. User sends the credentials

with the tenant it wants

to reach.

6. Keystone sends the list of

services available and

provides a scoped token

for the tenant and the URL

of the service.

9. Service execution ACK.

8. Execute the service.

7. Tenant receives the token

and uses the metadata of the

token to verify whether the

user can access the service.

User/API Keystone Tenant Service

4. Keystone sends a list of

tenants the user has

access to.

Figure 6-13 Keystone Function Overview

Step 1. The user sends an unscoped token (that is, a token that it is not tied to any

particular project in OpenStack) to determine which OpenStack projects/ten-

ants the user has access to. This token is strictly used to query Keystone to

determine which projects the user has access to. It is important to note that

only scoped tokens (tokens that have user credentials and the tenant details

where the service is requested) must be used with non-Keystone projects,

such as Nova. Unscoped tokens are only used to query Keystone. The user

provides the credentials (username and password).

ptg17123584

Private Cloud Deployment with CSR in OpenStack 201

Step 2. Keystone returns an unscoped token to the user.

Step 3. The user sends the unscoped token to determine which tenants/projects he

has access to. This step typically uses a REST API get with this unscoped

token and sends it to Keystone.

Step 4. Keystone responds with a list of tenants to which the user has access.

Step 5. The user now has access to a list of tenants he can access and must decide

which tenant he wants to use. To work with any tenant, the user must obtain

a scoped token. A scoped token is always for a particular tenant and contains

metadata for the tenant. To obtain a scoped token, the user now does a REST

API post with username and password, such as in Step 1. The difference here

is the tenant/project name. In this post, the user specifies his username and

password that align with the tenant and project name for which the token is

requested.

Step 6. As a response to the post, Keystone sends a scoped token with the metadata

associated with the tenant/project. The user now has a service catalog that

contains the URLs to the tenant/project.

Step 7. The user can now invoke the service by using the scoped token and the target

URL of the service he wants to invoke. (This is the case with UUID-based

tokens only.) The tenant receives the service request with the token. It uses

the metadata of the token to verify the user access rights for the service. The

policy.json file for each tenant determines the role-based access.

Step 8. The service request is executed.

Step 9. The user receives an API response.

Keystone is the first project to be installed during OpenStack deployment.

Note It’s important that you understand how to relate multitenancy concepts with

OpenStack:

■ Tenants are represented as projects, and a project is the base unit of “ownership” in

OpenStack. A tenant can be defined as a user assigned a fixed set of resources within a

container. This is an important concept in multitenancy for network, storage, and com-

puting domains .

■ A group is a collection of users that are part of a domain.

■ A domain is a collection of projects and users.

Glance (Image Service)

Glance is an image service project in OpenStack that stores and discovers data that is

meant to be used by other services in OpenStack. It discovers, registers, and downloads

virtual machine images. In other words, it is the local image repository in OpenStack.

Glance also stores metadata information about the images it stores.

ptg17123584

202 Chapter 6: CSR Cloud Deployment Scenarios

Glance uses a client/server model. The applications that use Glance are clients, and the

Glance project behaves as a server. It uses REST API as the communication mechanism.

Following are the major components of Glance :

■ The client—This is the application that uses Glance.

■ REST API —Glance is externally accessible via REST API.

■ DAL (Database Abstraction Layer) —This is an API that sits between Glance com-

ponents and the Glance database.

■ Domain controller—The Glance domain controller is responsible for authorization,

notifications, policies, and database connections.

■ Glance store—This is the middleware between Glance and various data stores that

are supported by Glance.

Figure 6-14 illustrates the architecture of the image service project, Glance, in

OpenStack.

Client

Keystone

API

Glance
Store

Supported Storages

Client
Image API

Keystone
API

Glance

RE
ST

 A
PI

Glance
DB

Image API

OpenStack
Image Service

(Glance)

Au
th

In
tf

Glance Store Drivers

Controller/Auth-Notifier,
Policy DB/Registry/

Abstraction

Figure 6-14 OpenStack Glance Architecture

Neutron

Before Neutron became a separate project, it was Nova’s networking service,

nova-network. You can still use nova-network for basic networking operations. It can

do base Layer 2 network provisioning, IP address management for tenants, DHCP, DNS,

and enable implementation of firewalls and NAT using IPtables.

ptg17123584

Private Cloud Deployment with CSR in OpenStack 203

Neutron was created as a separate project from Nova to address the limitations of nova-

network and bolster the networking capability of OpenStack. nova-network had mul-

tiple limitations; for example, it did not have APIs for consuming networking services,

and it had a VLAN-based network model, which allows only 4096 VLANs and only a

very limited set of features. Perhaps the most striking drawback was that the architec-

ture did not allow plugins to render their functionality to OpenStack. Neutron, which

was promoted to a core project at the Folsom Summit in April 2012, addresses the fol-

lowing functionalities:

■ Modular Layer 2 architecture—Before this architecture, each new Layer 2 service

hogged the entire Neutron server process. Each time you came up with a new Layer

2 plugin, the entire Neutron server was dedicated to running that plugin. This was

not only a problem from an operational perspective but was an issue with develop-

ing the plugin, too, because a lot of code needed to be rewritten.

With the modular Layer 2 architecture, vendors can seamlessly integrate plugins to

Neutron and use the different Layer 2 encapsulations that these plugins bring in.

For example, with this architecture, you can have one tenant use the dot1q VLAN

while another uses a VxLAN.

Figure 6-15 illustrates the Modular Layer 2 (ML2) architecture of Neutron.

REST API

Neutron Service
Plugins

Neutron Core
Plugins

C
is

co
 (N

ex
us

,
N

1K
v)

M
or

e
Ve

nd
or

Pl
ug

in
s

O
VSM
L2

O
pe

nD
ay

lig
ht

M
or

e
Ve

nd
or

D
riv

er
s

AP
IC

O
VS

C
is

co
 N

ex
us

VX
LA

N
G

R
E

VL
AN

O
pe

nS
w

an
Fu

tu
re

s

IP
Ta

bl
es

H
A

Pr
ox

y

VP
N

L3
 S

er
vi

ce
s

Fi
re

w
al

l

Lo
ad

 B
al

an
ce

r

Southbound Interfaces

Type
Drivers

Mechanism
Drivers

Neutron
Server

Message
Queue

DHCP
Agent

L3 Agent

IPTables
on Network

Node

L2 Agent
OVS on
Compute

Node

Figure 6-15 ML2 Architecture: Neutron

■ Tenant APIs—Tenants can use API calls to create as many networks as they want.

Whenever you bring up a VM, you just need to define the networks it should con-

nect to.

■ Features—nova-network was missing features like advanced ACLs and QoS.

Neutron lets you get all these features into OpenStack .

ptg17123584

204 Chapter 6: CSR Cloud Deployment Scenarios

Cinder (Block Storage)

The OpenStack wiki says Cinder “virtualizes pools of block storage devices and

provides end users with a self service API to request and consume those resources

without requiring any knowledge of where their storage is actually deployed or on

what type of device.” Fundamentally, Cinder provides persistent storage to guest virtual

machines of OpenStack.

Block storage is one of the most fundamental requirements for a virtualized infrastruc-

ture. This is because the virtual infrastructure is maintained as files. Each virtual machine

is essentially a file that needs storage. These VM files and the data associated with them

need to have persistent storage so that the VM can be powered down and brought up to

life whenever required.

Cinder is the block storage mechanism within OpenStack. It stores and provides access

to block storage for OpenStack tenants. To OpenStack tenants, this storage appears as a

block device that can be accessed using mechanisms like iSCSI, Fibre Channel, and NFS

for back-end connectivity.

Figure 6-16 illustrates the architecture of Cinder, which has the following components:

Cinder Client

Cinder API

Cinder

Scheduler

SQL DB

AMQP
AMQP

AMQP

REST

BackupCinder Volume

Figure 6-16 Cinder Architecture

■ Cinder API—This piece of code, as with all other software in OpenStack, talks

AMQP with modules inside the project. With modules outside the project, it talks

REST API. Cinder API takes in REST API requests from the north and routes them

to the appropriate Cinder modules talking AMQP.

■ Cinder scheduler—This component schedules the requests for the volume service.

■ Cinder volume—This is the block storage manager that manages back-end storage

devices.

■ Cinder backup—This component backs up Cinder volumes.

ptg17123584

Private Cloud Deployment with CSR in OpenStack 205

Other OpenStack Projects

The following are some of the other projects in OpenStack:

■ Horizon (dashboard)—This is OpenStack’s dashboard. It is a web-based self-service

portal that the user can log in to after installing OpenStack. Architecturally, it sits

above all OpenStack projects and interacts with all projects using APIs. It gives the

user some very useful functionalities, such as instance creation, network configura-

tion, and storage. This interface can also be used to complete some administrative

tasks, such as user creation.

■ Heat (orchestration)—This OpenStack project, like Horizon, interacts with all com-

ponents of OpenStack. It is used to create application stacks from multiple resourc-

es (like servers, floating IPs, security groups, users, etc.). It is an engine that is used

to launch multiple cloud applications based on templates. A Heat template describes

the skeleton for an application in a text file that can be edited.

■ Swift (object storage)—This project provides a mechanism for storing and retriev-

ing unstructured data. Swift makes sure that data is replicated across a cluster of

servers and that the integrity is maintained. It provides distributed object storage.

Storage clusters scale horizontally, and if one of the servers fails, OpenStack repli-

cates the data from other active nodes to new cluster locations. Swift stores objects

on object servers. Swift is implemented using a ring concept, where a ring is a com-

ponent that contributes to the Swift service.

■ Ceilometer—This project is used to collect measurements within OpenStack.

OpenStack needs metering and monitoring services, and Ceilometer is responsible

for giving OpenStack that service. It accesses and inserts metering data using REST

API. Ceilometer has three kinds of defined meters:

■ Cumulative meter—This meters things that increment over a period of time.

■ Delta meter—This meters things that change over a period of time.

■ Gauge meter—This meters discrete (for example, images) and fluctuating (for

example, disk I/O) values.

■ Trove—This is a database as a service within OpenStack and is one of the newest

projects of OpenStack. It aims to provide a scalable and reliable cloud database ser-

vice. It enables you to create a database instance with the data store of your choice

(for example, MySQL), as shown here:

$trove create –size <size of the DB> -users <username>:<Password> -datastore
 MySQL <instanceName>

This example creates an isolated database environment with computing and storage

resources.

■ Sahara—Sahara provides a scalable data processing stack with a management inter-

face. It achieves this by giving the client the ability to quickly create and manage

Apache Hadoop clusters and run workloads across them.

ptg17123584

206 Chapter 6: CSR Cloud Deployment Scenarios

Note OpenStack can manage different types of hypervisors and can also manage con-

tainers. What is container-based virtualization?

Container-based virtualization takes place at the application layer, in the operating

system. Each application node is provisioned as guest virtual machines running on the

same kernel. The kernel takes care of the hardware calls through a unified approach

for all guest VMs. All the guest VMs need to run the same operating system, and this

can be a limiting factor. The use of a single operating system can be a delimiting factor

for use in the enterprise application space. However, in development or hosted service

environments, using containers to run isolated guest VMs is a faster and simpler method

than using traditional hypervisor modes.

CSR Within OpenStack

Neutron, or “OpenStack networking,” started off as a very basic networking require-

ment. The CSR, being a software router, has a lot to offer OpenStack networking in

terms of features. OpenStack’s modular architecture allows services to be incorporated

into it. CSR thus fits in perfectly. You can classify the services CSR can render to

OpenStack into two broad categories, CSR 1000V as a Neutron router and CSR 1000V

as a tenant router, which are described further in the following sections.

CSR 1000V as a Neutron Router

CSR brings feature richness to OpenStack. The role of a Neutron router in OpenStack is

to network the virtual machines and make them accessible based on user requirements.

CSR can be used to deliver Neutron’s Layer 3 routing service API. When working within

OpenStack, CSR is managed by Nova. The entire life cycle of the CSR virtual machine is

managed by a Layer 3 service plugin using Nova. This service plugin configures the CSR

virtual machine to make sure the Neutron service is available through APIs using this

service VM.

The CSR’s functionality is a superset of what the Neutron actually requires, so the

CSR “hosts” the Neutron functionality within itself. A special admin tenant owns the

CSR, and the OpenStack tenants do not have visibility to this. Tenants use the Neutron

functionality exactly the way they do without the CSR. Internally, in the realm of this

special admin tenant, the CSR hosts the Neutron functionality using two interfaces. One

is a management virtual interface that is used to connect to the management network in

OpenStack. The other is the tenant traffic virtual interface that trunks the internal tenant

network and the external Neutron network.

Figure 6-17 illustrates how the Neutron services can be hosted by the CSR inside

OpenStack.

ptg17123584

Private Cloud Deployment with CSR in OpenStack 207

Management Network
Nova

Ex
te

rn
al

 N
et

w
or

k
VL

AN
=9

In
te

rn
al

 N
et

w
or

k
VL

AN
=1

0

In
te

rn
al

 N
et

w
or

k
VL

AN
=1

1Cisco Config Agent

O
w

ne
d

by
 S

pe
ci

al
 A

dm
in

 T
en

an
t

Routing
Driver

CSR
VM

VM
A

VM
B

Neutron

Routing
Service Plugin

Figure 6-17 CSR Hosting a Neutron Router

OpenStack is essentially designed to talk to Neutron, and the CSR is a software router

that needs to be created and managed, just like any virtual machine. To create a Neutron

router hosted within a CSR VM, you need to install the following:

■ You need to install a plugin in Neutron to talk to the CSR virtual machine and also

to Nova. This spins up a CSR VM when instructed to do so by Nova.

■ You need to install a configuration agent that talks CLI to the CSR and talks RPC

(implemented using RabbitMQ) to the Neutron module. The routing service plugin

in Neutron will discover the configuration agent (over the management network).

The CSR virtual machines and the configuration agent communicate over the man-

agement network, which may or may not be the same as the OpenStack manage-

ment network. In Figure 6-17, both management networks are the same.

Follow these steps to install CSR as a neutron router:

Step 1. To establish connectivity to Keystone, create the admin tenant that houses

the CSR:

$ keystone tenant-create --name L3AdminTenant --description “Special
 Admin Tenant”

ptg17123584

208 Chapter 6: CSR Cloud Deployment Scenarios

The name defaults to L3AdminTenant. If you want to change this, modify

/etc/neutron/cisco_router_plugin.ini.

The command returns a UUID of the tenant created. Call it

UUID_Special_Admin_Tenant.

Change roles to admin for the special admin tenant created above:

$ keystone user-role-add --user-id <UUID_Neutron_Service> --role-id
 <UUID_admin_role> --tenant-id <UUID_Special_Admin_Tenant>

Use the following Keystone commands to get the Neutron service UUID and

admin role UUID:

UUID_Neutron_Service == keystone user-get neutron

UUID_admin_role == keystone role-get admin

Give the Neutron service admin access in the service tenant:

$ keystone user-role-add --user-id < UUID_Neutron_Service> --role-id
 < UUID_admin_role> --tenant-id <UUID_service_tenant>

Use the following Keystone commands to get the neutron service UUID and

admin role UUID:

UUID_service_tenant == keystone tenant-get service

Step 2. Set up Nova and Glance for the CSR VM:

$ nova flavor-create csr1kv_router 621 8192 0 4 --is-public False

$ nova quota-update --cores -1 --instances -1 --ram -1 <UUID_Special_
 Admin_Tenant>

$ glance image-create --name csrImage --owner <UUID_Special_Admin_
 Tenant> --disk-format qcow2 --container-format bare --file <csrImage
 path> --property hw_vif_model=virtio --property hw_disk_bus=ide
 --property hw_cdrom_bus=ide

Step 3. To get Neutron to talk to the CSR routing service plugin, modify the

Neutron configuration file and make sure you point the service_plugin

variable to the CSR:

service_plugins=networking_cisco.plugins.cisco.service_plugins.cisco_
 router_plugin.CiscoRouterPlugin

Create Nexus 1000V (N1kv) network profiles. Execute the following com-

mands as user neutron in the special admin tenant:

$ neutron cisco-network-profile-create --tenant-id <UUID_Special_
 Admin_Tenant> --physical_network osn_phy_mgmt_network --segment_range
 <vlanIdMgmt>-<vlanIdMgmt> osn_mgmt_np vlan

$ neutron cisco-network-profile-create --tenant-id <UUID_Special_Admin_
 Tenant> --physical_network osn_phy_network --sub_type VLAN osn_
 tenant1_np trunk

ptg17123584

Private Cloud Deployment with CSR in OpenStack 209

Step 4. Connect to the Cisco configuration agent by logging in as user Neutron in

the special admin tenant. Then create a port for the configuration agent:

$ neutron port-create --name ciscoCfgAgent --tenant-id <UUID_Special_
 Admin_Tenant> --fixed-ip ip_address=<ipAddressCfgAgent> osn_mgmt_nw
 --n1kv:profile_id <mgmtUUID>

Now you need to log in to the server running the config agent and configure

ipAddressCfgAgent on the interface and macAddress of the port you just

created, using the previously shown CLI commands.

Step 5. To verify that the installation was successful, create external and internal net-

works:

■ Create a Neutron router and attach the internal and external networks to

it. When you do this, the CSR you set up in Steps 1–4 is created inside

the special admin tenant and should work as a Neutron router.

■ Attach interfaces, remove them, and delete them just as you would for a

Neutron router:

$ neutron net-create public --router:external True

$ neutron subnet-create public <ipAddressPublic>

$ neutron net-create private

$ neutron subnet-create private <ipAddressPvt>

$ neutron router-create routerCSR

$ neutron router-gateway-set <routerCSR ID> <publicNetId>

$ neutron router-interface-add <routerCSR ID> <pvtNetId>

CSR 1000V as a Tenant Router

You can bring up a CSR 1000V as a tenant VM and network your tenants within

OpenStack. The CSR 1000V will be spawned inside OpenStack, like any tenant virtual

machine. This way, you can use the features that come with the CSR 1000V for the vir-

tual machines attached to the CSR on the same network.

Note If you attach the CSR as a tenant router to the provider/public network, you

do not need a Neutron router to NAT your traffic outside OpenStack. It is a practice

to leverage a plugin when the CSR attaches directly to the provider network to replace

a Neutron router. You will learn more about the CSR plugin in Chapter 7, “CSR in the

SDN Framework.”

In Figure 6-18, a CSR is spawned as a tenant VM in each of the internal networks: 1 and

2. In each network, the CSR is being used as a firewall or VPN head-end. VM A and VM

B use CSR Network 1 and CSR Network 2, respectively. This model gives you tremen-

dous control over the firewall and VPN policies to impose on your networks.

ptg17123584

210 Chapter 6: CSR Cloud Deployment Scenarios

Ex
te

rn
al

 N
et

w
or

k

In
te

rn
al

 N
et

w
or

k
1

In
te

rn
al

 n
N

et
w

or
k

2

10
.1

.1
.1

11
.1

.1
.1

11
.1

.1
.2

11
.1

.1
.3

10
.1

.1
.2

10
.1

.1
.3

Neutron

CSR

CSR

Vm

VPN

FW

VPN

FW

VM

VM

VM

VM

Figure 6-18 CSR as a Tenant VM

Figure 6-19 illustrates how to use the CSR to segregate a single network into multiple

tenant networks.

Can have same address.

Ex
te

rn
al

 N
et

w
or

k

10
.1

.1
.1

40
.1

.1
.1

40
.1

.1
.1

10
.1

.1
.2

Ex
te

rn
al

 N
et

w
or

k
1

Pr
iv

at
e

N
et

w
or

k
B

Pr
iv

at
e

N
et

w
or

k
A

CSR

CSR

VM

VM
Neutron

VM

VM

Figure 6-19 CSR Segregating One Network into Multiple Tenant Networks

ptg17123584

CSR 1000V in a Public Cloud 211

To install the CSR as a tenant VM, bring up CSR just like any other tenant VM within

OpenStack. Then just list the flavor and image list, choose one, and use nova boot to

create it. Nova uses Neutron to get an IP address for the CSR you spawned. You can

then configure the CSR using the console access and set up the required service for the

other tenant VMs:

$ nova flavor-list

$ nova image-list

$ nova boot --flavor flavorType --key_name keypairName --image ID
 newCSRInstanceName

CSR 1000V in a Public Cloud
The following sections cover CSR deployments in public clouds. The focus here is on

AWS (Amazon Web Services).

Amazon Web Services Deployment for the CSR

You have already read about deployment of the CSR 1000V in a public cloud environ-

ment. This section will help you understand the details and considerations for such a

deployment. The use case chosen to depict the public cloud is AWS.

The Cisco CSR 1000V can be deployed on Amazon Web Services (AWS) for public

cloud solutions. Companies typically connect to their applications through a single VPN

tunnel between their data center and AWS. Deploying the Cisco CSR in AWS opens

up the potential for direct VPN access to AWS-hosted applications from campus and

branch-office locations without back hauling through an existing data center. This design

reduces latency, eliminates the need for expensive private WAN services, avoids the per-

VPN-tunnel costs that Amazon charges, allows AWS hosted applications to participate

in existing route-based VPN topologies, and lets enterprises own their network elements

(which they use to enforce enterprise policies) within a public cloud infrastructure. This

ownership helps the enterprise in different inter-cloud or cloudburst use cases described

earlier in this chapter.

Amazon Web Service Solutions

These are the commonly used AWS solutions:

■ Amazon Elastic Compute Cloud (EC2) —Amazon EC2 is a service that provides

scalable computing resources in the Amazon cloud. The Amazon EC2 service offers

flexible and scalable computing capacity that operators can spin up on demand.

Amazon EC2 reduces the time for starting new server instances by providing a web

portal that enables users to create, launch, and terminate server instances as needed

and pay by the hour for active computing capacity usage.

■ Amazon Virtual Private Cloud (VPC) —Amazon VPC is a cloud service that pro-

vides users a virtual private cloud by offering an isolated private section that exists

ptg17123584

212 Chapter 6: CSR Cloud Deployment Scenarios

within Amazon’s public cloud. Amazon EC2 instances can run within a VPC, and

enterprise customers can gain access to the EC2 instances over an IPsec VPN con-

nection. Amazon VPC gives users the option of selecting which AWS resources are

public facing and which are private, thus offering more granular control over secu-

rity for instances running in AWS.

■ Amazon Simple Storage Service (S3) —Amazon S3 is a service that provides users

data storage infrastructure through web services interfaces (such as REST APIs).

Through the web service interfaces, Amazon S3 offers simple storage and retrieval

of data from anywhere on the web. Like Amazon EC2 service, with S3, users pay for

the storage they actually use, which makes for a flexible and cost-effective object

storage solution .

Routing in AWS Clouds

AWS offers a suite of networking capabilities that enable fundamental connectivity and

traffic management for traffic going to and from applications hosted in the AWS cloud

platform. EC2 offers two different platforms:

■ EC2-Classic—This was introduced in the original release of Amazon EC2. All the

Amazon Machine Instances (AMI) run in a single, flat network shared with other

customers. All nodes running in EC2-Classic are on a shared network and are

addressable to one another. There is no differentiation between public and private

interfaces for AMI running in the EC2-Classic, as each machine instance has only

one network interface. Each instance automatically receives a public IP address and

can access the Internet directly.

■ EC2-VPC—The AMIs launched in EC2-VPC run in a virtual private cloud (VPC)

that is logically isolated from the user’s AWS account. Each instance in a VPC has a

default elastic network interface associated with various attributes, such as multiple

private IP addresses. One or more network interfaces can be attached to an instance

during launch or added later from the EC2 console. Access to the Internet from

AMI running in EC2-VPC is configurable and determined by the VPC policy.

Figure 6-20 shows a side-by-side comparison of EC2-Classic and EC2-VPC.

To understand the routing capabilities in AWS clouds, you must understand AWS VPC,

the networking layers for Amazon EC2. These are the components of VPC :

■ Subnets—A subnet is defined by AWS as a range of IP addresses in a VPC. When

a VPC is created, the user can specify the setup of IP addresses for the VPC in the

form of a Classless Inter-Domain Routing (CIDR) block, such as 172.16.0.0/16.

A default subnet is a public subnet that is reachable from the Internet. Instances

launched into a default subnet are each assigned a public IP address and a private

IP address. Removing the route from the destination 0.0.0.0/0 can create a private

subnet. Doing this prevents any EC2 instance running in that subnet from accessing

the Internet.

ptg17123584

CSR 1000V in a Public Cloud 213

Internet

Router
EC2-Classic
Instances

EC2-VPC
Instances

Internet
Gateway

AWS

VPC

APP
OS

APP
OS

APP
OS

APP
OS

Figure 6-20 Difference Between EC2-Classic and EC2-VPC

■ Routing table—Each subnet is associated with a single routing table that controls

that subnet’s routing. The routing table contains a set of rules that define how traffic

is forwarded within the VPC. Creating a VPC generates the main routing table auto-

matically, enabling machine instances in the VPC to communicate with one another.

A routing table can contain multiple subnets; however, only one routing table can

be associated with each subnet.

■ Security group—The AWS security group acts as a virtual firewall to protect virtual

machine instances with inbound and outbound rules. Users can configure ports and

protocols to open to traffic and from which source and to which destination. The

security group operates at the instance level as the first layer of defense. It can be

combined with network ACL, which operates at the subnet level, as a second layer

of defense.

■ Elastic IP—This is an Internet-routable public IP address associated with an AMI

running in a VPC. It is assigned dynamically from a pool of EC2-VPC public IP

addresses. The system allows fast failure convergence by allowing the elastic IP

address to remap from one instance to another instance running in the same VPC

upon the failure of the instance, thus minimizing impact to the end user experience.

The elastic IP address, once it is assigned, is accessed through the Internet gateway

of a VPC.

■ Internet gateway—When instances are launched within a VPC, by default, they

cannot communicate with the Internet. A user can enable Internet access by associ-

ptg17123584

214 Chapter 6: CSR Cloud Deployment Scenarios

ating the VPC with an Internet gateway. The Internet gateway allows the instances

to be reachable via the elastic IP address from the Internet.

■ Direct Connect—Amazon Direct Connect is a network connection that provides

a dedicated connectivity between enterprise and AWS cloud service. With AWS

Direct Connect, an enterprise can establish a private link between the AWS cloud

and the enterprise’s private data center. It provides consistent network performance

over the Internet based connections. Dedicated Direct Connect addresses the pri-

vacy concerns related to data traversing the public Internet infr astructure.

■ Regions—Amazon EC2 is hosted in multiple data center facilities in different

geographic locations around the world. A region is an AWS data center facility

location. Each Amazon EC2 region is completely independent of the others and is

designed to be completely isolated from the other EC2 regions. EC2 instances have

to be launched into a specific region. Locating EC2 instances close to end users

reduces the access latency to the applications hosted there.

■ Availability zones—Availability zones are isolated locations inside a region. The

availability zones within a region are interconnected through low-latency network

connections. By launching Amazon EC2 instances into separate availability zones,

you can protect the applications from failure of a single availability zone. Figure

6-21 highlights the differences between EC2 CLASSIC and EC2 VPC.

AWS

Region Region

Availability
Zone

Availability
Zone

Availability
Zone

Availability
Zone

Availability
Zone

Availability
Zone

Availability
Zone

Figure 6-21 AWS Region and Availability Zone Concepts

Note While a VPC can span multiple availability zones within the AWS cloud, a subnet

can only reside in a single zone and cannot span availability zones.

Amazon has designed its data center networks quite differently from the conventional

enterprise approach. For one thing, a VLAN is not used as a Layer 2 segmentation

ptg17123584

CSR 1000V in a Public Cloud 215

mechanism in Amazon cloud to avoid the 4096 VLAN scaling limitations associated

with the technology. Instead, Amazon uses Layer 3 routing technology throughout

its infrastructure, which means all traffic is forwarded based on IP addresses instead

of Layer 2 MAC addresses. One way of looking at Amazon networking is that it is a

completely flat network without hierarchy, which can be contradictory to traditional

network design. The benefit of a flat network is that the configuration and setup process

for virtual machine instances is greatly simplified. The entire process is automated

to a greater extent than in the traditional hosting environment. In addition, because

customers are not segmented into assigned VLANs, this easily allows for the growth and

shrinking of computing instances based on seasonality or customer demand. Customers

can easily request additional instances through the Amazon web portal and launch the

new instances from the overall IP addresses in a region within minutes. The IP addresses

for the new instances may be quite different from the others assigned previously,

but because the network is flat and all traffic is forwarded based on IP addresses, the

incongruent address assignment is not a problem.

Within AWS, cloud address assignment is not persistent to a customer. AWS dynami-

cally assigns an IP address to an instance’s virtual network interface (vNIC). The vNIC

can have one or more private IP addresses and one public IP address, which can be auto-

matically assigned. Having two IP addresses means that the instance can send and receive

data traffic from within the AWS cloud network using the private IP address while

accessible from the Internet with the public IP address.

Amazon VPC is confined to a single region and cannot span regions. However, within

the region, a VPC can span multiple availability zones, and by launching instances into

separate availability zones, you can protect applications from the failure of a single avail-

ability zone. Within an availability zone, you can create one or more subnets. Each sub-

net must reside entirely within one availability zone and cannot span zones. All subnets

can route to one another by default.

When a VPC is created, it is automatically associated with a main route table. Initially

there is only one entry in the main route table, which is the CIDR block address associ-

ated with the VPC. When new subnets are added in the VPC, they are implicitly associ-

ated with the main route table by default.

An Internet gateway can be added to a VPC to provide communication between the

instances running in the VPC and the Internet. When an Internet gateway is attached

to the VPC, it provides a target in the main routing table for routing to the Internet. In

addition, the Internet gateway also performs the NAT function for instances that have

been assigned public IP addresses or elastic IP addresses. These concepts are illustrated

in Figure 6-22.

With the fundamental networking of AWS in hand, next we look into deploying the

CSR in the AWS cloud network .

ptg17123584

216 Chapter 6: CSR Cloud Deployment Scenarios

Internet Gateway

Destination Target

Main Route Table

Availability Zone A Availability Zone B

Subnet 1 Subnet 3

Internet

Region

Subnet 2 Subnet 4

AWS

Router

172.20.2.0/16 Local

igw-id0.0.0.0/0

VPC

Figure 6-22 Amazon VPC Routing Topology

CSR 1000V Deployment in AWS

The Cisco CSR 1000V can be deployed on AWS for public and private cloud solutions.

The CSR can be purchased and launched as an AMI from the AWS Marketplace. There

are two license models currently available:

■ Hourly-Billed AMIs—Users are billed for the hourly usage of the CSR 1000V

instance. The hourly usage fee is in addition to the basic instance-type usage fee

billed by AWS. AWS pays Cisco for CSR usage fees it collects. This model does not

require any license to be purchased or installed.

■ Bring Your Own License AMI—Users purchase software licenses directly from

Cisco and launch the Bring Your Own License AMI from the AWS Marketplace.

Users pay only for the basic instance-type fees. Once the CSR AMI is launched

and deployed, users follow the standard Cisco software activation process to install

the license.

From a design standpoint, CSR is logically placed between the VPC router and the

machine instances running within the VPC, as shown in Figure 6-23.

However, the fact that the CSR is running as an AMI within a VPC and because of the

networking property of AWS VPC, in reality the CSR sits in parallel to the machine

instances, as illustrated in Figure 6-24. Therefore, a subnet route pointing to the CSR

must be added to ensure traffic flow through CSR. Alternatively, the administrator must

change the default gateway for each of the instances within the VPC to point to the CSR.

ptg17123584

CSR 1000V in a Public Cloud 217

Internet
Gateway

VPC
Router

VPC
Router

CSR

CSR

Internet

VPC

VPC
AWS

APP
OS

APP
OS

Figure 6-23 CSR Logical Placement Within AWS

Internet
Gateway

AWS

VPC
Router

CSR

VPC

Internet APP
OS

APP
OS

Figure 6-24 CSR Factual Placement in AWS VPC

Another property of an AWS VPC cloud network is that link-local multicast, and broad-

cast traffic are not supported. This restricts the use of First Hop Redundancy Protocol

(FSRP), such as HSRP/VRRP, commonly leveraged by network engineers for high avail-

ability and the use of interior gateway protocols, such as OSPF and EIGRP, for route

propagation. The workaround for some of these restrictions is the use of GRE encapsula-

tion on the CSR. GRE encapsulation will transport the unsupported protocols. The GRE

tunnel allows the CSR routers to exchange Bidirectional Forwarding Detection (BFD)

protocol for rapid peer failure detection. When BFD detects a peer-down event, it trig-

gers an Embedded Event Manager (EEM) script to modify the VPC route table, through

the use of the AWS EC2 API, to redirect traffic around the failure. This use case can be

expanded further to create tenants within a single VPC domain, as discussed earlier in

this chapter, in the section “CSR 1000V as a Tenant Router.”

Instantiate a CSR in AWS

To launch the CSR, you must perform the following steps:

Step 1. Log in to AWS Marketplace at https://aws.amazon.com/marketplace and

search for “Cisco csr,” as shown in Figure 6-25 .

https://aws.amazon.com/marketplace

ptg17123584

218 Chapter 6: CSR Cloud Deployment Scenarios

Figure 6-25 AWS Marketplace

Step 2. Select the Cisco CSR AMI for your deployment. You might have to log in

or create a new account if you don’t already have one. Choose one of the

options for the AMI license:

■ Hourly-Billed AMIs:

■ Cisco Cloud Services Router: CSR 1000V, Security Technology

Package (formerly Advanced Technology)—Includes enterprise-rich

security features, such as IPsec, DMVPN, FlexVPN, SSLVPN, and

Zone-Based Firewall (ZBFW). The performance is based on the AMI

instance type selected.

■ Cisco Cloud Services Router: CSR 1000V, AX Technology

Package—Formerly the Premium package, the AX Technology

Package includes all the features from the Security Technology

Package plus features such as LISP and Application, Visibility, and

Control (AVC), IPSLA, Performance Monitoring, and NBAR2. The

performance is based on the AMI instance type selected.

■ “Maximum Performance” versions—These versions enable single

root I/O virtualization (SR-IOV), which offers a direct I/O path for

the AMI instance for higher and more consistent performance, as

well as two times the performance with IMIX packets. Note that at

ptg17123584

CSR 1000V in a Public Cloud 219

this writing, this is the only version that includes SR-IOV capability.

In future releases of the CSR 1000V, the SR-IOV feature will be inte-

grated into all versions.

■ CSR Direct Connect 1G/CSR Direction Connect Multi-Gig—These

AMIs are used for securing an enterprise-grade hybrid workload

design with AWS Direct Connect circuits.

■ Cisco Cloud Services Router: CSR 1000V, Bring Your Own License

(BYOL)

Step 3. From the AWS EC2 launch page, select either the 1-Click Launch or the

Manual Launch option to start the CSR AMI. Use the Manual Launch option

for more granular control of the setup options. The following example uses

the 1-Click Launch option to show the step-by-step procedure.

Note With 1-Click Launch, the user first creates the VPC, as well as security key pairs

for remote SSH. Refer to the AWS documentation for how to set up VPC and key pairs.

Also note that 1-Click Launch is currently not supported with BYOL AMIs.

Under VPC Settings, click the Set Up button (see Figure 6-26), which will

take you to the VPC Settings page.

Figure 6-26 Cisco CSR 1-Click Launch Page

ptg17123584

220 Chapter 6: CSR Cloud Deployment Scenarios

Step 4. On the VPC Settings screen, select the VPC for the CSR to use. Next, attach

a public subnet and a private subnet to the CSR network interfaces. The secu-

rity group for the public subnet is automatically created for the VPC. This

security group is predefined, and users can change the security group settings

after the AMI has launched. Click Done (see Figure 6-27) to return to the

launch page.

Note By default, the security group is set up to allow SSH traffic. For IPsec

deployment, IKE and ESP protocols have to be explicitly added to the security group.

Figure 6-27 AWS VPC Settings Popup Window

Step 5. From the Launch page, go to the bottom and enter the Key Pair information.

Choose from an existing key pair or select Create a New Key Pair if one does

not exist and follow the directions. Next click the Launch with 1-Click but-

ton to start the CSR AMI instance (see Figure 6-28). It takes 5 to 10 minutes

to deploy the instance and get the CSR fully up and running.

ptg17123584

CSR 1000V in a Public Cloud 221

Figure 6-28 AWS Key Pair Selection and Launch with 1-Click

Step 6. To reach the CSR AMI through SSH for console access, enter the following

procedures from a Unix shell command:

ssh –i <key-pair-pem-file-name> ec2-user@<public-ip-address or DNS-name>

Note For first-time login, use username ec2-user to access the instance.

These are the key considerations you need to review with AWS or any other public

cloud provider:

■ Service solutions—The type of service model that is offered by the cloud provider:

■ Scale-based solution (for example, Amazon EC2)

■ Multitenancy solution (for example, Amazon VPC)

■ Storage solutions (for example, Amazon S3)

■ Routing transport within public clouds—Enterprise connectivity options to the

cloud (for example, Internet Gateway , Direct Connect) and the need for extended

tenancy options (for example, EC2-Classic and EC2-VPC).

ptg17123584

222 Chapter 6: CSR Cloud Deployment Scenarios

■ Different cloud HA and models for geographical presence—Provider-based

HA (high availability) models based on enterprise HA requirements. This option

requires proper study of the different models the cloud provider offers and how

these models align with enterprise high-availability criteria for asset RPO (recovery

point objective) and RTO (recovery time objective). Examples are regions and avail-

ability zones.

You must consider all these factors as you review any public cloud solution, whether

from AWS, Google, Cisco, or Azure .

Summary
The CSR 1000V offers a lot of flexibility and capabilities such as overlay technologies,

security gateway functionalities, and VRF-aware software infrastructure to provide a

multitude of services inside of a multitenant data center. A data center architecture can

leverage the CSR 1000V to effectively create security zone designs inside the data center

and build preset logical communication between the zones within the data center owned

by the enterprise.

With the increasing popularity of OpenStack as a cloud operating framework, there is

an emphasis on the ability to leverage the different technologies found in a data center

in a virtualized and programmable manner. The CSR 1000V offers enhancements to

OpenStack networking capability beyond the built-in features and allows an enterprise

to build a virtual data center at scale.

Now that you have read this chapter, you should have a clear understanding of using

the CSR 1000V in a multitenant data center, with OpenStack, and in a public cloud envi-

ronment. There are other use cases besides those covered in this chapter, and you can

explore them as needed.

ptg17123584

In Chapter 1, “Introduction to Cloud,” you got a brief introduction to software-defined

networking (SDN) . For a network administrator, SDN may mean automation and orches-

tration to simplify network operation. In this book you have also reviewed concepts

of Network Functions Virtualization (NFV) and data center virtualization. You should

understand how these two concepts overlap in an overall design for a cloud solution.

The key thing to keep in mind is that in the cloud, you need automation and simplified

orchestration. Reviewing the components of SDN in this chapter will help you under-

stand the concept.

SDN creates abstract layers that cover three main components: controller, application,

and data plane. This abstraction enables the creation of a customized network tailored

to deliver the needs of the applications that run on it. It also provides an elastic data

plane to users (an elastic data plane enables the addition of physical or virtual hardware

resources on demand without the modification or disruption of the control plane). SDN

can be categorized into three main functions as shown in Figure 7-1:

Cisco Centric SDN - Enterprise Data Centers - ACI

Application-Centric
Infrastructure Programmable Fabric Overlay

• Controller-
Managed Fabric

• Turnkey Solution
• Automated

Application-Centric
Policy

• Automated
Ecosystem

• Simplified Network
Operations

• Dynamic and
Scalable VxLAN
Overlays

Figure 7-1 SDN Framework

CSR in the SDN Framework

Chapter 7

ptg17123584

224 Chapter 7: CSR in the SDN Framework

■ Application-centric infrastructure —Application programming interfaces (API) are

exposed directly on network devices and service elements, based on OpenFlow

elements.

■ Programmable fabric—This fabric consists of controller and southbound protocol

plugins (agents). A controller is a centralized unit used to configure and manage

the agents. The agents reside in each node of the network providing data flow or

services. Each agent has a set of routines and tools offering APIs that specify how

the software components should interact with the controller. The communication

between the controller and the agent enables the admin to control the whole net-

work via a single controller. Having a single controller for the network infrastructure

simplifies the admin’s adoption of automation and orchestration of services because

there is one touchpoint for controlling the infrastructure platform.

■ Overlay—A suite of overlay technologies deliver virtual network fabric between

the nodes. The overlay network creates service-intelligent transport infrastructure

over an elastic data plane. The overlay network deals with higher-level policy that

is defined based on an application profile; the underlying infrastructure does the

simple data forwarding between end nodes of the virtual infrastructure. Using an

overlay also allows the admin to upgrade the physical infrastructure without impact-

ing the design of the virtual overlay topology. The orchestration of the overlay is

faster and simpler because it does not depend on configuring multiple hardware

hops from source to destination. You have read about VxLAN, GRE, DMVPN, and

MPLS VPNs, which are forms of overlay technologies that can be leveraged in an

SDN environment.

SDN has multiple flavors, and its implementation varies based on vendor. In the Cisco

product armada, multiple products are used to achieve abstraction of different layers,

programmability, and orchestration via a central controller. For example, the Cisco

Application Centric Infrastructure (ACI) is one such product solution. It is important to

know what solutions are available and to understand their high-level components. Figure

7-2 shows out-of-the-box SDN for a data center that is vendor centric.

Cisco SDN in the Data Center: ACI

• Turnkey solution
• Automated policy for

infrastructure that is
aligned to the application

• Ability to accommodate
partner ecosystem

Application-Centric
Infrastructure

Programmable
Fabric

• Standards-based use
of VxLAN overlays

• Simple view for end user
for automated fabric
provisioning by the
controller

Programmable
Network

• Automation of ecosystem:
integration with
OpenStack, Nexus, API,
REST, XML

• Simplified automated
operational health scores
for infrastructure monitoring

Figure 7-2 Cisco SDN in the Data Center

ptg17123584

Deploying OpenStack 225

Another way to achieve this abstraction is with a combination of NFV elements and

cloud management software, such as OpenStack . You have read in previous chapters

about the history and various components of OpenStack.

OpenStack leverages NFV components in its framework to create an environment of

vendor-agnostic cloud operations. OpenStack is focused on accelerating adoption of

SDN by providing a robust SDN platform on which the industry can build and innovate.

A centralized controller provides management of physical and virtual networks. The

open source format makes it flexible for vendors like Cisco, IBM, and Red Hat to con-

tribute to the project goals and platform architecture, as well as to its roadmap.

OpenStack brings together virtual networking approaches with Neutron. Please see

Chapter 6, “CSR Cloud Deployment Scenarios,” for OpenStack and Neutron functional-

ity, which provides virtual networking components to the cloud operating system.

This chapter explores the following:

■ Step-by-step approach to deploying OpenStack

■ Creating a tenant environment, using Neutron

■ Adding the CSR 1000V as a tenant

■ Replacing the functionality of Neutron with the CSR 1000V

Deploying OpenStack
This section covers deploying OpenStack in a proof-of-concept environment using

Packstack installation. Packstack is a command-line tool that leverages Puppet modules

for the rapid deployment of OpenStack on host machines. Packstack can be deployed

interactively, using command-line prompts, or non-interactively, using defaults or

a configuration file. This section illustrates deployment examples with Red Hat

Enterprise Linux.

Packstack is suitable for deploying proof-of-concept installations where all controller

services and virtual machines run on a single physical host. This is referred to as an all-in-

one install. Packstack procedures are provided for an initial cloud deployment; the end

result will depend on the method you choose and the parameters you define. Follow

these steps to deploy OpenStack:

Step 1. Perform a minimum install of Red Hat Enterprise Linux on qualified server

hardware.

Step 2. Change the interface names as needed for consistent and predictable net-

work device naming for the network interfaces. These changes should make

locating and differentiating the interfaces easier. In this case, you want to

convert interface names like enp9s0 to names like eth0 by editing the /etc/

default/grub file. Here is the first edit:

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

ptg17123584

226 Chapter 7: CSR in the SDN Framework

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto
 rd.lvm.lv=rhel/root rhgb quiet"

GRUB_DISABLE_RECOVERY="true"

Step 3. Change to the GRUB_CMDLINE_LINUX and add the following parameters:

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto
 rd.lvm.lv=rhel/root rhgb quiet net.ifnames=0 biosdevname=0"

Step 4. Execute the following command to regenerate an updated grub.cfg file:

Grub2-mkconfig –o /boot/grub2/grub.cfg

Step 5. Change the names of the network scripts to ethX, where X is 0, 1, 2, and

so on:

mv /etc/sysconfig/network-scripts/ifcfg-enp2s0 /etc/sysconfig/
 network-scripts/ifcfg-eth0

Step 6. Update NAME,BOOTPROTO=none,ONBOOT=yes for each of the network scripts

as follows:

■ ifcfg-eth0 config:

TYPE=Ethernet

DEVICE=eth0

NAME=eth0

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

■ ifcfg-eth1config:

TYPE=Ethernet

DEVICE=eth1

NAME=eth1

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

Step 7. Reboot the system with the reconfiguration:

shutdown -r now

Note Interfaces on the “data network” of OpenStack are not mandated to have an IP

address defined when tenant networks are VLAN based.

ptg17123584

Deploying OpenStack 227

Step 8. Configure the IP addresses on interfaces that need to be used for OpenStack

management and the external network (for example, eth3 with IP addresses

in the range 192.168.1.22/24):

TYPE=Ethernet

DEVICE=eth3

NAME=eth3

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPADDR=192.168.1.22

NETMASK=255.255.255.0

GATEWAY=192.168.1.1

DNS1=8.8.8.8

DNS2=8.8.4.4

Step 9. Once the interfaces have been configured, shut down the server and restart

the network service so the configuration can take effect. To do this, as root,

issue the following command:

/etc/init.d/network restart

Step 10. OpenStack networking currently does not work on systems that have the

NetworkManager service enabled. Use this configuration command, as root

user, to disable the NetworkManager server:

systemctl stop NetworkManager

systemctl disable NetworkManager

Step 11. Start and enable the standard network service:

systemctl start network.service

systemctl enable network.service

Step 12. Each host machine deployed in OpenStack must register to Red Hat

Subscription Management to receive updates from Red Hat Network. To

allow Packstack to install OpenStack on each host, activate the correct sub-

scriptions and repos as follows:

https://access.redhat.com/products/red-hat-enterprise-linux-openstack-
 platform/get-started

Subscribe the system via Red Hat Subscription Management and confirm that

an OpenStack subscription is attached:

subscription-manager register

#Username : <userID>

#Password: <password>

subscription-manager subscribe --auto

subscription-manager list –consumed

https://access.redhat.com/products/red-hat-enterprise-linux-openstack-
https://access.redhat.com/products/red-hat-enterprise-linux-openstack-

ptg17123584

228 Chapter 7: CSR in the SDN Framework

If an OpenStack subscription is not attached immediately, see the documen-

tation for manually attaching subscriptions.

Step 13. Clear the repositories that were initially set up and enable the ones needed

for OpenStack:

subscription-manager repos --disable=*

subscription-manager repos --enable=rhel-7-server-rpms

subscription-manager repos --enable=rhel-7-server-rh-common-rpms

Step 14. Install the necessary yum packages, adjust the repository priority, and update:

yum repolist

yum install -y yum-plugin-priorities yum-utils

Figure 7-3 shows an example output from the yum install of OpenStack and

the software collections associated with the operating system.

Figure 7-3 Sample Output from yum Install of OpenStack Packages

Execute the following commands to complete the yum package update:

#yum-config-manager --setopt="rhel-7-server-openstack-7.0-rpms.
 priority=1" --enable rhel-7-server-openstack-7.0-rpms

#yum update –y

ptg17123584

Deploying OpenStack 229

Figure 7-4 shows an example of output from enabling packages through

the Red Hat Subscription Manager and making them available for the yum

update utility.

Figure 7-4 Sample Output from Enabling Packages from the Red Hat Repository to yum

Step 15. Enable optional extras and OpenStack repos:

subscription-manager repos --enable=rhel-7-server-optional-rpms

subscription-manager repos --enable=rhel-7-server-extras-rpms

Figure 7-5 shows an example of output from enabling the optional

OpenStack repository.

Figure 7-5 Sample Output for Enabling the Optional OpenStack repository.

Step 16. Execute one of the following two options—but not both:

■ Option A for RHEL OSP7:

subscription-manager repos --enable=rhel-7-server-openstack-7.0-rpms

■ Option B for RDO (a community of people using and deploying

OpenStack on CentOS, Fedora , and Red Hat Enterprise Linux-RHEL):

yum install http:// rdoproject.org/repos/rdo-release.rpm

Step 17. Install other utilities:

yum install wget

#Is this ok [y/d/N]: y

yum install net-tools

#Is this ok [y/d/N]: y

yum install bind-utils

#Is this ok [y/d/N]: y

Step 18. Install Packstack:

yum install -y openstack-packstack

ptg17123584

230 Chapter 7: CSR in the SDN Framework

Figure 7-6 shows an output example of the Packstack installation through the

yum utility.

Figure 7-6 Sample Output from the OpenStack Packstack Installation

Step 19. Generate a Packstack answer file:

packstack --gen-answer-file=answer_file.txt

Step 20. Edit the Packstack answer file as follows (see Appendix A, “Sample Answer

File for Packstack”):

■ Add the IP addresses of the computing nodes.

■ Add physnet/bridge/interface information.

■ Update the Neutron type driver info to be VLAN (instead of the default

VxLAN).

■ Update usernames and passwords (CONFIG_KEYSTONE_ADMIN_PW,

CONFIG_KEYSTONE_DEMO_PW, CONFIG_DEFAULT_PASSWORD, and so on)

■ Enable the HEAT/CIELOMETER/TEMPEST install.

■ Enable the DEMO config.

■ Set CONFIG_CINDER_VOLUMES_SIZE=1400G or as much disk space as can

be spared from / on the control node.

Example 7-1 shows an abbreviated sample answer file for Packstack; see

Appendix A for the entire output .

ptg17123584

Deploying OpenStack 231

Example 7-1 Sample Answer File for Packstack

[general]

Default password to be used everywhere (overridden by passwords set

for individual services or users).

CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub

CONFIG_DEFAULT_PASSWORD=Lab_P@sswd

CONFIG_MARIADB_INSTALL=y

Install OpenStack Image Service (glance)

CONFIG_GLANCE_INSTALL=y

Install OpenStack Block Storage (cinder)

CONFIG_CINDER_INSTALL=y

Install OpenStack Shared File System (manila)

CONFIG_MANILA_INSTALL=y

Install OpenStack Compute (nova)

CONFIG_NOVA_INSTALL=y

Install OpenStack Networking (neutron)

CONFIG_NEUTRON_INSTALL=y

Install OpenStack Dashboard (horizon)

CONFIG_HORIZON_INSTALL=y

Install OpenStack Object Storage (swift)

CONFIG_SWIFT_INSTALL=y

Install OpenStack Metering (ceilometer)

CONFIG_CEILOMETER_INSTALL=y

Install OpenStack Orchestration (heat)

CONFIG_HEAT_INSTALL=y

CONFIG_SAHARA_INSTALL=n

CONFIG_TROVE_INSTALL=n

CONFIG_IRONIC_INSTALL=n

CONFIG_CLIENT_INSTALL=y

CONFIG_NAGIOS_INSTALL=y

CONFIG_DEBUG_MODE=n

CONFIG_AMQP_NSS_CERTDB_PW=Lab_P@sswd

CONFIG_AMQP_AUTH_USER=amqp_user

CONFIG_AMQP_AUTH_PASSWORD=Lab_P@sswd

CONFIG_KEYSTONE_ADMIN_USERNAME=admin

CONFIG_KEYSTONE_ADMIN_PW=Lab_P@sswd

CONFIG_KEYSTONE_DEMO_PW=Lab_P@sswd

Size of Block Storage volumes group. the size of the volume group

will restrict the amount of disk space that you can expose to

Compute instances.

CONFIG_CINDER_VOLUMES_SIZE=1400G

CONFIG_MANILA_DB_PW=Lab_P@sswd

CONFIG_MANILA_KS_PW=Lab_P@sswd

CONFIG_MANILA_NETWORK_TYPE=neutron

CONFIG_IRONIC_DB_PW=Lab_P@sswd

CONFIG_IRONIC_KS_PW=Lab_P@sswd

Private interface for flat DHCP on the Compute servers.

ptg17123584

232 Chapter 7: CSR in the SDN Framework

CONFIG_NOVA_COMPUTE_PRIVIF=eth1.10

The name of the Open vSwitch bridge (or empty for linuxbridge) for

the OpenStack Networking L3 agent to use for external traffic.

Specify 'provider' if you intend to use a provider network to handle

external traffic .

CONFIG_NEUTRON_L3_EXT_BRIDGE=br-ex

Specify 'y' to install OpenStack Networking's Load-Balancing-

as-a-Service (LBaaS)

CONFIG_LBAAS_INSTALL=y

Specify 'y' to install OpenStack Networking's L3 Metering agent

CONFIG_NEUTRON_METERING_AGENT_INSTALL=y

Specify 'y' to configure OpenStack Networking's Firewall-

as-a-Service (FWaaS)

CONFIG_NEUTRON_FWAAS=y

list of network-type driver entry points to be

loaded from the neutron.ml2.type_drivers namespace

CONFIG_NEUTRON_ML2_TYPE_DRIVERS=local,vlan,flat,gre,vxlan

Network types to allocate as tenant networks (local, vlan, gre, vxlan)

CONFIG_NEUTRON_ML2_TENANT_NETWORK_TYPES=vlan

CONFIG_NEUTRON_ML2_MECHANISM_DRIVERS=openvswitch

CONFIG_NEUTRON_ML2_FLAT_NETWORKS=*

list of <physical_network>:<vlan_min>:<vlan_max> or

<physical_network> specifying physical_network names usable for VLAN

provider and tenant networks, as well as ranges of VLAN tags on each

available for allocation to tenant networks.

CONFIG_NEUTRON_ML2_VLAN_RANGES=physnet1:2:4094

list of <vni_min>:<vni_max> tuples enumerating ranges of

VXLAN VNI IDs that are available for tenant network allocation.

CONFIG_NEUTRON_ML2_VNI_RANGES=5001:10000

CONFIG_NEUTRON_L2_AGENT=openvswitch

CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=physnet1:br-data

list of colon-separated Open vSwitch <bridge>:<interface> pairs.

The interface will be added to the associated bridge. If you desire

the bridge to be persistent a value must be added to this directive,

also CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS must be set in order to

create the proper port.CONFIG_NEUTRON_OVS_BRIDGE_IFACES=br-data:eth1.10

CONFIG_NEUTRON_OVS_VXLAN_UDP_PORT=4789

CONFIG_HEAT_DB_PW=Lab_P@sswd

CONFIG_HEAT_KS_PW=Lab_P@sswd

CONFIG_HEAT_DOMAIN_ADMIN=heat_admin

CONFIG_HEAT_DOMAIN_PASSWORD=Lab_P@sswd

Specify 'y' to provision for demo usage and testing

CONFIG_PROVISION_DEMO=y

Specify 'y' to configure the OpenStack Integration Test Suite

(tempest) for testing.

CONFIG_PROVISION_TEMPEST=y

CONFIG_PROVISION_DEMO_FLOATRANGE=172.24.4.224/28

ptg17123584

Deploying OpenStack 233

CONFIG_PROVISION_TEMPEST_USER=admin

CONFIG_PROVISION_TEMPEST_USER_PW=Lab_P@sswd

CONFIG_SAHARA_DB_PW=Lab_P@sswd

CONFIG_SAHARA_KS_PW=Lab_P@sswd

CONFIG_TROVE_DB_PW=Lab_P@sswd

CONFIG_TROVE_KS_PW=Lab_P@sswd

CONFIG_TROVE_NOVA_USER=admin

CONFIG_TROVE_NOVA_TENANT=services

CONFIG_TROVE_NOVA_PW=Lab_P@sswd

Step 21. Run Packstack with the answer file:

packstack --answer-file=answer_file.txt

Deployment time can be significant; Packstack provides continuous updates

indicating which manifests are being deployed as it progresses. Once the pro-

cess is completed, a confirmation message similar to that shown in Figure 7-7

is displayed.

ptg17123584

234 Chapter 7: CSR in the SDN Framework

Figure 7-7 Sample Output from the OpenStack Installation Using Packstack

ptg17123584

CSR as an OpenStack Tenant Deployment 235

CSR as an OpenStack Tenant Deployment
This section provides the steps for instantiating CSR as an OpenStack tenant VM:

Step 1. Download the CSR 1000V qcow2 image from the Cisco.com website.

Step 2. Log in to the OpenStack dashboard (http://<IP Address>/dashboard) from a

browser, as shown in Figure 7-8 .

Figure 7-8 OpenStack Dashboard Login

Step 3. Upload the CSR 1000V image by navigating to Admin > Images > Create

Image or using the glance CLI. Set both Minimum Disk and Minimum RAM

to 0, as shown in Figure 7-9. Example 7-2 shows the use of the glance CLI

to add a CSR 1000V image.

Figure 7-9 OpenStack VM Image Creation

http://<IP Address>/dashboard

ptg17123584

236 Chapter 7: CSR in the SDN Framework

Note To use the CLI, su to root on the OSP7 server and set source keystonerc_

admin before running the CLI.

Example 7-2 Example of Using the glance CLI to Add a CSR 1000V Image

source keystonerc_admin

csr1kvImageSrc="/home/stack/csr_images/csr1000v-universalk9.03.16.00.S.155-3.S-ext.
qcow2"

csr1kvImageName="csr1000v-3_16"

csr1kvDiskFormat="qcow2"

csr1kvContainerFormat="bare"

csr1kvGlanceExtraParams="--property hw_vif_model=virtio --property hw_disk_
bus=virtio --property hw_cdrom_bus=ide"

tenantId='keystone tenant-list | grep " admin "| cut -f 2 -d'|''

glance image-create --name $csr1kvImageName --owner $tenantId --disk-format \

 $csr1kvDiskFormat --container-format $csr1kvContainerFormat \

 --file $csr1kvImageSrc $csr1kvGlanceExtraParams --is-public true

Use the glance CLI to verify that the CSR 1000V image is added correctly:
glance image-list

glance image-show csr1000v-3_16

Step 4. The CSR 1000V as an OpenStack tenant VM requires a minimum of two

vCPUs and 4GB of RAM. Create a custom flavor for CSR with 4GB of RAM,

zero disks, and two vCPUs by selecting Admin > Flavors > Create Flavor and

making the settings shown in Figure 7-10.

Figure 7-10 OpenStack Custom VM Flavor

ptg17123584

CSR as an OpenStack Tenant Deployment 237

Alternatively, use the nova CLI to create a flavor with an ID of 100, 4GB of

RAM, zero disks, and two vCPUs, as follows:

nova flavor-create csr.2vcpu.4gb 100 4096 0 2

nova flavor-list

nova flavor-show csr.2vcpu.4gb

Step 5. To create the public network and internal network within OpenStack, navi-

gate to Project > Network > Network Topology > Create Network and fill

out the form as shown in Figure 7-11. Then click Next.

Figure 7-11 OpenStack Create Network Submenu

Enter the subnet name, network address, and gateway IP as shown in Figure

7-12, and then click Next.

Figure 7-12 OpenStack Network Subnet Information

ptg17123584

238 Chapter 7: CSR in the SDN Framework

Enable DHCP as shown in Figure 7-13 and enter the DHCP pool address

range in the Allocation Pools field. Fill in the DNS Name Servers and Host

Routes fields if relevant.

Figure 7-13 OpenStack Network Subnet Detail

Alternatively , use the neutron CLI to create the subnets:

neutron net-create net-mgmt --provider:network-type localneutron
 subnet-create --name subnet-172-20-1 net-mgmt 172.20.1.0/24

neutron net-create net-internal --provider:network-type localneutron
 subnet-create --name subnet-172-16-1 net-int 172.16.1.0/24

To verify the subnets, use the following neutron command:

neutron net-listneutron net-show <net-name or uuid>neutron
 subnet-listneutron subnet-show <subnet-name or uuid>neutron
 port-listneutron port-show <port name or uuid>

Step 6. Create a neutron router and attach it to the internal and public network.

From the OpenStack dashboard navigate to Project > Network > Network

Topology > Create Router. The Create Router dialog appears, as shown in

Figure 7-14.

ptg17123584

CSR as an OpenStack Tenant Deployment 239

Figure 7-14 OpenStack Create Router Dialog

On the network topology page, click on the newly created neutron router

icon and click Add Interface, as shown in Figure 7-15, to attach the router to

the public and internal networks.

Figure 7-15 OpenStack Attaching neutron Router Interfaces

Here is an example of using the neutron CLI to create the router and attach

it to the internal and public networks :

neutron router-create neutron-rtr-1

neutron router-interface-add neutron-rtr-1 subnet=subnet-10-20-1

neutron router-interface-add neutron-rtr-1 subnet=subnet-172-16-1

neutron router-gateway-set neutron-rtr-1 public

neutron router-port-list neutron-rtr-1

ptg17123584

240 Chapter 7: CSR in the SDN Framework

To verify that the neutron router is active and running, enter the following at

the neutron CLI:

neutron route-list

neutron router-show <router name or uuid>

neutron port-list

neutron port-show <port name or uuid>

Step 7. Create a file for the CSR 1000V default configuration script when it boots

up. Example 7-3 shows a sample of the configuration script.

Example 7-3 Confi guration Script Sample

hostname csr1000v

line con 0

 logging synchronous

 transport preferred none

line vty 0 4

 login local

 transport preferred none

 transport input ssh

username stack priv 15 secret cisco

interface GigabitEthernet1

 ip address 10.11.12.2 255.255.255.0

 no shutdown

ip route 0.0.0.0 0.0.0.0 GigabitEthernet1 10.11.12.1

virtual-service csr_mgmt

 ip shared host-interface GigabitEthernet1

 activate

license accept end user agreement

license boot level premium

Step 8. Launch the CSR 1000V instance. From the dashboard, go to Project >

Network > Network Topology > Launch Instance . Enter the instance name,

choose the custom flavor created for the CSR 1000V, and select the CSR

1000V qcow2 image in Image Name (see Figure 7-16).

ptg17123584

CSR as an OpenStack Tenant Deployment 241

Figure 7-16 OpenStack Launching a VM Instance

On the Networking tab, select the networks the CSR 1000V will join (see

Figure 7-17).

Figure 7-17 OpenStack VM Instance Network Detail

ptg17123584

242 Chapter 7: CSR in the SDN Framework

You can also launch the CSR 1000V tenant VM by using the following at the

nova CLI:

nova boot --image csr1000v-3_16 --flavor csr.2vcpu.4gb
 --nic port-id=$MGMT_PORT_ID --nic port-id=$INTN_PORT_ID
 --nic port-id=$EXTN_PORT_ID --config-drive=true
 --file iosxe_config.txt=/opt/stack/iosxe_config.txt csr1000v-3_16

Step 9. Access the CSR 1000V console via the network topology page and click on

the CSR 1000V instance to open the console access (see Figure 7-18). From

there you can monitor the boot process of the VM.

Figure 7-18 OpenStack CSR 1000V Splash Screen for grub

Instantiate CSR Plugin to OpenStack
OpenStack gives a cloud operator an open source platform for creating new services in a

cloud environment. nova took care of the initial networking component of OpenStack,

via nova’s own networking service, called nova-network. It has since then been super-

seded by the Neutron component introduced in the Folsom release. nova-network is

still present today and can be used instead of Neutron. It is important to understand the

difference between Neutron and nova-network.

ptg17123584

Instantiate CSR Plugin to OpenStack 243

nova-network has the following capabilities:

■ Flat Network Manager offers Linux bridge for basic flat layer 2 network functions

■ Flat DHCP Network Manager (dnsmasq) for IP address allocation and management

■ Configuration of firewall policies and NAT in IPTables

■ VLAN Network Manager supports VLAN Network mode for direct bridging, direct

bridging with DHCP, and segments based on VLAN boundary

One of the limitations of nova-network is having three simple modes of networking that

only support VLAN-based segmentation (with a max scale of 4094 VLANs). The nova-

network stack lacks support for features like ACL and QoS. In addition, it is unable to

leverage or integrate with third-party network vendors. Project Neutron incubated in

April 2011 and was promoted to a core project at Folsom Summit in April 2012 to take

care of these limitations. Neutron provides the ability to run multiple instances with an

OpenStack-like rich feature set of APIs, plugin architecture for services, and a modular

Layer 2. The plugin architecture of Neutron enables it to leverage more than one plugin

at a given time.

Figure 7-19 shows the framework for the OpenStack Neutron plugin.

REST API

Neutron Service
Plugins

Neutron Core
Plugins

C
is

co
 N

ex
us

,
N

1K
O

M
or

e
Ve

nd
or

Pl
ug

in
s

O
VSM
L2

O
pe

nD
ay

Li
gh

t

M
or

e
Ve

nd
or

D
riv

er
s

AP
IC

O
VS

C
is

co
 N

ex
us

VX
LA

N
G

R
E

VL
AN

O
pe

nS
w

an
Fu

tu
re

s

IP
Ta

bl
es

H
A

Pr
ox

y

VP
N

L3
Se

rv
ic

es

Fi
re

w
al

l

Lo
ad

 B
al

an
ce

r

Southbound Interfaces

Type
Drivers

Mechanism
Drivers

Neutron
Server

Message
Queue

DHCP
Agent

L3Agent
IPTables

on Network
Node

L2Agent
OVS on
Compute

Node

Core API Resource and Attribute Extension API
Network Port
Subnet

ProviderNetwork PortBinding Router Quotas SecurityGroups
AgentScheduler LBaaS FWaaS VPNaaS ...

Figure 7-19 Neutron Plugin Framework

Figure 7-19 clearly shows a hierarchical structure for the plugins, as core and services

plugins. You should be familiar with this diagram from Chapter 6, where we discussed

OpenStack and CSR 1000V use cases. Core plugins offer Layer 2 and Layer 3

ptg17123584

244 Chapter 7: CSR in the SDN Framework

networking features such as VLAN, VxLAN, and GRE. The services plugin adds

capabilities like firewalls, load balancers, and VPNs to the feature list that the OpenStack

framework can support. There are limitations to the core and service plugins native to

OpenStack. For example, the Neutron NAT function uses Linux IPTables for NAT,

which has severe scale limitations. You can overcome these limitations by leveraging the

CSR 1000V as an OpenStack plugin that offers robust Layer 3 forwarding and security

service capabilities. OpenStack is a framework that can scale to different features and

vendor-specific capabilities through the plugin architecture.

Chapter 6 covered how to deploy a CSR 1000V router as a neutron using plugins. Using

devStack simplifies the process of replacing a neutron router with CSR 1000V. The

plugins required for doing this can be retrieved from GitHub as detailed in the following

steps (GitHub is a web-based Git hosting repository service):

Step 1. Install the Ubuntu server:

http://www.ubuntu.com/download/server/install-ubuntu-server

Step 2. Set these basic variables:

■ If your setup is behind a proxy server, add the following environment

variables in the .bashrc file:

export PROXY_HOST=proxyHost.cisco.com:80 export https_proxy=
 https://$PROXY_HOST/

export http_proxy=http://$PROXY_HOST/

export ftp_proxy=http://$PROXY_HOST/

export HTTPS_PROXY=https://$PROXY_HOST/

export HTTP_PROXY=http://$PROXY_HOST/

export FTP_PROXY=http://$PROXY_HOST

export no_proxy="IpAddress"

■ If your setup is behind a proxy server, switch git:// to https:// for git to

work properly:

git config --global url."https://".insteadOf git://

git config --global https.insteadOf.git

■ Disable network-manager if it is running via the following command:

sudo stop network-manager

Step 3. Download the CSR image qcow2.

Step 4. Download the OpenStack release kilo devstack from the OpenStack host

server. After you install it, the directory devstack will be created under

home directory:

cd ~/ git clone https://github.com/openstack-dev/devstack.git

ptg17123584

Summary 245

Step 5. Set the devstack configuration file:

Create localrc.conf or localrc file under ~/devstack directory and
 setup variables accordingly per your server setup.

Include the following in localrc or local.conf to download and install

networking-cisco:

enable_plugin networking-cisco https://github.com/openstack/
 networking-cisco.git master enable_service net-cisco

For CSR Routing-aaS, enter the following commands:

enable_service q-ciscorouter

enable_service ciscocfgagent

For CSR VPN-aaS, enter the following. Ensure that CSR Routing-aaS is

enabled.

enable_service cisco_vpn

For CSR FW-aaS, enter the following. Ensure that CSR Routing-aaS is

enabled.

enable_service cisco-fwaas

The CSR 1000V now has the plugin in OpenStack to replace the neutron router that

OpenStack uses by default. CSR 1000V (with a plugin running in OpenStack) offers

a more feature-rich virtual routing functionality that compliments the OpenStack

environment.

Summary
This chapter reviews the importance of SDN concepts in cloud environments. The SDN

architecture has a basic framework that includes APIs, overlay, and controllers. The

deployment and consumption of SDN depends on the user environments and also the

hardware/software vendors involved. OpenStack provides cloud operators a framework

and flexibility to manage a cloud environment. OpenStack also allows admins to leverage

vendor-specific plugins to build new capability in the cloud infrastructure. You should

now be comfortable deploying OpenStack and leveraging Neutron.

https://github.com/openstack/

ptg17123584

This page intentionally left blank

ptg17123584

You already know to install a CSR on different hypervisor environments. In a large-scale

deployment, manual processes increase the operational complexity of managing an NFV

infrastructure. Automation in provisioning and management plays a major role in adopting

NFV services in the data center or cloud environment. In this chapter you learn about the

various tools available for simplifying orchestration and management of the CSR 1000V.

The terms orchestration and automation are sometimes used interchangeably. However,

they are different. Automation involves achieving the completion of a single task, such

as configuring a service on a router. Orchestration, on the other hand, involves automat-

ing a series of events to achieve a complete workflow or process.

Let us view this from a cloud perspective now. Cloud automation includes tasks that

are required for deploying a cloud resource, such as spinning a routing instance (a

virtual router, for example) in the cloud. Just this act of spinning a VM in the cloud

should be considered automation. When you configure this instance, make it interact

with other elements/instances and piece together a solution, it is orchestration.

Orchestrating a network solution can be broken down into the following high-level tasks:

■ Creating an entity to service a networking requirement. In this chapter, this funda-

mental entity is a CSR. The CSR is the routing element that sits at the heart of the

solution. The tool we discuss in this chapter for spawning a CSR is Cisco Build,

Deploy, Execute OVF (BDEO).

■ Managing the entity created using tools like Elastic Service Controller (ESC) that are

popular for lifecycle management of VMs.

■ Configuring the entity created. In this chapter, this configuration automation is

done by Cisco Network Services Orchestrator (NSO).

CSR 1000V Automation,
Orchestration, and
Troubleshooting

Chapter 8

ptg17123584

248 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

With creation, life cycle management, and configuration automated, solutions can be

designed to orchestrate a workflow and give turnkey solutions to customers. Virtual

Managed Services (VMS) and Prime Network Services Controller (PNSC) automation

solutions create a framework and use various tools to achieve service orchestration

functionality.

Automation
The following sections review two common tools used for automation. The effort of

automation varies based on the cloud use case that you intend to automate; the com-

plexity of the tools also depends on this. You will learn about the BDEO tool, which

is used to instantiate a single CSR 1000V instance, and the NSO tool, which is used to

accomplish service chaining and network nodes.

BDEO

The BDEO tool is available to instantiate a CSR 1000V router. This tool is available

when you download a CSR 1000V image from “CCO downloads.” As shown in Figure

8-1, the BDEO tool instantiates a CSR 1000V ISO image with the base configuration on

the hypervisor. An administrator can leverage the BDEO tool to instantiate multiple CSR

1000V instances with the base configuration.

CSR ISO

Physical Hardware

CSR 1000Vhostname CSR

interface GigabitEthernet1
 ip address 10.2.1.1 255.255.255.0
 no shut

interface GigabitEthernet2
 ip address 10.2.2.1 255.255.255.0
 no shut

BDEO Tool

IOS CLIs

Hypervisor

FP
RP

Figure 8-1 BDEO Overview

Note the following about the BDEO tool:

■ It is currently supported only with VMware ESXi.

■ It takes OVA (or ISO) as input. It outputs custom OVA, pre-provisioned with basic

IOS configuration elements (management IP address, SSH, hostname, and so on). It

is helpful for immediate provisioning.

ptg17123584

Automation 249

■ It is possible to apply a complete IOS config.txt, but you must deploy it via vCenter

and cannot reference the host directly

■ BDEO provides the intelligence to extract the config.info file and pass it to IOS,

and it requires VMware’s Open Virtualization Format (OVF) tool for deployment.

Note that for 3.9S1 and later versions of the CSR 1000V, the recommended tool for

single/standalone installation is the Common OVF Tool (COT) instead of BDEO. You can

use COD for editing the OVF of a virtual appliance with a focus on the Cisco CSR 1000V.

These are some of the key features of the BDEO tool:

■ Can edit OVF hardware information (CPUs, RAM, NICs, configuration profiles, etc.)

■ Can edit product description information in an OVF/OVA

■ Can edit OVF environment properties

■ Can embed a bootstrap configuration text file into an OVF/OVA

■ Can deploy an OVF/OVA to an ESXi (VMware vSphere or vCenter) server to provi-

sion a new VM

NSO (Tail-f)

The NSO tool is the same as Tail-f, which has been mentioned in earlier chapters. Figure

8-2 shows the architecture of NSO.

NSO Architecture

NSO Engine
Device ManagerNotification ReceiverAlarm Manager

JavaCLIRESTNETCONF

Service Manager

AAA Package
Manager

Core
Engine

Mapping
Logic

FastMap
Cache

Templates

Network Element Drivers

Figure 8-2 NSO Architecture

ptg17123584

250 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

The following are some of the highlights of the NSO architecture, which is defined using

a layered approach:

■ The connectivity to the user interface (UI) or any interface stack for user-defined

scripts for provisioning is handled with a rich set of tools, including NETCONF,

REST, CLI, SNMP, and Java.

■ The core engine described in Figure 8-2 is a key element of the NSO orchestra-

tion architecture. The core engine ties different blocks in the NSO architecture to

execute a defined function.

■ The NSO has a service manager that integrates the administrator-defined instruc-

tions to the orchestration engine.

■ The AAA layer provides the engine role-based access to the devices and also to

administrators accessing the device inventory.

■ The package manager acts like a plugin that attaches itself to the core engine. The

package manager provides flexibility for different use cases to be added to the

orchestration profile, like GUI deployment for specific functionality that allows the

pictorial representation of the orchestration and overview of health devices man-

aged by NSO.

■ The NSO engine is made up of the database with the mapping logic and fast map

cache. Mapping logic and templates enable you to map intended service operations

to network configuration required to implement the intended services. In other

words, this is where a service intent is mapped to the elements that need to be

modified to get the service implemented. Transactional integrity is maintained by

a database that stores the configuration of each device on-boarded by the device

manager. The unique thing that differentiates NSO from the rest of the orchestra-

tion tools is the capability to run non-real-time configuration event correlation of

the new command function on the CDB (configuration database) baseline templates

at fast Map cache. With FASTMAP you just need to specify the CREATE opera-

tion and not the REDEPLOY, UPDATE, and DELETE (RUD) operations. The RUD

operation is automatically generated by the FASTMAP logic. This is done by having

the NSO database view the actual as well as the intended device configurations for a

particular service.

■ The alarm manager manages alarms generated when there are errors pushing the

configurations to end devices (via the NED) and from simulated results run in the

Fast Map cache. The alarm manager can have a user-defined function written that

takes action when a fault appears during a real-time deployment. The action can be

a rollback, a log, or a priority-based log notification. The alarm manager is synced

with the notification receiver that receives real-time notification.

■ The device manager needs to be populated with a list of devices. This can be done

manually or via automatic discovery.

ptg17123584

Automation 251

■ The network element drivers (NED) allow the tool to communicate with different

device elements. This can also be vendor specific to collaborate with vendor capa-

bilities—for example, if a YANG-based model is not supported, then a NED can

be written to the vendor-specific CLI. These NEDs are part of the package manager

that attaches with the core engine and maps access to devices. The NED also adds

specific rules used in mapping engine services for the operation of NSO tool.

■ The process of configuring upgrades in the NSO tool involves these steps:

1. Provide provisioning instruction that is either UI driven (instruction communica-

tion through API, NETCONF, or through scripts) or user-provided CLI. The CLI

of NSO abstracts the vendor-specific CLI to the admin. It translates the NSO CLI

to the vendor-specific CLI in the NSO.

2. Register the devices to be managed in the device manager.

3. The NSO uses the device enlisted in the device manager to run the command

in FastMap and mapping service for optimal configuration. Any false alarm is

reviewed and assessed according to admin-defined rules.

4. The appropriate NED pushes the optimal device configuration to the devices.

5. The new configuration aligned to a new service is applied to a group of devices.

The NSO communicates with all the devices that are required to participate in

the service initiation provided by the admin. Any alarms on a single node are

provided as feedback to the notification receiver and alarm manager. The action

to the alarms is defined by the user-defined function, which can be a rollback to

baseline configuration before the change or log the alarm and continue.

6. After the new configuration is applied, the NSO adds the configuration to the CDB.

NSO is a very powerful tool and creates an abstraction for various functions. This

tool can be modified and inserted in multiple solutions that can use different UIs,

scripts for particular solutions, and NEDs as configuration management devices. For

orchestration of NFV elements, ESC adds extra elasticity in provisioning and the

life cycle that is helpful in cloud environments.

The deployment use case in NSO is explained in the simple three-tier layer shown in

Figure 8-3.

The northbound APIs can invoke and provide input to a service model written in YANG.

The service model provides a definition to the service functionality that needs to be

deployed. This generic model can be used with multiple tenant instances to derive the

same outcome. The device model is vendor-specific information that provides instruc-

tions for the device to function. This device model can cover CLI or YANG-based func-

tions and interacts with the NED to communicate with the end devices.

ptg17123584

252 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

Northbound APIs

Service Models

NED

Device Models

Figure 8-3 NSO Deployment Framework

NSO Example for NFV Orchestration with OpenStack (Service Chain)

Let’s review , step by step, the NSO deployment framework illustrated in Figure 8-4.

This workflow will help you visualize the deployment framework with an actual working

model of NFV deployment in an OpenStack environment:

Step 1: NSO initation to understand northbound API

and store the UI input to be used in the service and

device models.

Northbound APIs

Service Model (Step 4)

NED (Step 2)

Device Model (Step 3)

Figure 8-4 NSO Deployment Use Case Flow

ptg17123584

Automation 253

Step 1. Define the service chain in NSO to get called by the northbound UI. This

means designing the service, describing the intent (functionality that needs to

be performed), and describing the elements needed to facilitate the request

and input parameters that will be applied to the devices (speed, users, band-

width, and so on).

Example 8-1 shows a simple base script written in YANG for service chaining .

Example 8-1 Sample NSO Initiation to Understand Input to Be Used in the Service and
Device Model Framework

root@nso0:/nfv/poc/local/packages/serviceChain/src/yang# cat serviceChain.yang

module serviceChain {

 namespace "http://com/example/serviceChain";

 prefix serviceChain;

 import ietf-inet-types {

 prefix inet;

 }

 import tailf-common {

 prefix tailf;

 }

 import tailf-ncs {

 prefix ncs;

 }

 import resource-allocator {

prefix ralloc;

 }

 typedef deviceref {

type leafref {

path "/ncs:devices/ncs:device/ncs:name";

}

 }

 list dctopology {

 key dc-name;

 leaf dc-name {

type string;

 }

 leaf dc-type {

type enumeration {

enum core;

enum edge;

}

 }

ptg17123584

254 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

 leaf esc-os {

type deviceref;

 }

 leaf openstack {

type deviceref;

 }

 leaf vts-vc {

type deviceref;

 }

 container zenoss {

leaf ip {

type inet:ipv4-address;

}

leaf community {

type string;

}

 }

 container vcenter {

description "Configuration related to VMware, optional";

presence vcenter;

leaf vcenter {

description "vCenter device for this DC";

mandatory true;

type deviceref;

}

container esxi {

container asa {

leaf-list ip {

description "List of ESXi hosts for provisioning ASAv";

min-elements 1;

type inet:ipv4-address;

}

}

container csr {

leaf-list ip {

description "List of ESXi hosts for provisioning CSR";

min-elements 1;

type inet:ipv4-address;

}

}

}

leaf vswitch {

ptg17123584

Automation 255

description "vSwitch where additional ports will be created";

mandatory true;

type string;

}

container mgmt-network {

description "Management interface configuration";

leaf mgmt-ip-pool {

description "resource-allocator ip-address-pool for management IPs";

type leafref {

path "/ralloc:resource-pools/ralloc:ip-address-pool/ralloc:name";

}

}

container mgmt-route-network {

description "Network to use when setting up route to mgmt gateway";

leaf network {

type inet:ipv4-address;

}

leaf netmask {

type inet:ipv4-address;

}

}

}

leaf datastore {

description "Datastore for deployed VNFs";

default datastore1;

type string;

}

 }

 leaf border-leaf {

description "Border leaf to be used as a gateway";

type inet:ipv4-address;

default 192.168.101.1;

 }

 }

 augment /ncs:services {

 list serviceChain {

description "Instantiate the service chaining function";

key name;

ptg17123584

256 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

leaf name {

tailf:info "Unique service id";

tailf:cli-allow-range;

type string;

}

uses ncs:service-data;

ncs:servicepoint serviceChain-servicepoint;

leaf tenant { // pass to ESC

type string;

mandatory true;

}

container status {

config false;

tailf:cdb-oper { tailf:persistent true; }

leaf serviceChain-phase {

type enumeration {

enum tenant;

enum network;

enum day0;

enum day1;

enum finished;

}

}

}

list vm {

key name;

leaf name {

type string;

}

leaf dc {

type leafref {

path "/serviceChain:dctopology/serviceChain:dc-name";

}

mandatory true;

}

leaf vim-type {

type enumeration {

enum openstack;

enum vcenter;

}

mandatory true;

ptg17123584

Automation 257

}

leaf vm-type {

type enumeration {

enum asa;

enum csr;

}

}

container ip-pool {

when "../vm-type = 'asa'";

list pool {

max-elements 1;

min-elements 1;

key "start end";

leaf start {

type inet:ipv4-address;

}

leaf end {

type inet:ipv4-address;

}

leaf mask {

mandatory true;

type inet:ipv4-address;

}

}

}

container acl {

when "../vm-type = 'csr'";

list access-list {

ordered-by user;

key name;

leaf name {

type string;

}

leaf protocol {

default ip;

type enumeration {

enum ip;

enum icmp;

enum tcp;

enum udp;

}

}

leaf src-ip {

mandatory true;

ptg17123584

258 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

type inet:ipv4-address;

}

leaf src-mask {

mandatory true;

type inet:ipv4-address;

}

leaf src-port {

when "../protocol = 'tcp' or ../protocol = 'udp'";

type union {

type uint16;

type enumeration {

enum any;

}

}

}

leaf dest-ip {

mandatory true;

type inet:ipv4-address;

}

leaf dest-mask {

mandatory true;

type inet:ipv4-address;

}

leaf dest-port {

when "../protocol = 'tcp' or ../protocol = 'udp'";

type union {

type uint16;

type enumeration {

enum any;

}

}

}

leaf action {

mandatory true;

type enumeration {

enum permit;

enum deny;

}

}

}

}

list interface {

max-elements 3;

min-elements 3;

key name;

leaf name {

ptg17123584

Automation 259

type string;

}

leaf network-type {

type enumeration {

enum mgmt;

enum private;

enum external;

}

}

leaf ip {

type inet:ipv4-address;

}

leaf mask {

type inet:ipv4-address;

}

leaf is-managed {

type empty;

}

leaf network-name {

type string;

}

leaf subnet-prefix {

when "boolean(../is-managed)";

type inet:ip-prefix;

}

leaf gateway-ip {

when "boolean(../is-managed)";

type inet:ip-address;

}

} //interface

} // vm

tailf:action remove-service {

tailf:info "Remove service";

tailf:actionpoint serviceChain-remove-service;

output {

leaf success {

type boolean;

}

leaf message {

type string;

description "Free format message.";

}

}

}

ptg17123584

260 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

 } //serviceChain

 }

 augment "/ncs:devices/ncs:device" {

 leaf transition-workaround-ready {

description "Workaround for checking readiness of device - transition package

is weird after redeploy";

config false;

tailf:cdb-oper {

tailf:persistent true;

}

type boolean;

 }

 }

}

This model provides basic elements needed for service chaining and defines

the parameters of the VNF component and base configuration that can be

orchestrated from the user using REST API or XML structure. Using this

script, the NSO captures the functionality of the service chaining elements.

Translating this to vendor-specific configuration needs special templates that

tie to the NED (vendor-specific attributes). Multiple models can use these

templates. The templates are vendor/device specific and are not covered in

this book. This base template provides NSO a framework that enables it to

receive inputs from the user interface.

Step 2. NSO should have the appropriate NEDs to communicate with the infrastruc-

ture southbound. The command ls –l $NCS_APP/packages helps verify the

installation of the packages for the NEDs, as shown in Example 8-2 .

Example 8-2 Sample of Installed NED Verifi cation

ls -1 $NCS_APP/packages/

cisco-asa

cisco-ios

cisco-iosxr

cisco-vpp

 CSR specific packages

##find cisco IOS

cisco-ios

cisco-ios/src

cisco-ios/src/ncsc-out

cisco-ios/src/ncsc-out/modules

cisco-ios/src/ncsc-out/modules/fxs

cisco-ios/src/ncsc-out/modules/fxs/tailf-ned-cisco-ios.fxs

cisco-ios/src/ncsc-out/modules/fxs/tailf-ned-cisco-ios-stats.fxs

ptg17123584

Automation 261

cisco-ios/src/ncsc-out/modules/fxs/tailf-ned-cisco-ios-id.fxs

cisco-ios/src/ncsc-out/modules/yang

cisco-ios/src/ncsc-out/modules/yang/tailf-ned-cisco-ios-id.yang

cisco-ios/src/ncsc-out/modules/yang/tailf-ned-cisco-ios-stats.yang

cisco-ios/src/ncsc-out/modules/yang/tailf-ned-cisco-ios.yang

...

Step 3. Onboard VNF descriptors detail the characteristics of the VNF, such as

capabilities (like firewall or router), resources required (CPU, storage, and

so on), and artifacts to instantiate it (disk image). This is the device package

in the deployment hierarchy. Example 8-3 provides an example of VNF

descriptor definition. In this example, the ASA and CSR are both defined

as VNF descriptors. These two instances will be reviewed in later service

chaining steps.

Example 8-3 Sample Defi nition of VNF Descriptors

mano {

+ vnfd ASA941 {

+ version 9.4.1;

+ connection-points inside {

+ flavour small;

+ vdu ASA;

+ nic-id 2;

+ }

+ connection-points outside {

+ flavour small;

+ vdu ASA;

+ nic-id 1;

+ }

+ flavours small {

+ vdus ASA {

+ vm-spec {

+ pkg-uri http://192.168.100.16/nfv/qcow/asa941-200.qcow2;

+ disk-format qcow2;

+ }

+ storage root-disk {

+ size-gb 10;

+ storage-type root;

+ }

+ cpu {

+ num-vpu 2;

+ }

+ memory {

+ total-memory-gb 4;

+ }

ptg17123584

262 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

+ device-type {

+ cli {

+ ned-id cisco-asa;

+ }

+ }

+ authgroup asa;

+ day0 {

+ source-url http://192.168.100.16/nfv/day0/ASA_941_day0.txt;

+ destination-file day0-config;

+ }

+ }

+ }

+ vnfm {

+ esc esc0;

+ }

+ }

+ vnfd CSR313 {

+ version 3.13.01;

+ connection-points left {

+ flavour small;

+ vdu CSR;

+ nic-id 1;

+ }

+ connection-points right {

+ flavour small;

+ vdu CSR;

+ nic-id 2;

+ }

+ flavours small {

+ vdus CSR {

+ vm-spec {

+ pkg-uri http://192.168.100.16/nfv/qcow/csr1000v-universalk
9.03.13.01.S.154-3.S1-ext.qcow2;

+ disk-format qcow2;

+ }

+ storage root-disk {

+ size-gb 8;

+ storage-type root;

+ }

+ cpu {

+ num-vpu 1;

+ }

+ memory {

+ total-memory-gb 3;

+ }

+ device-type {

ptg17123584

Automation 263

+ cli {

+ ned-id cisco-ios;

+ }

+ }

+ authgroup csr;

+ day0 {

+ source-url http://192.168.100.16/nfv/day0/CSR_day0.txt;

+ destination-file iosxe_config.txt;

+ }

+ disk-bus virtio;

+ serial-console true;

+ e1000-net true;

+ }

+ }

+ vnfm {

+ esc esc0;

+ }

+ }

+ management-ip-pool net_osmgmt;

+ nsd advanced {

+ connection-points a {

+ member-vnf fw;

+ vnfd-connection-point inside;

+ }

+ connection-points z {

+ member-vnf router;

+ vnfd-connection-point right;

+ }

+ flavours small {

+ member-vnfs fw {

+ vnfd ASA941;

+ flavour small;

+ vdu ASA;

+ }

+ member-vnfs router {

+ vnfd CSR313;

+ flavour small;

+ vdu CSR;

+ }

+ }

+ }

+ nsd basic {

+ connection-points a {

+ member-vnf router;

+ vnfd-connection-point left;

+ }

ptg17123584

264 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

+ connection-points z {

+ member-vnf router;

+ vnfd-connection-point right;

+ }

+ flavours small {

+ member-vnfs router {

+ vnfd CSR313;

+ flavour small;

+ vdu CSR;

+ }

+ }

+ }

 }

 devices {

 authgroups {

+ group asa {

+ default-map {

+ remote-name admin;

+ remote-password 4wIo7Yd068FRwhYYI0d4IDw==;

+ remote-secondary-password 4wIo7Yd068FRwhYYI0d4IDw==;

+ }

+ }

 }

 }

Step 4. Service is deployed between VNF and a physical device for Layer 3 con-

nectivity from the OpenStack CSR tenant to an external physical device. This

ties the device package with the service package, creating a customized ser-

vice chained configuration. Example 8-4 is a sample for step 4 to instantiate

VNF for ASA and CSR with service chaining.

Example 8-4 Sample VNF Instantiation

vpn {

+ l3 ACME { << A L3 service for
customer ACME

+ as-number 65000;

+ endpoint branch-office { << First endpoint, the
branch office

+ ce-device ce7;

+ virtual { << Denotes we need a
virtual device

+ p-device p3;

+ nsd advanced; << Type of network service
descriptor (Defined in step

3 with the VNFD on-boarding – a service
chain of FW and RT)

ptg17123584

Automation 265

+ p-connection-point a;

+ ce-connection-point z;

+ vnfm esc0; << VNFM that will instantiate
the VNF

+ }

+ ce-interface GigabitEthernet0/1; << From here on, specify L3VPN
configurations

+ ip-network 172.14.1.0/24;

+ bandwidth 50000;

+ }

+ endpoint main-office { << Second endpoint, the main
office - Provider

+ ce-device ce4;

+ ce-interface GigabitEthernet0/1;

+ ip-network 172.15.1.0/24;

+ bandwidth 60000;

+ }

+ }

}

Once you commit step 4 on the NSO, the model is executed from the NSO. The NSO

uses the ESC to spawn the VNF elements .

The following steps illustrate script execution phases:

■ Before executing Step 4, no service is associated with the tenants (see Figure 8-5).

Figure 8-5 OpenStack Tenant

ptg17123584

266 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

■ Figure 8-6 shows the OpenStack tenant after execution of the script.

Figure 8-6 OpenStack Tenant After Execution

The following service chaining components are added after execution of the script:

■ ASA (see Figure 8-7)

Figure 8-7 OpenStack Tenant:-ASA Service Chaining

ptg17123584

Orchestration 267

■ CSR (see Figure 8-8)

Figure 8-8 OpenStack Tenant: CSR Service Chaining

Orchestration
Orchestration leverages automation engines to drive a user-defined function across mul-

tiple environments. Some of these tools leverage automation engines like NSO. The fol-

lowing sections describe the tools that are commonly used for orchestration.

Virtual Managed Services (VMS)

VMS is a solution for a single orchestrator that provides automation of provisioning and

management overview across the enterprise. Figure 8-9 shows a conceptual view from

the workflow and service components across the enterprise.

Service workflows cover the service initiation for the user-defined workflows. This

block consists of a tool that has a user-friendly interface to execute the workflows. The

domain orchestration involves individual tools used for service initiation for different

infrastructure solutions, as defined in Figure 8-9. This framework provides flexibility

in terms of choosing a tool that is relevant to the solution for a specific user interface,

domain orchestrator, or type of device configuration service.

ptg17123584

268 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

CPE Router Metro

Service
Chaining

(NFV)

On-Prem WAN Access

DC (Services/
Computing/
Network)

Service Workflows

Domain Orchestration

Figure 8-9 VMS Service Orchestration

As shown in Figure 8-10, the VMS solution covers the tools used for the tenant portal in

the Cisco Prime catalog: Orchestration is covered by NSO, and the instantiation of the

NFV elements is handled by the Elastic Services Controller (ESC). The NSO signals the

ESC to instantiate a new NFV element. The ESC also stores the initial configuration and

has a rule engine to access the elastic scale. This elastic scale is based on NFV monitoring

via SNMP and custom scripts. This function helps create a new NFV element on demand

if the CPU or load threshold increases in the existing NFV element. This is why the

VMS solution uses the ESC controller instead of using NSO directly for instantiation.

The architectural framework followed by the VMS orchestration tool is in alignment

with NFV Management and Orchestration (NFV MANO). NFV MANO covers the com-

plete orchestration solution in three parts:

■ NFV Orchestrator —Is responsible for provisioning network services and virtual

devices. In VMS terminology, the NSO takes the role of the NFV Orchestrator.

■ VNF Manager —Takes care of life cycle management of VNF instances. ESC in the

VMS framework takes care of VNF manager functionality.

■ Virtualized Infrastructure Manager (VIM) —Controls and manages the computing,

storage, and network resources. VIM is equivalent to OpenStack’s vCenter.

ptg17123584

Orchestration 269

Tenant Portal

OpenStack

Elastic Services Controller

Network Service Orchestration (NSO)

Figure 8-10 VMS Architecture

Cisco Prime Network Services Controller (PNSC)

PNSC is leveraged in enterprise private cloud deployments with traditional applications.

PNSC uses an information model architecture, where each managed device is represent-

ed as a subcomponent (or object). A service profile is a collection of device policies and

configuration templates predefined and applied to an NFV element or a group of NFV

elements. These predefined service profiles can be applied across multiple tenants to

take care of drafted service profiles using multiple NFV elements. This concept of using

multiple NFV profiles to create a service for a tenant is called service chaining. Figure

8-11 provides a pictorial view of service chaining.

The NFV components are grouped together with a specific profile. The service chaining

A and B profiles are used in tenants A and B. The same service chaining A profile can be

used in tenant C (a new tenant). Creating these groups helps provision a tenant within

minutes for a cloud environment. Cisco Prime has multi-hypervisor support and creates

service chaining through NFV components in different hypervisors. Most of the enter-

prise environments have vCenter deployed in their data centers to facilitate computing

virtualization. This tool fits in those environments to facilitate not only CSR provisioning

and configuration but also other NFV elements, like ASA 1000V and VSG. The deploy-

ment of configuration for these NFV instances is GUI driven and largely used for tradi-

tional data center management and operations. These are some of the important features

of the PNSC management solution:

■ In a vCenter environment, PNSC associates with the hypervisor and can view all the

host VMs seen by vCenter.

ptg17123584

270 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

Tenant A

Tenant B

Service Chaining - A

LBFW

IPS LBFW

Service Chaining - B

Figure 8-11 Service Chaining Concept

■ To accelerate the performance of service chaining in the virtual environment, you

can take advantage of the vPATH feature. The Cisco Nexus 1000V must be enabled

for the vPATH. PNSC associates itself with the Nexus 1000V to get visibility for the

administrator to manage all components that are important for service chaining.

■ Configuration of all features for the NFV components can be done via the PNSC,

such as security and routing policies.

■ An administrator can manage, create, define, and monitor the NFV elements via

this tool.

■ A server admin can associate a VM with network services aligned to a proposed

VM. This also can be done at VMware’s vCenter to provide transparent mapping of

network services on the computing orchestration tool.

Note The vPATH function of the Cisco Application Virtual Switch (AVS) or

Nexus 1000V provides abstraction of the forwarding plane by redirecting packets

to appropriate virtual service nodes that offer NFV services. vPATH steers traffic to

optimize the traffic flow between the host and the service chained elements.

These are the main steps to remember for installing PNSC in a vCenter computing

environment:

1. Create a tenant from vCenter and boot it with the correct OVA file. During this cre-

ation, the IP address for management should be added.

2. Register PNSC as a plugin to vCenter and accept the new plugin in vCenter. After

the registration, create VM membership at PNSC, pointing to the vCenter’s manage-

ment IP address.

3. Create service chaining for a workflow with the required NFV element.

ptg17123584

CSR 1000V Troubleshooting 271

CSR 1000V Troubleshooting
This section describes common debugging and troubleshooting issues with the CSR

1000V platform. It also details the troubleshooting steps to take with ESXi as the hyper-

visor. Since the CSR 1000V is a virtual router, this section has been divided into three

blocks involved in troubleshooting a CSR 1000V:

■ Architecture Overview—This section provides a summary of the architecture that is

covered in the earlier chapters and forms the base of the troubleshooting logic.

■ I/O Configuration—This section gives an overview of the I/O models that are cur-

rently supported with the CSR 1000V virtual machine running on an ESXi hypervi-

sor. It is important for a troubleshooter to understand the deployed I/O model

prior to troubleshooting.

■ Debugging Packet Loss—This section covers debugging techniques at the host/

hypervisor/XE level and provides the technical knobs to collect the data at different

architectural blocks covered while troubleshooting CSR 1000V.

Architecture Overview

Architecture of the CSR 1000V is covered in detail in the earlier chapters. Figure 8-12

illustrates the different components we analyze subsequently in the chapter to assist in

debugging and troubleshooting packet flow issues.

VPC/vDC

OSOS

Hypervisor

Virtual Switch

Server

CSR 1000V

FP
RP

AppApp

Figure 8-12 CSR 1000V Virtual Router Architectural Overview

From a high level, there are three components in the architecture (covered in detail in

earlier chapters) of the CSR 1000V virtual router:

■ The CSR 1000V VM—As detailed in previous chapters, the CSR VM leverages

the IOS XE software infrastructure. It runs on a Linux kernel with applications

running in the user space. IOSd and other IOS XE processes run in the user space.

ptg17123584

272 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

The CSR 1000V control plane is made up of IOSd and other IOS XE infrastructure

processes:

■ The CSR data plane consists of the RX, PPE, and the HQF threads. All these

components run on a single process within the QFP process, with multiple PPE

threads. The software infrastructure of the CSR data plane ensures efficient

movement of packets between the vNIC interface and the user space. The data

path “punts” packets to the control plane if required, and the control plane

“injects” data path packets to the vNIC interfaces.

■ The CSR 1000V supports the following configuration:

1-8 vCPUs, 2.5-16GB RAM, VMxNET3 drivers

■ The IOS XE control plane and data plane share a single vCPU (in the case of a

1vCPU configuration). In the case of a multi-vCPU configuration, the control

plane gets one vCPU. The remaining CPUs are allocated to the data plane.

■ Packet drops and troubleshooting should first be done at the virtual machine

level, using the IOS XE command-line interface that is provided.

■ The hypervisor software—This troubleshooting section assumes ESXi from

VMware as the hypervisor. As discussed in previous chapters, ESXi is a type 1

hypervisor that runs on the host machine and schedules resources. ESXi enables a

virtualized environment by scheduling resources for guest operating systems that

run on it. This chapter covers CSR 1000V on an ESXi hypervisor. It is important to

understand troubleshooting at the hypervisor level as the hypervisor software in cer-

tain cases could be the reason for packet drops.

■ The host machine—The host machine is the piece of hardware that the hypervisor

manages.

I/O Configuration
On a physical router, the physical interfaces are either built in to the hardware or made

available to the software by means of interface devices such as shared port adapters

(SPA). In a virtualized environment, the VM uses the physical NIC on the host machine

as an interface. There are multiple ways to connect a physical NIC to a CSR VM. It is

important to understand this connection methodology to be able to successfully debug

and troubleshoot an event. Performance and latency of a CSR 1000V will depend on

how the I/O connection is set up.

The most common way a physical NIC is made available to the CSR VM is via a virtual

switch.

vSwitch

A virtualized switch sits between a VM and the vNIC that the hypervisor presents. ESXi

supports VMware’s distributed vSwitch and Cisco’s Nexus 1000V. This chapter covers

VMware’s vSwitch.

ptg17123584

CSR 1000V Troubleshooting 273

Figure 8-13 illustrates the logical I/O model of a vSwitch.

CSR 1000V

vSwitch

Hypervisor

FP
RP

vNIC

Physical NIC

Figure 8-13 vSwitch Logical I/O Model

The virtual switch offers a Layer 2 connection between the VMs connected to it. It

does not support physical switch features like IGMP snooping and Spanning Tree

Protocol (STP).

Understanding the differences between a virtual switch and a physical switch will help

you better debug issues. These are two important differences that need to be highlighted:

■ There is no need for a virtual switch to learn unicast IP addresses or do IGMP

snooping to enable them to learn multicast groups. The reason is that the ESX server

has authoritative knowledge of the attached vNICs.

■ Virtual switches do not need to support STP. The reason is because you do not

need STP here to avoid loops. Because it is not possible to connect two virtual

switches together, the only way to create loops in a virtualized switch would be

to run bridging software as a guest VM. Hence STP is not required for a virtual-

ized switch. The vSwitch should function in promiscuous mode. In this mode, only

the objects defined within that port group have the option of receiving all incom-

ing traffic on the vSwitch. Interfaces outside the port group in the vSwitch do not

receive the traffic.

ptg17123584

274 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

PCI Passthrough

In PCI passthrough mode , the hypervisor software that manages the physical NIC

is completely bypassed using a Peripheral Component Interconnect Express (PCI-e)

passthrough configuration; the guest VM gets direct access to the hardware NIC. This

increases the throughput and reduces latency that would be introduced due to the

hypervisor scheduling the NIC. The disadvantage here is that the NIC is dedicated to

the VM, and virtualization for that NIC is not possible. You cannot use virtualization

features (like vMotion) that the hypervisor has to offer but need to use the NICs that are

supported by the guest VM. No driver is required on the ESX host machine. The guest

VM needs to have a driver to support the NIC. This I/O model is also referred to as

VM-DirectPath I/O.

CSR 1000V can work with Intel’s 1G and 10G NICs in a PCI-e passthrough mode, as

shown in Figure 8-14.

PC
I-e Passthrough M

ode
CSR 1000V

vSwitch

Hypervisor

FP
RP

vNIC A

Physical NIC A Physical NIC B

Figure 8-14 PCI-e Passthrough Logical I/O Model

SR-IOV (Single Root I/O Virtualization)

SR-IOV is a virtualization technique that allows a single PCI-e device to appear as mul-

tiple devices. This virtualization technology brings in the idea of physical and virtual

functions (PFs and VFs).

A PF is a full-featured PCI-e function, which means it is managed like any other PCI-e

device. A PF has a complete configuration resource, which means it completely owns the

PCI-e device and can move data in and out of the device.

ptg17123584

CSR 1000V Troubleshooting 275

VFs work like PFs except for the configuration resource piece. A VF does not have a

configuration resource because you do not want a VF to change the configuration. You

just need the VF to move data in and out. The control for configuration change rests

solely with the PFs, and the VF config should be dictated by the underlying PFs. VFs

are not complete PCI-e devices, and so the hypervisor must be aware of the fact that it

is dealing with an incomplete PCI-e device. This virtualization feature requires software

support at the hypervisor level. For SR-IOV to work, you need BIOS and hardware sup-

port as well as support in software at the hypervisor/OS level.

Figure 8-15 illustrates the SR-IOV model.

vNIC A vNIC B

vSwitch

Physical NIC A

VF

Virtual
Function

VF

Virtual
Function

PF

Physical
Functions

CSR 1000V

FP
RP

Figure 8-15 SR-IOV Logical I/O Model

Host Configurations

The hardware on which the CSR runs plays an important role in the throughput perfor-

mance of the VM. The user must be aware of the hardware configurations of the host

when debugging and troubleshooting packet flow and other issues with respect to the

CSR 1000V. Following are some hardware specifications to look out for:

■ CPU—Awareness on what kind of CPU the host machine has is significant because

CPU architectures and throughputs change from hardware vendor to hardware ven-

dor. This has a direct impact on the performance of the VM running on the host

machine.

■ Sockets—Most modern servers have CPUs with multiple sockets. When running an

application over multiple sockets, the user sees degraded performance due to con-

text switching, inefficient memory and cache access, and increased bus utilization.

ptg17123584

276 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

■ BIOS—BIOS settings on the hardware can impact the performance of the CSR.

Following are certain BIOS settings the user should be aware of:

■ Hyperthreading—This technique makes a single physical core appear as two

logical cores to the OS. The physical resources in the core are shared, but the

system has additional overhead related to maintaining the states across the two

logical cores. By default, hyperthreading is enabled to better utilize physical

cores. However, for better performance, hyperthreading should be disabled.

■ SpeedStep —This setting on Intel processors is designed to reduce power con-

sumption of the processor by changing the processor clock speed. It slows down

the processor when it reckons that the CPU load is down. This gives unpredict-

able performance numbers for the CSR 1000V. The user must make sure this is

disabled in BIOS to get consistent performance data.

■ Power —This setting may put the processor to sleep if the system is deemed idle.

This is done to save power, and it impacts the CSR’s performance. Therefore,

C-state should be set to C-0 to disable this feature in BIOS .

Debugging Packet Loss

The following sections detail the approach that needs to be taken to debug a packet loss

on a CSR. Whenever you debug a packet loss on a CSR VM, it is important to keep in

mind how the CSR VM is layered over the host machine and hypervisor. The following

sections use ESXi as an example.

High-Level Packet Flow

As first mentioned in Chapter 4, “CSR 1000V Software Architecture,” there are three

major data plane components:

■ Rx thread

■ Tx thread

■ HQF (Hierarchical Queuing Framework) thread

All these components run in a single process under the QFP process umbrella. Multiple

PPE threads serve requests within this QFP process.

In Figure 8-16, physical NICs are connected to two separate virtual switches. The packet

comes in on the physical NIC. The hypervisor maps the packet to the vNIC and then for-

wards it to the attached vSwitch. The vSwitch forwards the frame based on the destina-

tion MAC address. The frame is then received by the CSR 1000V’s virtual interface. The

packet then goes to the IOS XE code for processing, as detailed in Chapter 4.

ptg17123584

CSR 1000V Troubleshooting 277

CSR 1000V

vSwitch vSwitch

Hypervisor

FP
RP

vNIC A vNIC B

Physical NIC A Physical NIC B

Figure 8-16 CSR Packet Flow with VMware ESXi

The following sections discuss certain things you need to check if you see packet loss on

a CSR 1000V VM.

Appropriate Throughput License

As described in earlier chapters, CSR 1000V throughput is enforced by a software

license. If you see packet drops, the first things to check are whether you have the right

license and whether you are sending traffic more than the license is designed to police.

Example 8-5 shows how to check the throughput level and license details.

Example 8-5 How to Check Throughput Levels and License Details

Router# show platform hardware throughput level

The current throughput level is 100 kb/s

Router# show license detail

Index: 1 Feature: sec_100M Version: 1.0

License Type: Permanent

License State: Active, In Use

License Count: Non-Counted

License Priority: Medium

Store Index: 0

Store Name: Primary License Storage

Router#show platform hardware throughput level

ptg17123584

278 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

The current throughput level is 5000000 kb/s

Router# show license detail

Index: 1 Feature: appx_5G Version: 1.0

License Type: Permanent

License State: Active, In Use

License Count: Non-Counted

License Priority: Medium

Store Index: 1

Store Name: Primary License Storage

Index: 2 Feature: internal_service Version: 1.0

License Type: Paid Subscription

Start Date: N/A, End Date: May 25 2018

License State: Active, Not in Use

License Count: Non-Counted

License Priority: Medium

Store Index: 0

Store Name: Primary License Storage

For the license to be enforced properly, its state should be Active, In Use. It is impor-

tant to note that the CSR license policer is an aggregate policer and not an interface-

level policer. If the license is for 1G, you can send 1G traffic combined through all inter-

faces. This should be the sum of all traffic going in or out of all interfaces from a CSR

virtual machine.

To check whether traffic drops are due to traffic exceeding the license, use the follow-

ing command and look for tail drops in the QFP subsystem:

Router# show platform hardware qfp active statistics drop clear | exc _0_

Global Drop Stats Packets Octets

TailDrop 2018258 256333010

The license uses a policer that tail drops packets when you exceed the bandwidth

enforced through the license .

Hardware and Software Speed Configurations

The CSR 1000V interfaces are by default 1G interfaces. To change the speeds of the

interface, use the speed command in interface configuration mode, as shown in Example

8-6. If you are using 10G NIC hardware, you need to be aware that the interface still

appears as a GigabitEthernet interface on the CSR. To check the speed, use the show

interface command .

ptg17123584

CSR 1000V Troubleshooting 279

Example 8-6 Changing the Speed of the Interface

Router# sh run interface gigabitEthernet 1

Building configuration...

interface GigabitEthernet1

 ip address 10.201.131.1 255.255.255.0

 speed 10000

 no negotiation auto

end

Router# show interfaces gigabitEthernet 1

GigabitEthernet1 is up, line protocol is up

 Hardware is CSR vNIC, address is 000c.291a.7bd8 (bia 000c.291a.7bd8)

 Internet address is 10.201.131.1/24

 MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,

 reliability 255/255, txload 1/255, rxload 1/255

 Encapsulation ARPA, loopback not set

 Keepalive set (10 sec)

 Full Duplex, 10000Mbps, link type is force-up, media type is RJ45

 output flow-control is unsupported, input flow-control is unsupported

 ARP type: ARPA, ARP Timeout 04:00:00

 Last input never, output 00:00:49, output hang never

 Last clearing of "show interface" counters never

 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: fifo

 Output queue: 0/40 (size/max)

 5 minute input rate 0 bits/sec, 0 packets/sec

 5 minute output rate 0 bits/sec, 0 packets/sec

 4 packets input, 240 bytes, 0 no buffer

 Received 0 broadcasts (0 IP multicasts)

 0 runts, 0 giants, 0 throttles

 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

 0 watchdog, 0 multicast, 0 pause input

 1 packets output, 60 bytes, 0 underruns

 0 output errors, 0 collisions, 1 interface resets

 0 unknown protocol drops

 0 babbles, 0 late collision, 0 deferred

 1 lost carrier, 0 no carrier, 0 pause output

 0 output buffer failures, 0 output buffers swapped out

The user needs to make sure the interface NIC is not oversubscribed, which means the

user should not try to use the speed command when the physical NIC is a 1G module.

Example 8-7 is sample output from the show interface command on a CSR VM.

ptg17123584

280 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

Example 8-7 Interface show Command

CSR1000v# show interfaces

GigabitEthernet1 is up, line protocol is up

 Hardware is CSR vNIC, address is 0050.5693.b409 (bia 0050.5693.b409)

 Internet address is 172.16.0.10/24

 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

 reliability 255/255, txload 1/255, rxload 1/255

 Encapsulation ARPA, loopback not set

 Keepalive set (10 sec)

 Full Duplex, 1000Mbps, link type is auto, media type is RJ45

 output flow-control is unsupported, input flow-control is unsupported

 ARP type: ARPA, ARP Timeout 04:00:00

 Last input 00:00:00, output 00:05:48, output hang never

 Last clearing of "show interface" counters never

 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: fifo

 Output queue: 0/40 (size/max)

 5 minute input rate 0 bits/sec, 0 packets/sec

 5 minute output rate 0 bits/sec, 0 packets/sec

 888185 packets input, 83771057 bytes, 0 no buffer

 Received 0 broadcasts (0 IP multicasts)

 0 runts, 0 giants, 0 throttles

 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

 0 watchdog, 0 multicast, 0 pause input

 397945 packets output, 50738335 bytes, 0 underruns

 0 output errors, 0 collisions, 0 interface resets

 66567 unknown protocol drops

 0 babbles, 0 late collision, 0 deferred

 0 lost carrier, 0 no carrier, 0 pause output

 0 output buffer failures, 0 output buffers swapped out

L2 MTU

The CSR 1000V supports an L2 MTU of 1500–9216. This, as in any other IOS/IOS XE

device, can be changed using the mtu command in interface configuration mode. It is,

however, important to note that just changing the MTU on the CSR does not guarantee

a configured MTU. The user needs to make sure the vSwitch is configured with an MTU

value that equals the MTU configured on the CSR interface.

ptg17123584

CSR 1000V Troubleshooting 281

Interface-to-NIC Mapping

To be sure of what interface on the CSR VM matches the interface configured on ESXi,

the user should run the following command on the CSR VM:

CSR1000v# show platform software vnic-if interface-mapping

--

 Interface Name Driver Name Mac Addr

--

 GigabitEthernet3 vmxnet3 0050.5693.c25f

 GigabitEthernet2 vmxnet3 0050.5693.3208

 GigabitEthernet1 vmxnet3 0050.5693.b409

--

The user should note the MAC address and verify it with the interface configuration on

the ESXi host.

Figure 8-17 illustrates the MAC address-to-interface mappings .

GigabitEthernet1

GigabitEthernet2

GigabitEthernet3

Figure 8-17 ESXi with Mapping

CPU and Memory Usage

With packet loss, it is always a good idea to check the overall health of the CSR.

Example 8-8 shows the IOS XE command to find the health of the VM from IOS XE’s

perspective.

ptg17123584

282 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

Example 8-8 shows the control-processor CLI that gives the control and data plane

memory and CPU status. IOS XE drops packets when the CPU utilization reaches 100%.

Example 8-8 Control-Processor CLI Output

Router# show platform software status control-processor brief

Load Average

 Slot Status 1-Min 5-Min 15-Min

 RP0 Healthy 2.10 1.35 0.59

Memory (kB)

 Slot Status Total Used(Pct) Free(Pct) Committed(Pct)

 RP0 Healthy 8117052 3226704(40%) 4890348(60%) 3711452(46%)

CPU Utilization

 Slot CPU User System Nice Idle IRQ SIRQ IOwait

 RP0 0 1.93 0.90 0.00 96.36 0.00 0.80 0.00

1 95.01 4.98 0.00 0.00 0.00 0.00 0.00

Figure 8-18 illustrates high-level packet flow .

Ingress Interface

show controller/show interface
This output is derived from
the Ethernet driver.

show controller/show interface
This output is derived from
the Ethernet driver.

Egress Interface
CSR

show platform hardware qfp active statistics drop/
show platform hardware qfp active interface all
statistics drop

Will show global dropped packets by
the QFP processing.

Figure 8-18 CSR Packet Flow: High Level

Make sure a packet is received and transmitted by the vNIC. The first step is to make

sure the packets are properly received and transmitted by the CSR vNIC interface. The

IOS show interfaces command displays the packet statistics for a vNIC interface.

Example 8-9 shows the CLI output for the show interfaces command .

ptg17123584

CSR 1000V Troubleshooting 283

Example 8-9 show interfaces CLI Output

CSR1000v# show interfaces Gig1 | begin 5 min

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

 888185 packets input, 83771057 bytes, 0 no buffer

 Received 0 broadcasts (0 IP multicasts)

 0 runts, 0 giants, 0 throttles

 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

 0 watchdog, 0 multicast, 0 pause input

 397945 packets output, 50738335 bytes, 0 underruns

 0 output errors, 0 collisions, 0 interface resets

 66567 unknown protocol drops

 0 babbles, 0 late collision, 0 deferred

 0 lost carrier, 0 no carrier, 0 pause output

 0 output buffer failures, 0 output buffers swapped out

To check the vNIC driver statistics, use the show interface controller command .

The CSR vNIC driver should be fast enough to get packets onto the data plane. This

driver should not be a bottleneck because the packet drops at the driver level are ran-

dom. You can increase the vNIC queue size if there are drops at the driver level.

Example 8-10 shows the show interface controller output. The key part of the CLI

output that needs to be examined during troubleshooting is highlighted.

Example 8-10 Interface Controller Output

CSR1000v# show interface gigabitEthernet 1 controller

GigabitEthernet1 is up, line protocol is up

 Hardware is CSR vNIC, address is 0050.5693.b409 (bia 0050.5693.b409)

 Internet address is 172.16.0.10/24

 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,

 reliability 255/255, txload 1/255, rxload 1/255

 Encapsulation ARPA, loopback not set

 Keepalive set (10 sec)

 Full Duplex, 1000Mbps, link type is auto, media type is RJ45

 output flow-control is unsupported, input flow-control is unsupported

 ARP type: ARPA, ARP Timeout 04:00:00

 Last input 00:00:00, output 00:06:56, output hang never

 Last clearing of "show interface" counters never

 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: fifo

 Output queue: 0/40 (size/max)

 5 minute input rate 0 bits/sec, 0 packets/sec

 5 minute output rate 0 bits/sec, 0 packets/sec

 888241 packets input, 83775638 bytes, 10 no buffer

ptg17123584

284 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

 Received 0 broadcasts (0 IP multicasts)

 0 runts, 0 giants, 0 throttles

 72 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

 0 watchdog, 0 multicast, 0 pause input

 397961 packets output, 50739519 bytes, 0 underruns

 0 output errors, 0 collisions, 0 interface resets

 66570 unknown protocol drops

 0 babbles, 0 late collision, 0 deferred

 0 lost carrier, 0 no carrier, 0 pause output

 0 output buffer failures, 0 output buffers swapped out

GigabitEthernet1 - Gi1 is mapped to eth0 on VXE

 DPIF Rx Drop 76456 Packets 888242

 Driver Rx Stops 0 DPIF Rx Congestion Drop 88

Detailed interface statistics:

 TSO pkts tx 0

 TSO bytes tx 0

 ucast pkts tx 237307

 ucast bytes tx 38680975

 mcast pkts tx 160633

 mcast bytes tx 12056879

 bcast pkts tx 21

 bcast bytes tx 1665

 pkts tx err 0

 pkts tx discard 0

 drv dropped tx total 0

 too many frags 0

 giant hdr 0

 hdr err 0

 tso 0

 ring full 0

 pkts linearized 0

 hdr cloned 0

 giant hdr 0

 LRO pkts rx 0

 LRO byte rx 0

 ucast pkts rx 131864

 ucast bytes rx 13300931

 mcast pkts rx 693292

 mcast bytes rx 65646631

 bcast pkts rx 63086

 bcast bytes rx 4828136

 pkts rx out of buf 0

 pkts rx err 0

 drv dropped rx total 0

 err 0

ptg17123584

CSR 1000V Troubleshooting 285

 fcs 0

 rx buf alloc fail 0

 tx timeout count 0 too many frags 0

 giant hdr 0

 hdr err 0

The errors in Example 8-10 indicate a completely overloaded CSR data plane.

The packets make it to the CSR data plane. The show interfaces <name> stats com-

mand tells the user whether the data plane received packets from the vNIC interface:

CSR1000v# show interfaces GigabitEthernet 1 stats

GigabitEthernet1

 Switching path Pkts In Chars In Pkts Out Chars Out

Processor 553496 46665118 5897 378453

 Route cache 0 0 0 0

Distributed cache 888252 83777385 397963 50739667

Total 1441748 130442503 403860 51118120

To check the QFP subsystem (data plane) drops, use the statistics drop command :

CSR1000v# show platform hardware qfp active statistics drop

Global Drop Stats Packets Octets

Disabled 410349859 24621130428

Ipv4NoAdj 215639 16345664

Ipv4NoRoute 10213456 755734442

TailDrop 10 660

This is an aggregate of statistics and displays all drops on the QFP.

Table 8-1 explains some of the common drops .

Table 8-1 IOS XE Drop Types

Drop Type Possible Reason

BadUidbSubIdx This means that a received packet could not be mapped to a

known or configured interface. This could be because of a race

condition where a packet could be received before the configura-

tion is applied to the data plane.

BqsOor Out-of-packet memory causes the drops, and this happens due to

congestion at the BQS.

Disabled This error means that packets are being received on an interface

that is not in up state. Verify this by using show ip interface

brief and ensuring that the interface status is UP.

ptg17123584

286 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

Drop Type Possible Reason

Ipv4NoAdj This means ARP is not resolved on that interface.

Ipv4NoRoute This error indicates that the destination IP address is not present in

the routing table. Check if the IP address assigned to the interface

is correct.

TailDrop This error is generally due to packets getting dropped at the egress

interface. One of the common reasons for this error is sending

traffic beyond license. Another reason can be overload by packet

fragmentation. This can happen when packets are fragmented due

to the MTU size.

UnconfiguredIpv4Fia This means the IP packet is being received and the IPv4 address is

not set on that interface.

UnconfiguredIpv6Fia This means the IP packet is being received and the IPv6 address is

not set on that interface.

IOS XE allows you to get into the details of the feature drops, as shown in Example

8-11, which shows the debugging options at the QFP level .

Example 8-11 QFP Feature Debugging Options

CSR1000v# show platform hard qfp active feature ?

 acl Access Control List

 aic QFP AIC information

 alg QFP ALG

 aps QFP APS information

 bfd QFP BFD

 bridge-domain QFP Bridge domain feature Information

 cef-mpls Show cef mpls

 cidb QFP CIDB

 conf-sw Software Conference

 cts QFP CTS information

 cws QFP CWS information

 cxsc QFP CXSC feature Information

 docsis QFP DOCSIS information

 dpss ONE-P Datapath Service Set feature Information

 ecfm QFP ECFM information

 epbr Enhanced Policy Based Routing feature Information

 epc QFP Embedded Packets capture Feature Information

 erspan QFP Encapsulated Remote Switch Port Analyzer information

 evc QFP EVC information

 evtmon QFP Event monitor information

 fhs QFP First Hop Security feature Information

 firewall QFP Firewall information

ptg17123584

CSR 1000V Troubleshooting 287

 fmd QFP Flow-Metadata feature Information

 fme QFP Flow Metric Engine feature Information

 fnf QFP NetFlow

 frame-relay frame relay dp information

 icmp QFP ICMP information

 icmpv6 QFP ICMPV6 information

 ipfrag QFP FRAGMENTATION

 iphc QFP IPHC

 ipsec QFP IPSEC

 l2bd QFP L2BD

 l2es QFP L2ES

 l2mc Show L2 multicast route information

 l2vpn layer2 VPN information

 lisp QFP LISP information

 mlppp QFP MLPPP information

 mma QFP Metric-Mediation-Agent feature Information

 multicast Show multicast route information

 nat QFP NAT information

 nat64 QFP NAT64 information

 nbar QFP NBAR information

 otv QFP OTV information

 packet-trace Packet-Trace information

 pbr QFP PBR information

 pfr QFP Performance Routing (PfR) Information

 pfrv3 Connected Enterprise feature Information

 qos QoS information

 sbc Session Border Controller

 service-wire service wire configuration

 smi QFP Secure Management Interface information

 sslvpn QFP SSLVPN information

 subscriber QFP Subscriber (ESS) information

 tcp QFP TCP information

 td QFP TD

 tunnel QFP Tunnel

 utd QFP UTD feature Information

 vpls QFP VPLS information

 wccp QFP wccp services information

Feature specific drops

CSR1000v# show platform hard qfp active feature ipsec datapath drop all | incl SPI

--

Drop Type Name Packets

4 IN_US_V4_PKT_SA_NOT_FOUND_SPI 2322

7 IN_TRANS_V4_IPSEC_PKT_NOT_FOUND_SPI 0

12 IN_US_V6_PKT_SA_NOT_FOUND_SPI 0

ptg17123584

288 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

To check the QFP process utilization , use the following command:

CSR1000v# show platform hardware qfp active datapath utilization summary

 CPP 0: 5 secs 1 min 5 min 60 min

Input: Total (pps) 12 12 12 10

(bps) 16024 12760 12408 11360

Output: Total (pps) 4 4 5 3

(bps) 12664 10032 10840 8520

Processing: Load (pct) 0 0 0 0

The QFP starts dropping packets if the utilization reaches 100%. Pushing in more CPUs

should solve this problem. A high CPU number here indicates that the IOS XE software

needs more QFP processing power.

To check the packet drops on the RX process of the data plane, use the following com-

mand shown in Example 8-12, which provides the data path sw-nic information.

Example 8-12 sw-nic CLI Output

CSR1000v# show platform hardware qfp active datapath infrastructure sw-nic

PMAP info:

 poll err 0; epochs: pmap 0 wait_all 0

 poll calls 0

ZNM info:

 poll err 0; epochs: znm 3 wait_all 3

 poll calls 28079227 priorities 1

 im-tx - active

znm 8d689040 device Gi1 (GigabitEthernet1)

 Rx: pkts 888361 bytes 83786013 xoff

 Ring read 881774 empty 0 rx_avail 0

 revents 0 len err 0 credit err 0 audit 0

 im-alloc err 0

 Tx: pkts 397992 bytes 50741813 send 0 forced-txsync 320438

 fill 0 poll 0 thd_poll 0

 full 0 lowater 0 hiwater 0

 avail 2046 batch 397992 tx_batch_sz 0 sendnow 0 im_alloc_err 0

znm 8d698040 device Gi2 (GigabitEthernet2)

 Rx: pkts 9 bytes 568 xoff

 Ring read 9 empty 0 rx_avail 0

 revents 0 len err 0 credit err 0 audit 0

 im-alloc err 0

 Tx: pkts 0 bytes 0 send 0 forced-txsync 0

 fill 0 poll 0 thd_poll 0

 full 0 lowater 0 hiwater 0

ptg17123584

CSR 1000V Troubleshooting 289

 avail 2047 batch 0 tx_batch_sz 0 sendnow 0 im_alloc_err 0

znm 8d6a5040 device Gi3 (GigabitEthernet3)

 Rx: pkts 6237543 bytes 1078457641 xoff

 Ring read 6203494 empty 0 rx_avail 0

 revents 0 len err 0 credit err 0 audit 0

 im-alloc err 0

 Tx: pkts 12621 bytes 1303109 send 0 forced-txsync 11888

 fill 0 poll 0 thd_poll 0

 full 0 lowater 0 hiwater 0

 avail 2046 batch 12621 tx_batch_sz 0 sendnow 0 im_alloc_err 0

vSwitch Packet Drops

A vSwitch is not like a physical switch in that the hypervisor (ESXi) programs a vSwitch

with all the vNIC MAC addresses into the vSwitch’s MAC address table. So a vSwitch is

not a learning switch. It drops any packets for destination MAC addresses it is unaware

of. It always expects to receive packets with MAC addresses it is aware of. If you

have frames with MAC addresses that are not on the vNIC interfaces connected to the

vSwitch, the vSwitch drops those frames. If you want a vSwitch to not drop frames with

unknown MAC addresses, you have to configure the vNIC in promiscuous mode.

ESXi Packet Debugging

Example 8-13 shows some useful ESXi commands. The useful ESXi CLI can be used for

packet flow troubleshooting of a CSR VM.

Example 8-13 VM List on an ESXi Host

esxcli network vm list

World ID Name Num Ports Networks

-------- ---------------------- --------- ----------------------

 9966 MS AD_DNS 1 VM Network

 10151 Cisco_CSR_1000V_3.16.0 3 VM Network, Flat, SNAT

 510934 vMS 2 VM Network, SNAT

esxcli network vm port list –w <worldID>

esxcli network vm port list -w 10151

 Port ID: 33554443

 vSwitch: vSwitch0

 Portgroup: VM Network

 DVPort ID:

 MAC Address: 00:0c:29:1a:7b:ec

 IP Address: 0.0.0.0

 Team Uplink: vmnic0

 Uplink Port ID: 33554434

 Active Filters:

ptg17123584

290 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

 Port ID: 33554444

 vSwitch: vSwitch0

 Portgroup: Flat

 DVPort ID:

 MAC Address: 00:0c:29:1a:7b:e2

 IP Address: 0.0.0.0

 Team Uplink: vmnic0

 Uplink Port ID: 33554434

 Active Filters:

 Port ID: 33554445

 vSwitch: vSwitch0

 Portgroup: SNAT

 DVPort ID:

 MAC Address: 00:0c:29:1a:7b:d8

 IP Address: 0.0.0.0

 Team Uplink: vmnic0

 Uplink Port ID: 33554434

 Active Filters:

Example 8-14 shows the vNIC stats from an ESXi host.

Example 8-14 ESXi NIC Stats

esxcli network nic stats get -n vmnic0

NIC statistics for vmnic0

 Packets received: 4537423

 Packets sent: 2892949

 Bytes received: 4072878617

 Bytes sent: 323830118

 Receive packets dropped: 0

 Transmit packets dropped: 0

 Total receive errors: 0

 Receive length errors: 0

 Receive over errors: 0

 Receive CRC errors: 0

 Receive frame errors: 0

 Receive FIFO errors: 0

 Receive missed errors: 0

 Total transmit errors: 0

 Transmit aborted errors: 0

 Transmit carrier errors: 0

 Transmit FIFO errors: 0

 Transmit heartbeat errors: 0

 Transmit window errors: 0 Transmit heartbeat errors: 0

 Transmit window errors: 0

ptg17123584

CSR 1000V Troubleshooting 291

It is recommended that you increase the receive ring buffer size to 4K because the

device driver is not fast enough to retrieve these packets and post new buffers. You do

this by using the following command:

ethtool –G <vmnic> rx <size>

If this does not help, check the version of the driver by using the following command:

ethtool –i <vmnic>

In practice, it should look like this:

ethtool -i vmnic0

driver: igb

version: 2.1.11.1

firmware-version: 1.5-9

bus-info: 0000:01:00.0

From the VMware support site, check whether an updated version of this driver is avail-

able. Sometimes upgrading the driver helps resolve issues.

These same details of packet statistics can also be obtained from vCenter, as shown in

Figure 8-19. They are present at Hosts > Monitor > Performance > Advanced. Using the

chart options, you can select the chart metrics as Network, object type as the VM’s VM

NIC, and other desired counters, such as data transmit rate, data receive rate, and packet

transmit errors.

Figure 8-19 Network Statistics of NICs Using vCenter

ptg17123584

292 Chapter 8: CSR 1000V Automation, Orchestration, and Troubleshooting

You can check whether the packets are being received at vmnic to the vSwitch ingress

port. Example 8-15 shows the port stats from an ESXi host .

Example 8-15 ESXi Port Stats

esxcli network port stats get -p 33554443

Packet statistics for port 33554443

 Packets received: 1837526

 Packets sent: 3223

 Bytes received: 173220390

 Bytes sent: 241813

 Broadcast packets received: 688401

 Broadcast packets sent: 14

 Multicast packets received: 1148372

 Multicast packets sent: 2615

 Unicast packets received: 753

 Unicast packets sent: 594

 Receive packets dropped: 1599982

 Transmit packets dropped: 0

One of the reasons for the packet drops might be the high CPU Ready Time for the

VM. The CPU Ready Time is the time when the VM is ready to run but the hypervisor is

not able to schedule it on a physical processor. A high value indicates poor performance.

This value can be found by running the following command on the host:

esxtop

The value returned should ideally be zero. If it is not, there is not enough CPU for the

VM to be scheduled in time, which may lead to packet drops. Reduce the number of

VMs on the ESXi host if you run into this issue.

Summary
This chapter reviews three import topics: automation, orchestration, and troubleshoot-

ing. The first part of this chapter disambiguates the concepts of automation and orches-

tration, using the key tools available. After reading this chapter, you should be able to

appreciate the difference between these two concepts and should be in a position to

choose the correct tool for your virtualized infrastructure.

This chapter also describes how to troubleshoot a CSR VM on an ESXi hypervisor. You

should be able to follow the troubleshooting approach described here and leverage the

command-line outputs to get a better situational awareness of a CSR VM.

ptg17123584

The following output is the complete output of the abbreviated Example 7-1 from

Chapter 7, “CSR in the SDN Framework.” It provides a sample answer file for Packstack.

[general]

Path to a public key to install on servers. If a usable key has not

been installed on the remote servers, the user is prompted for a

password and this key is installed so the password will not be

required again.

CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub

Default password to be used everywhere (overridden by passwords set

for individual services or users).

CONFIG_DEFAULT_PASSWORD=lab

Specify 'y' to install MariaDB.

CONFIG_MARIADB_INSTALL=y

Specify 'y' to install OpenStack Image Service (glance).

CONFIG_GLANCE_INSTALL=y

Specify 'y' to install OpenStack Block Storage (cinder).

CONFIG_CINDER_INSTALL=y

Specify 'y' to install OpenStack Shared File System (manila).

CONFIG_MANILA_INSTALL=y

Specify 'y' to install OpenStack Compute (nova).

CONFIG_NOVA_INSTALL=y

Sample Answer File for
Packstack

Appendix A

ptg17123584

294 Appendix A: Sample Answer File for Packstack

Specify 'y' to install OpenStack Networking (neutron); otherwise,

Compute Networking (nova) will be used.

CONFIG_NEUTRON_INSTALL=y

Specify 'y' to install OpenStack Dashboard (horizon).

CONFIG_HORIZON_INSTALL=y

Specify 'y' to install OpenStack Object Storage (swift).

CONFIG_SWIFT_INSTALL=y

Specify 'y' to install OpenStack Metering (ceilometer).

CONFIG_CEILOMETER_INSTALL=y

Specify 'y' to install OpenStack Orchestration (heat).

CONFIG_HEAT_INSTALL=y

Specify 'y' to install OpenStack Data Processing (sahara).

CONFIG_SAHARA_INSTALL=n

Specify 'y' to install OpenStack Database (trove).

CONFIG_TROVE_INSTALL=n

Specify 'y' to install OpenStack Bare Metal Provisioning (ironic).

CONFIG_IRONIC_INSTALL=n

Specify 'y' to install the OpenStack Client packages (command-line

tools). An admin "rc" file will also be installed.

CONFIG_CLIENT_INSTALL=y

Comma-separated list of NTP servers. Leave plain if Packstack

should not install ntpd on instances.

CONFIG_NTP_SERVERS=

Specify 'y' to install Nagios to monitor OpenStack hosts. Nagios

provides additional tools for monitoring the OpenStack environment.

CONFIG_NAGIOS_INSTALL=y

Comma-separated list of servers to be excluded from the

installation. This is helpful if you are running Packstack a second

time with the same answer file and do not want Packstack to

overwrite these server's configurations. Leave empty if you do not

need to exclude any servers.

EXCLUDE_SERVERS=

Specify 'y' if you want to run OpenStack services in debug mode;

ptg17123584

 295

otherwise, specify 'n'.

CONFIG_DEBUG_MODE=n

IP address of the server on which to install OpenStack services

specific to the controller role (for example, API servers or

dashboard).

CONFIG_CONTROLLER_HOST=192.168.1.22

List of IP addresses of the servers on which to install the Compute

service.

CONFIG_COMPUTE_HOSTS=192.168.1.22

List of IP addresses of the server on which to install the network

service such as Compute networking (nova network) or OpenStack

Networking (neutron).

CONFIG_NETWORK_HOSTS=192.168.1.22

Specify 'y' if you want to use VMware vCenter as hypervisor and

storage; otherwise, specify 'n'.

CONFIG_VMWARE_BACKEND=n

Specify 'y' if you want to use unsupported parameters. This should

be used only if you know what you are doing. Issues caused by using

unsupported options will not be fixed before the next major release.

CONFIG_UNSUPPORTED=n

Specify 'y' if you want to use subnet addresses (in CIDR format)

instead of interface names in following options:

CONFIG_NOVA_COMPUTE_PRIVIF, CONFIG_NOVA_NETWORK_PRIVIF,

CONFIG_NOVA_NETWORK_PUBIF, CONFIG_NEUTRON_OVS_BRIDGE_IFACES,

CONFIG_NEUTRON_LB_INTERFACE_MAPPINGS, CONFIG_NEUTRON_OVS_TUNNEL_IF.

This is useful for cases when interface names are not same on all

installation hosts.

CONFIG_USE_SUBNETS=n

IP address of the VMware vCenter server.

CONFIG_VCENTER_HOST=

User name for VMware vCenter server authentication.

CONFIG_VCENTER_USER=

Password for VMware vCenter server authentication.

CONFIG_VCENTER_PASSWORD=

Name of the VMware vCenter cluster.

ptg17123584

296 Appendix A: Sample Answer File for Packstack

CONFIG_VCENTER_CLUSTER_NAME=

(Unsupported!) IP address of the server on which to install

OpenStack services specific to storage servers such as Image or

Block Storage services.

CONFIG_STORAGE_HOST=192.168.1.22

(Unsupported!) IP address of the server on which to install

OpenStack services specific to OpenStack Data Processing (sahara).

CONFIG_SAHARA_HOST=192.168.1.22

Specify 'y' to enable the EPEL repository (Extra Packages for

Enterprise Linux).

CONFIG_USE_EPEL=y

Comma-separated list of URLs for any additional yum repositories,

to use for installation.

CONFIG_REPO=

Specify 'y' to enable the RDO testing repository.

CONFIG_ENABLE_RDO_TESTING=n

To subscribe each server with Red Hat Subscription Manager, include

this with CONFIG_RH_PW.

CONFIG_RH_USER=

To subscribe each server to receive updates from a Satellite

server, provide the URL of the Satellite server. You must also

provide a user name (CONFIG_SATELLITE_USERNAME) and password

(CONFIG_SATELLITE_PASSWORD) or an access key (CONFIG_SATELLITE_AKEY)

for authentication.

CONFIG_SATELLITE_URL=

To subscribe each server with Red Hat Subscription Manager, include

this with CONFIG_RH_USER.

CONFIG_RH_PW=

Specify 'y' to enable RHEL optional repositories.

CONFIG_RH_OPTIONAL=y

HTTP proxy to use with Red Hat Subscription Manager.

CONFIG_RH_PROXY=

Port to use for Red Hat Subscription Manager's HTTP proxy.

CONFIG_RH_PROXY_PORT=

ptg17123584

 297

User name to use for Red Hat Subscription Manager's HTTP proxy.

CONFIG_RH_PROXY_USER=

Password to use for Red Hat Subscription Manager's HTTP proxy.

CONFIG_RH_PROXY_PW=

User name to authenticate with the RHN Satellite server; if you

intend to use an access key for Satellite authentication, leave this

blank.

CONFIG_SATELLITE_USER=

Password to authenticate with the RHN Satellite server; if you

intend to use an access key for Satellite authentication, leave this

blank.

CONFIG_SATELLITE_PW=

Access key for the Satellite server; if you intend to use a user

name and password for Satellite authentication, leave this blank.

CONFIG_SATELLITE_AKEY=

Certificate path or URL of the certificate authority to verify that

the connection with the Satellite server is secure. If you are not

using Satellite in your deployment, leave this blank.

CONFIG_SATELLITE_CACERT=

Profile name that should be used as an identifier for the system in

RHN Satellite (if required).

CONFIG_SATELLITE_PROFILE=

Comma-separated list of flags passed to the rhnreg_ks command

(novirtinfo, norhnsd, nopackages).

CONFIG_SATELLITE_FLAGS=

HTTP proxy to use when connecting to the RHN Satellite server (if

required).

CONFIG_SATELLITE_PROXY=

User name to authenticate with the Satellite-server HTTP proxy.

CONFIG_SATELLITE_PROXY_USER=

User password to authenticate with the Satellite-server HTTP proxy.

CONFIG_SATELLITE_PROXY_PW=

Specify filepath for CA cert file. If CONFIG_SSL_CACERT_SELFSIGN is

set to 'n' it has to be preexisting file.

ptg17123584

298 Appendix A: Sample Answer File for Packstack

CONFIG_SSL_CACERT_FILE=/etc/pki/tls/certs/selfcert.crt

Specify filepath for CA cert key file. If

CONFIG_SSL_CACERT_SELFSIGN is set to 'n' it has to be preexisting

file.

CONFIG_SSL_CACERT_KEY_FILE=/etc/pki/tls/private/selfkey.key

Enter the path to use to store generated SSL certificates in.

CONFIG_SSL_CERT_DIR=~/packstackca/

Specify 'y' if you want Packstack to pregenerate the CA

Certificate.

CONFIG_SSL_CACERT_SELFSIGN=y

Enter the selfsigned CAcert subject country.

CONFIG_SELFSIGN_CACERT_SUBJECT_C=US

Enter the selfsigned CAcert subject state.

CONFIG_SELFSIGN_CACERT_SUBJECT_ST=VA

Enter the selfsigned CAcert subject location.

CONFIG_SELFSIGN_CACERT_SUBJECT_L=Belmont

Enter the selfsigned CAcert subject organization.

CONFIG_SELFSIGN_CACERT_SUBJECT_O=openstack

Enter the selfsigned CAcert subject organizational unit.

CONFIG_SELFSIGN_CACERT_SUBJECT_OU=packstack

Enter the selfsigned CAcert subject common name.

CONFIG_SELFSIGN_CACERT_SUBJECT_CN=openstack-csr.cisco.com

CONFIG_SELFSIGN_CACERT_SUBJECT_MAIL=admin@openstack-csr.cisco.com

Service to be used as the AMQP broker (qpid, rabbitmq).

CONFIG_AMQP_BACKEND=rabbitmq

IP address of the server on which to install the AMQP service.

CONFIG_AMQP_HOST=192.168.1.22

Specify 'y' to enable SSL for the AMQP service.

CONFIG_AMQP_ENABLE_SSL=n

Specify 'y' to enable authentication for the AMQP service.

CONFIG_AMQP_ENABLE_AUTH=n

ptg17123584

 299

Password for the NSS certificate database of the AMQP service.

CONFIG_AMQP_NSS_CERTDB_PW=lab

User for AMQP authentication.

CONFIG_AMQP_AUTH_USER=amqp_user

Password for AMQP authentication.

CONFIG_AMQP_AUTH_PASSWORD=lab

IP address of the server on which to install MariaDB. If a MariaDB

installation was not specified in CONFIG_MARIADB_INSTALL, specify

the IP address of an existing database server (a MariaDB cluster can

also be specified).

CONFIG_MARIADB_HOST=192.168.1.22

User name for the MariaDB administrative user.

CONFIG_MARIADB_USER=root

Password for the MariaDB administrative user.

CONFIG_MARIADB_PW=16c20883fa11493d

Password to use for the Identity service (keystone) to access the

database.

CONFIG_KEYSTONE_DB_PW=0446a5983fb64729

Default region name to use when creating tenants in the Identity

service.

CONFIG_KEYSTONE_REGION=RegionOne

Token to use for the Identity service API.

CONFIG_KEYSTONE_ADMIN_TOKEN=c926f15bc0e54cc4b273e7467bd191de

Email address for the Identity service 'admin' user. Defaults to:

CONFIG_KEYSTONE_ADMIN_EMAIL=root@localhost

User name for the Identity service 'admin' user. Defaults to:

'admin'.

CONFIG_KEYSTONE_ADMIN_USERNAME=admin

Password to use for the Identity service 'admin' user.

CONFIG_KEYSTONE_ADMIN_PW=lab

Password to use for the Identity service 'demo' user.

CONFIG_KEYSTONE_DEMO_PW=lab

ptg17123584

300 Appendix A: Sample Answer File for Packstack

Identity service API version string (v2.0, v3).

CONFIG_KEYSTONE_API_VERSION=v2.0

Identity service token format (UUID or PKI). The recommended format

for new deployments is UUID.

CONFIG_KEYSTONE_TOKEN_FORMAT=UUID

Name of service to use to run the Identity service (keystone,

httpd).

CONFIG_KEYSTONE_SERVICE_NAME=httpd

Type of Identity service backend (sql, ldap).

CONFIG_KEYSTONE_IDENTITY_BACKEND=sql

URL for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_URL=ldap://192.168.1.22

User DN for the Identity service LDAP backend. Used to bind to the

LDAP server if the LDAP server does not allow anonymous

authentication.

CONFIG_KEYSTONE_LDAP_USER_DN=

User DN password for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_PASSWORD=

Base suffix for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_SUFFIX=

Query scope for the Identity service LDAP backend. Use 'one' for

onelevel/singleLevel or 'sub' for subtree/wholeSubtree ('base' is

not actually used by the Identity service and is therefore

deprecated) (base, one, sub)

CONFIG_KEYSTONE_LDAP_QUERY_SCOPE=one

Query page size for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_PAGE_SIZE=-1

User subtree for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_SUBTREE=

User query filter for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_FILTER=

User object class for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_OBJECTCLASS=

ptg17123584

 301

User ID attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_ID_ATTRIBUTE=

User name attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_NAME_ATTRIBUTE=

User email address attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_MAIL_ATTRIBUTE=

User-enabled attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_USER_ENABLED_ATTRIBUTE=

Bit mask integer applied to user-enabled attribute for the Identity

service LDAP backend. Indicate the bit that the enabled value is

stored in if the LDAP server represents "enabled" as a bit on an

integer rather than a boolean. A value of "0" indicates the mask is

not used (default). If this is not set to "0", the typical value is

"2", typically used when

"CONFIG_KEYSTONE_LDAP_USER_ENABLED_ATTRIBUTE = userAccountControl".

CONFIG_KEYSTONE_LDAP_USER_ENABLED_MASK=-1

Value of enabled attribute which indicates user is enabled for the

Identity service LDAP backend. This should match an appropriate

integer value if the LDAP server uses non-boolean (bitmask) values

to indicate whether a user is enabled or disabled. If this is not

set as 'y', the typical value is "512". This is typically used when

"CONFIG_KEYSTONE_LDAP_USER_ENABLED_ATTRIBUTE = userAccountControl".

CONFIG_KEYSTONE_LDAP_USER_ENABLED_DEFAULT=TRUE

Specify 'y' if users are disabled (not enabled) in the Identity

service LDAP backend (inverts boolean-enabled values). Some LDAP

servers use a boolean lock attribute where "y" means an account is

disabled. Setting this to 'y' allows these lock attributes to be

used. This setting will have no effect if

"CONFIG_KEYSTONE_LDAP_USER_ENABLED_MASK" is in use (n, y).

CONFIG_KEYSTONE_LDAP_USER_ENABLED_INVERT=n

Comma-separated list of attributes stripped from LDAP user entry

upon update.

CONFIG_KEYSTONE_LDAP_USER_ATTRIBUTE_IGNORE=

Identity service LDAP attribute mapped to default_project_id for

users.

CONFIG_KEYSTONE_LDAP_USER_DEFAULT_PROJECT_ID_ATTRIBUTE=

ptg17123584

302 Appendix A: Sample Answer File for Packstack

Specify 'y' if you want to be able to create Identity service users

through the Identity service interface; specify 'n' if you will

create directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_USER_ALLOW_CREATE=n

Specify 'y' if you want to be able to update Identity service users

through the Identity service interface; specify 'n' if you will

update directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_USER_ALLOW_UPDATE=n

Specify 'y' if you want to be able to delete Identity service users

through the Identity service interface; specify 'n' if you will

delete directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_USER_ALLOW_DELETE=n

Identity service LDAP attribute mapped to password.

CONFIG_KEYSTONE_LDAP_USER_PASS_ATTRIBUTE=

DN of the group entry to hold enabled LDAP users when using enabled

emulation.

CONFIG_KEYSTONE_LDAP_USER_ENABLED_EMULATION_DN=

List of additional LDAP attributes for mapping additional attribute

mappings for users. The attribute-mapping format is

<ldap_attr>:<user_attr>, where ldap_attr is the attribute in the

LDAP entry and user_attr is the Identity API attribute.

CONFIG_KEYSTONE_LDAP_USER_ADDITIONAL_ATTRIBUTE_MAPPING=

Group subtree for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_SUBTREE=

Group query filter for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_FILTER=

Group object class for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_OBJECTCLASS=

Group ID attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_ID_ATTRIBUTE=

Group name attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_NAME_ATTRIBUTE=

Group member attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_MEMBER_ATTRIBUTE=

ptg17123584

 303

Group description attribute for the Identity service LDAP backend.

CONFIG_KEYSTONE_LDAP_GROUP_DESC_ATTRIBUTE=

Comma-separated list of attributes stripped from LDAP group entry

upon update.

CONFIG_KEYSTONE_LDAP_GROUP_ATTRIBUTE_IGNORE=

Specify 'y' if you want to be able to create Identity service

groups through the Identity service interface; specify 'n' if you

will create directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_GROUP_ALLOW_CREATE=y

Specify 'y' if you want to be able to update Identity service

groups through the Identity service interface; specify 'n' if you

will update directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_GROUP_ALLOW_UPDATE=y

Specify 'y' if you want to be able to delete Identity service

groups through the Identity service interface; specify 'n' if you

will delete directly in the LDAP backend (n, y).

CONFIG_KEYSTONE_LDAP_GROUP_ALLOW_DELETE=y

List of additional LDAP attributes used for mapping additional

attribute mappings for groups. The attribute=mapping format is

<ldap_attr>:<group_attr>, where ldap_attr is the attribute in the

LDAP entry and group_attr is the Identity API attribute.

CONFIG_KEYSTONE_LDAP_GROUP_ADDITIONAL_ATTRIBUTE_MAPPING=

Specify 'y' if the Identity service LDAP backend should use TLS (n,

y).

CONFIG_KEYSTONE_LDAP_USE_TLS=n

CA certificate directory for Identity service LDAP backend (if TLS

is used).

CONFIG_KEYSTONE_LDAP_TLS_CACERTDIR=

CA certificate file for Identity service LDAP backend (if TLS is

used).

CONFIG_KEYSTONE_LDAP_TLS_CACERTFILE=

Certificate-checking strictness level for Identity service LDAP

backend (never, allow, demand).

CONFIG_KEYSTONE_LDAP_TLS_REQ_CERT=demand

Password to use for the Image service (glance) to access the

ptg17123584

304 Appendix A: Sample Answer File for Packstack

database.

CONFIG_GLANCE_DB_PW=e73ab8bc00a94083

Password to use for the Image service to authenticate with the

Identity service.

CONFIG_GLANCE_KS_PW=650e01a4fb1f457e

Storage backend for the Image service (controls how the Image

service stores disk images). Valid options are: file or swift

(Object Storage). The Object Storage service must be enabled to use

it as a working backend; otherwise, Packstack falls back to 'file'.

['file', 'swift']

CONFIG_GLANCE_BACKEND=file

Password to use for the Block Storage service (cinder) to access

the database.

CONFIG_CINDER_DB_PW=c0f4e8de016b4d76

Password to use for the Block Storage service to authenticate with

the Identity service.

CONFIG_CINDER_KS_PW=5e8fb5e4e7bd4b8f

Storage backend to use for the Block Storage service; valid options

are: lvm, gluster, nfs, vmdk, netapp. ['lvm', 'gluster', 'nfs',

'vmdk', 'netapp']

CONFIG_CINDER_BACKEND=lvm

Specify 'y' to create the Block Storage volumes group. That is,

Packstack creates a raw disk image in /var/lib/cinder, and mounts it

using a loopback device. This should only be used for testing on a

proof-of-concept installation of the Block Storage service (a file-

backed volume group is not suitable for production usage) (y, n).

CONFIG_CINDER_VOLUMES_CREATE=y

Size of Block Storage volumes group. Actual volume size will be

extended with 3% more space for VG metadata. Remember that the size

of the volume group will restrict the amount of disk space that you

can expose to Compute instances, and that the specified amount must

be available on the device used for /var/lib/cinder.

CONFIG_CINDER_VOLUMES_SIZE=1400G

A single or comma-separated list of Red Hat Storage (gluster)

volume shares to mount. Example: 'ip-address:/vol-name', 'domain

:/vol-name'

CONFIG_CINDER_GLUSTER_MOUNTS=

ptg17123584

 305

A single or comma-separated list of NFS exports to mount. Example:

'ip-address:/export-name'

CONFIG_CINDER_NFS_MOUNTS=

Administrative user account name used to access the NetApp storage

system or proxy server.

CONFIG_CINDER_NETAPP_LOGIN=

Password for the NetApp administrative user account specified in

the CONFIG_CINDER_NETAPP_LOGIN parameter.

CONFIG_CINDER_NETAPP_PASSWORD=

Hostname (or IP address) for the NetApp storage system or proxy

server.

CONFIG_CINDER_NETAPP_HOSTNAME=

The TCP port to use for communication with the storage system or

proxy. If not specified, Data ONTAP drivers will use 80 for HTTP and

443 for HTTPS; E-Series will use 8080 for HTTP and 8443 for HTTPS.

Defaults to: 80.

CONFIG_CINDER_NETAPP_SERVER_PORT=80

Storage family type used on the NetApp storage system; valid

options are ontap_7mode for using Data ONTAP operating in 7-Mode,

ontap_cluster for using clustered Data ONTAP, or E-Series for NetApp

E-Series. Defaults to: ontap_cluster. ['ontap_7mode',

'ontap_cluster', 'eseries']

CONFIG_CINDER_NETAPP_STORAGE_FAMILY=ontap_cluster

The transport protocol used when communicating with the NetApp

storage system or proxy server. Valid values are http or https.

Defaults to: 'http' ('http', 'https').

CONFIG_CINDER_NETAPP_TRANSPORT_TYPE=http

Storage protocol to be used on the data path with the NetApp

storage system; valid options are iscsi, fc, nfs. Defaults to: nfs

(iscsi, fc, nfs).

CONFIG_CINDER_NETAPP_STORAGE_PROTOCOL=nfs

Quantity to be multiplied by the requested volume size to ensure

enough space is available on the virtual storage server (Vserver) to

fulfill the volume creation request. Defaults to: 1.0.

CONFIG_CINDER_NETAPP_SIZE_MULTIPLIER=1.0

Time period (in minutes) that is allowed to elapse after the image

ptg17123584

306 Appendix A: Sample Answer File for Packstack

is last accessed, before it is deleted from the NFS image cache.

When a cache-cleaning cycle begins, images in the cache that have

not been accessed in the last M minutes, where M is the value of

this parameter, are deleted from the cache to create free space on

the NFS share. Defaults to: 720.

CONFIG_CINDER_NETAPP_EXPIRY_THRES_MINUTES=720

If the percentage of available space for an NFS share has dropped

below the value specified by this parameter, the NFS image cache is

cleaned. Defaults to: 20.

CONFIG_CINDER_NETAPP_THRES_AVL_SIZE_PERC_START=20

When the percentage of available space on an NFS share has reached

the percentage specified by this parameter, the driver stops

clearing files from the NFS image cache that have not been accessed

in the last M minutes, where M is the value of the

CONFIG_CINDER_NETAPP_EXPIRY_THRES_MINUTES parameter. Defaults to:

60.

CONFIG_CINDER_NETAPP_THRES_AVL_SIZE_PERC_STOP=60

Single or comma-separated list of NetApp NFS shares for Block

Storage to use. Format: ip-address:/export-name. Defaults to: ''.

CONFIG_CINDER_NETAPP_NFS_SHARES=

File with the list of available NFS shares. Defaults to:

'/etc/cinder/shares.conf'.

CONFIG_CINDER_NETAPP_NFS_SHARES_CONFIG=/etc/cinder/shares.conf

This parameter is only utilized when the storage protocol is

configured to use iSCSI or FC. This parameter is used to restrict

provisioning to the specified controller volumes. Specify the value

of this parameter to be a comma separated list of NetApp controller

volume names to be used for provisioning. Defaults to: ''.

CONFIG_CINDER_NETAPP_VOLUME_LIST=

The vFiler unit on which provisioning of block storage volumes will

be done. This parameter is only used by the driver when connecting

to an instance with a storage family of Data ONTAP operating in

7-Mode Only use this parameter when utilizing the MultiStore feature

on the NetApp storage system. Defaults to: ''.

CONFIG_CINDER_NETAPP_VFILER=

The name of the config.conf stanza for a Data ONTAP (7-mode) HA

partner. This option is only used by the driver when connecting to

an instance with a storage family of Data ONTAP operating in 7-Mode,

ptg17123584

 307

and it is required if the storage protocol selected is FC. Defaults

to: ''.

CONFIG_CINDER_NETAPP_PARTNER_BACKEND_NAME=

This option specifies the virtual storage server (Vserver) name on

the storage cluster on which provisioning of block storage volumes

should occur. Defaults to: ''.

CONFIG_CINDER_NETAPP_VSERVER=

Restricts provisioning to the specified controllers. Value must be

a comma-separated list of controller hostnames or IP addresses to be

used for provisioning. This option is only utilized when the storage

family is configured to use E-Series. Defaults to: ''.

CONFIG_CINDER_NETAPP_CONTROLLER_IPS=

Password for the NetApp E-Series storage array. Defaults to: ''.

CONFIG_CINDER_NETAPP_SA_PASSWORD=

This option is used to define how the controllers in the E-Series

storage array will work with the particular operating system on the

hosts that are connected to it. Defaults to: 'linux_dm_mp'

CONFIG_CINDER_NETAPP_ESERIES_HOST_TYPE=linux_dm_mp

Path to the NetApp E-Series proxy application on a proxy server.

The value is combined with the value of the

CONFIG_CINDER_NETAPP_TRANSPORT_TYPE, CONFIG_CINDER_NETAPP_HOSTNAME,

and CONFIG_CINDER_NETAPP_HOSTNAME options to create the URL used by

the driver to connect to the proxy application. Defaults to:

'/devmgr/v2'.

CONFIG_CINDER_NETAPP_WEBSERVICE_PATH=/devmgr/v2

Restricts provisioning to the specified storage pools. Only dynamic

disk pools are currently supported. The value must be a comma-

separated list of disk pool names to be used for provisioning.

Defaults to: ''.

CONFIG_CINDER_NETAPP_STORAGE_POOLS=

Password to use for the OpenStack File Share service (manila) to

access the database.

CONFIG_MANILA_DB_PW=lab

Password to use for the OpenStack File Share service (manila) to

authenticate with the Identity service.

CONFIG_MANILA_KS_PW=lab

ptg17123584

308 Appendix A: Sample Answer File for Packstack

Backend for the OpenStack File Share service (manila); valid

options are: generic or netapp (generic, netapp).

CONFIG_MANILA_BACKEND=generic

Denotes whether the driver should handle the responsibility of

managing share servers. This must be set to false if the driver is

to operate without managing share servers. Defaults to: 'false'

(true, false).

CONFIG_MANILA_NETAPP_DRV_HANDLES_SHARE_SERVERS=false

The transport protocol used when communicating with the storage

system or proxy server. Valid values are 'http' and 'https'.

Defaults to: 'https' (https, http).

CONFIG_MANILA_NETAPP_TRANSPORT_TYPE=https

Administrative user account name used to access the NetApp storage

system. Defaults to: ''.

CONFIG_MANILA_NETAPP_LOGIN=admin

Password for the NetApp administrative user account specified in

the CONFIG_MANILA_NETAPP_LOGIN parameter. Defaults to: ''.

CONFIG_MANILA_NETAPP_PASSWORD=

Hostname (or IP address) for the NetApp storage system or proxy

server. Defaults to: ''.

CONFIG_MANILA_NETAPP_SERVER_HOSTNAME=

The storage family type used on the storage system; valid values

are ontap_cluster for clustered Data ONTAP. Defaults to:

'ontap_cluster'.

CONFIG_MANILA_NETAPP_STORAGE_FAMILY=ontap_cluster

The TCP port to use for communication with the storage system or

proxy server. If not specified, Data ONTAP drivers will use 80 for

HTTP and 443 for HTTPS. Defaults to: '443'.

CONFIG_MANILA_NETAPP_SERVER_PORT=443

Pattern for searching available aggregates for NetApp provisioning.

Defaults to: '(.*)'.

CONFIG_MANILA_NETAPP_AGGREGATE_NAME_SEARCH_PATTERN=(.*)

Name of aggregate on which to create the NetApp root volume. This

option only applies when the option

CONFIG_MANILA_NETAPP_DRV_HANDLES_SHARE_SERVERS is set to True.

CONFIG_MANILA_NETAPP_ROOT_VOLUME_AGGREGATE=

ptg17123584

 309

NetApp root volume name. Defaults to: 'root'.

CONFIG_MANILA_NETAPP_ROOT_VOLUME_NAME=root

This option specifies the storage virtual machine (previously

called a Vserver) name on the storage cluster on which provisioning

of shared file systems should occur. This option only applies when

the option driver_handles_share_servers is set to False. Defaults

to: ''.

CONFIG_MANILA_NETAPP_VSERVER=

Denotes whether the driver should handle the responsibility of

managing share servers. This must be set to false if the driver is

to operate without managing share servers. Defaults to: 'true'.

['true', 'false']

CONFIG_MANILA_GENERIC_DRV_HANDLES_SHARE_SERVERS=true

Volume name template for Manila service. Defaults to: 'manila-

share-%s'.

CONFIG_MANILA_GENERIC_VOLUME_NAME_TEMPLATE=manila-share-%s

Share mount path for Manila service. Defaults to: '/shares'.

CONFIG_MANILA_GENERIC_SHARE_MOUNT_PATH=/shares

Location of disk image for Manila service instance. Defaults to: '

CONFIG_MANILA_SERVICE_IMAGE_LOCATION=https://www.dropbox.com/s/vi5oeh10q1qkckh/
ubuntu_1204_nfs_cifs.qcow2

User in Manila service instance.

CONFIG_MANILA_SERVICE_INSTANCE_USER=ubuntu

Password to service instance user.

CONFIG_MANILA_SERVICE_INSTANCE_PASSWORD=ubuntu

Type of networking that the backend will use. A more detailed

description of each option is available in the Manila docs. Defaults

to: 'neutron'. ['neutron', 'nova-network', 'standalone']

CONFIG_MANILA_NETWORK_TYPE=neutron

Gateway IPv4 address that should be used. Required. Defaults to:

''.

CONFIG_MANILA_NETWORK_STANDALONE_GATEWAY=

Network mask that will be used. Can be either decimal like '24' or

binary like '255.255.255.0'. Required. Defaults to: ''.

CONFIG_MANILA_NETWORK_STANDALONE_NETMASK=

ptg17123584

310 Appendix A: Sample Answer File for Packstack

Set it if network has segmentation (VLAN, VXLAN, etc). It will be

assigned to share-network and share drivers will be able to use this

for network interfaces within provisioned share servers. Optional.

Example: 1001. Defaults to: ''.

CONFIG_MANILA_NETWORK_STANDALONE_SEG_ID=

Can be IP address, range of IP addresses or list of addresses or

ranges. Contains addresses from IP network that are allowed to be

used. If empty, then will be assumed that all host addresses from

network can be used. Optional. Examples: 10.0.0.10 or

10.0.0.10-10.0.0.20 or

10.0.0.10-10.0.0.20,10.0.0.30-10.0.0.40,10.0.0.50. Defaults to: ''.

CONFIG_MANILA_NETWORK_STANDALONE_IP_RANGE=

IP version of network. Optional. Defaults to: 4 (4, 6).

CONFIG_MANILA_NETWORK_STANDALONE_IP_VERSION=4

Password to use for OpenStack Bare Metal Provisioning (ironic) to

access the database.

CONFIG_IRONIC_DB_PW=lab

Password to use for OpenStack Bare Metal Provisioning to

authenticate with the Identity service.

CONFIG_IRONIC_KS_PW=lab

Password to use for the Compute service (nova) to access the

database.

CONFIG_NOVA_DB_PW=a3f51ff28de54548

Password to use for the Compute service to authenticate with the

Identity service.

CONFIG_NOVA_KS_PW=0a2872f1b1d94818

Overcommitment ratio for virtual to physical CPUs. Specify 1.0 to

disable CPU overcommitment.

CONFIG_NOVA_SCHED_CPU_ALLOC_RATIO=16.0

Overcommitment ratio for virtual to physical RAM. Specify 1.0 to

disable RAM overcommitment.

CONFIG_NOVA_SCHED_RAM_ALLOC_RATIO=1.5

Protocol used for instance migration. Valid options are: tcp and

ssh. Note that by default, the Compute user is created with the

/sbin/nologin shell so that the SSH protocol will not work. To make

the SSH protocol work, you must configure the Compute user on

ptg17123584

 311

compute hosts manually (tcp, ssh).

CONFIG_NOVA_COMPUTE_MIGRATE_PROTOCOL=tcp

Manager that runs the Compute service.

CONFIG_NOVA_COMPUTE_MANAGER=nova.compute.manager.ComputeManager

PEM encoded certificate to be used for ssl on the https server,

leave blank if one should be generated, this certificate should not

require a passphrase. If CONFIG_HORIZON_SSL is set to 'n' this

parameter is ignored.

CONFIG_VNC_SSL_CERT=

SSL keyfile corresponding to the certificate if one was entered. If

CONFIG_HORIZON_SSL is set to 'n' this parameter is ignored.

CONFIG_VNC_SSL_KEY=

Private interface for flat DHCP on the Compute servers.

CONFIG_NOVA_COMPUTE_PRIVIF=eth1.10

Compute Network Manager. ['^nova\.network\.manager\.\w+Manager$']

CONFIG_NOVA_NETWORK_MANAGER=nova.network.manager.FlatDHCPManager

Public interface on the Compute network server.

CONFIG_NOVA_NETWORK_PUBIF=eth0

Private interface for flat DHCP on the Compute network server.

CONFIG_NOVA_NETWORK_PRIVIF=eth1.10

IP Range for flat DHCP. ['^[\:\.\da-fA-f]+(\/\d+){0,1}$']

CONFIG_NOVA_NETWORK_FIXEDRANGE=192.168.1.0/24

IP Range for floating IP addresses. ['^[\:\.\da-

fA-f]+(\/\d+){0,1}$']

CONFIG_NOVA_NETWORK_FLOATRANGE=192.168.2.0/24

Specify 'y' to automatically assign a floating IP to new instances.

(y, n)

CONFIG_NOVA_NETWORK_AUTOASSIGNFLOATINGIP=n

First VLAN for private networks (Compute networking).

CONFIG_NOVA_NETWORK_VLAN_START=100

Number of networks to support (Compute networking).

CONFIG_NOVA_NETWORK_NUMBER=1

ptg17123584

312 Appendix A: Sample Answer File for Packstack

Number of addresses in each private subnet (Compute networking).

CONFIG_NOVA_NETWORK_SIZE=255

Password to use for OpenStack Networking (neutron) to authenticate

with the Identity service.

CONFIG_NEUTRON_KS_PW=2820c6f0c1314209

The password to use for OpenStack Networking to access the

database.

CONFIG_NEUTRON_DB_PW=fd1662e09a6f4165

The name of the Open vSwitch bridge (or empty for linuxbridge) for

the OpenStack Networking L3 agent to use for external traffic.

Specify 'provider' if you intend to use a provider network to handle

external traffic.

CONFIG_NEUTRON_L3_EXT_BRIDGE=br-ex

Password for the OpenStack Networking metadata agent.

CONFIG_NEUTRON_METADATA_PW=3658c5fbcad74f6e

Specify 'y' to install OpenStack Networking's Load-Balancing-

as-a-Service (LBaaS) (y, n).

CONFIG_LBAAS_INSTALL=y

Specify 'y' to install OpenStack Networking's L3 Metering agent (y,

n).

CONFIG_NEUTRON_METERING_AGENT_INSTALL=y

Specify 'y' to configure OpenStack Networking's Firewall-

as-a-Service (FWaaS) (y, n)

CONFIG_NEUTRON_FWAAS=y

Comma-separated list of network-type driver entry points to be

loaded from the neutron.ml2.type_drivers namespace (local, flat,

vlan, gre, vxlan).

CONFIG_NEUTRON_ML2_TYPE_DRIVERS=local,vlan,flat,gre,vxlan

Comma-separated, ordered list of network types to allocate as

tenant networks. The 'local' value is only useful for single-box

testing and provides no connectivity between hosts (local, vlan,

gre, vxlan).

CONFIG_NEUTRON_ML2_TENANT_NETWORK_TYPES=vlan

Comma-separated ordered list of networking mechanism driver entry

points to be loaded from the neutron.ml2.mechanism_drivers namespace

ptg17123584

 313

(logger, test, linuxbridge, openvswitch, hyperv, ncs, arista,

cisco_nexus, mlnx, l2population).

CONFIG_NEUTRON_ML2_MECHANISM_DRIVERS=openvswitch

Comma-separated list of physical_network names with which flat

networks can be created. Use * to allow flat networks with arbitrary

physical_network names.

CONFIG_NEUTRON_ML2_FLAT_NETWORKS=*

Comma-separated list of <physical_network>:<vlan_min>:<vlan_max> or

<physical_network> specifying physical_network names usable for VLAN

provider and tenant networks, as well as ranges of VLAN tags on each

available for allocation to tenant networks.

CONFIG_NEUTRON_ML2_VLAN_RANGES=physnet1:2:4094

Comma-separated list of <tun_min>:<tun_max> tuples enumerating

ranges of GRE tunnel IDs that are available for tenant-network

allocation. A tuple must be an array with tun_max +1 - tun_min >

1000000.

CONFIG_NEUTRON_ML2_TUNNEL_ID_RANGES=

Comma-separated list of addresses for VXLAN multicast group. If

left empty, disables VXLAN from sending allocate broadcast traffic

(disables multicast VXLAN mode). Should be a Multicast IP (v4 or v6)

address.

CONFIG_NEUTRON_ML2_VXLAN_GROUP=

Comma-separated list of <vni_min>:<vni_max> tuples enumerating

ranges of VXLAN VNI IDs that are available for tenant network

allocation. Minimum value is 0 and maximum value is 16777215.

CONFIG_NEUTRON_ML2_VNI_RANGES=5001:10000

Name of the L2 agent to be used with OpenStack Networking

(linuxbridge, openvswitch).

CONFIG_NEUTRON_L2_AGENT=openvswitch

Comma-separated list of interface mappings for the OpenStack

Networking linuxbridge plugin. Each tuple in the list must be in the

format <physical_network>:<net_interface>. Example:

physnet1:eth1,physnet2:eth2,physnet3:eth3.

CONFIG_NEUTRON_LB_INTERFACE_MAPPINGS=

Comma-separated list of bridge mappings for the OpenStack

Networking Open vSwitch plugin. Each tuple in the list must be in

the format <physical_network>:<ovs_bridge>. Example: physnet1:br-

ptg17123584

314 Appendix A: Sample Answer File for Packstack

eth1,physnet2:br-eth2,physnet3:br-eth3

CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=physnet1:br-data

Comma-separated list of colon-separated Open vSwitch

<bridge>:<interface> pairs. The interface will be added to the

associated bridge. If you desire the bridge to be persistent a value

must be added to this directive, also

CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS must be set in order to create

the proper port. This can be achieved from the command line by

issuing the following command: packstack --allinone --os-neutron-

ovs-bridge-mappings=ext-net:br-ex --os-neutron-ovs-bridge-interfaces

=br-ex:eth0

CONFIG_NEUTRON_OVS_BRIDGE_IFACES=br-data:eth1.10

Interface for the Open vSwitch tunnel. Packstack overrides the IP

address used for tunnels on this hypervisor to the IP found on the

specified interface (for example, eth1).

CONFIG_NEUTRON_OVS_TUNNEL_IF=

VXLAN UDP port.

CONFIG_NEUTRON_OVS_VXLAN_UDP_PORT=4789

Specify 'y' to set up Horizon communication over https (y, n).

CONFIG_HORIZON_SSL=n

Secret key to use for Horizon Secret Encryption Key.

CONFIG_HORIZON_SECRET_KEY=93029ad02c8f49f8865f0e6a41b8f8f4

PEM-encoded certificate to be used for SSL connections on the https

server (the certificate should not require a passphrase). To

generate a certificate, leave blank.

CONFIG_HORIZON_SSL_CERT=

SSL keyfile corresponding to the certificate if one was specified.

CONFIG_HORIZON_SSL_KEY=

CONFIG_HORIZON_SSL_CACERT=

Password to use for the Object Storage service to authenticate with

the Identity service.

CONFIG_SWIFT_KS_PW=8b3a14537ffa4c37

Comma-separated list of devices to use as storage device for Object

Storage. Each entry must take the format /path/to/dev (for example,

specifying /dev/vdb installs /dev/vdb as the Object Storage storage

ptg17123584

 315

device; Packstack does not create the filesystem, you must do this

first). If left empty, Packstack creates a loopback device for test

setup.

CONFIG_SWIFT_STORAGES=

Number of Object Storage storage zones; this number MUST be no

larger than the number of configured storage devices.

CONFIG_SWIFT_STORAGE_ZONES=1

Number of Object Storage storage replicas; this number MUST be no

larger than the number of configured storage zones.

CONFIG_SWIFT_STORAGE_REPLICAS=1

File system type for storage nodes (xfs, ext4).

CONFIG_SWIFT_STORAGE_FSTYPE=ext4

Custom seed number to use for swift_hash_path_suffix in

/etc/swift/swift.conf. If you do not provide a value, a seed number

is automatically generated.

CONFIG_SWIFT_HASH=8af0d28623254c73

Size of the Object Storage loopback file storage device.

CONFIG_SWIFT_STORAGE_SIZE=2G

Password used by Orchestration service user to authenticate against

the database.

CONFIG_HEAT_DB_PW=lab

Encryption key to use for authentication in the Orchestration

database (16, 24, or 32 chars).

CONFIG_HEAT_AUTH_ENC_KEY=bef72d0287344cc8

Password to use for the Orchestration service to authenticate with

the Identity service.

CONFIG_HEAT_KS_PW=lab

Specify 'y' to install the Orchestration CloudWatch API (y, n).

CONFIG_HEAT_CLOUDWATCH_INSTALL=n

Specify 'y' to install the Orchestration CloudFormation API (y, n).

CONFIG_HEAT_CFN_INSTALL=n

Name of the Identity domain for Orchestration.

CONFIG_HEAT_DOMAIN=heat

ptg17123584

316 Appendix A: Sample Answer File for Packstack

Name of the Identity domain administrative user for Orchestration.

CONFIG_HEAT_DOMAIN_ADMIN=heat_admin

Password for the Identity domain administrative user for

Orchestration.

CONFIG_HEAT_DOMAIN_PASSWORD=lab

Specify 'y' to provision for demo usage and testing (y, n).

CONFIG_PROVISION_DEMO=y

Specify 'y' to configure the OpenStack Integration Test Suite

(tempest) for testing. The test suite requires OpenStack Networking

to be installed (y, n).

CONFIG_PROVISION_TEMPEST=y

CIDR network address for the floating IP subnet.

CONFIG_PROVISION_DEMO_FLOATRANGE=172.24.4.224/28

The name to be assigned to the demo image in Glance (default

"cirros").

CONFIG_PROVISION_IMAGE_NAME=cirros

A URL or local file location for an image to download and provision

in Glance (defaults to a URL for a recent "cirros" image).

CONFIG_PROVISION_IMAGE_URL=http://download.cirros-cloud.net/0.3.3/cirros-0.3.3-
x86_64-disk.img

Format for the demo image (default "qcow2").

CONFIG_PROVISION_IMAGE_FORMAT=qcow2

User to use when connecting to instances booted from the demo

image.

CONFIG_PROVISION_IMAGE_SSH_USER=cirros

Name of the Integration Test Suite provisioning user. If you do not

provide a user name, Tempest is configured in a standalone mode.

CONFIG_PROVISION_TEMPEST_USER=

Password to use for the Integration Test Suite provisioning user.

CONFIG_PROVISION_TEMPEST_USER_PW=lab

CIDR network address for the floating IP subnet.

CONFIG_PROVISION_TEMPEST_FLOATRANGE=172.24.4.224/28

URI of the Integration Test Suite git repository.

ptg17123584

 317

CONFIG_PROVISION_TEMPEST_REPO_URI=https://github.com/openstack/tempest.git

Revision (branch) of the Integration Test Suite git repository.

CONFIG_PROVISION_TEMPEST_REPO_REVISION=master

Specify 'y' to configure the Open vSwitch external bridge for an

all-in-one deployment (the L3 external bridge acts as the gateway

for virtual machines) (y, n).

CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE=n

Secret key for signing Telemetry service (ceilometer) messages.

CONFIG_CEILOMETER_SECRET=b86ce657da7e4eaa

Password to use for Telemetry to authenticate with the Identity

service.

CONFIG_CEILOMETER_KS_PW=d563856ba5fd47c6

Backend driver for Telemetry's group membership coordination

(redis, none).

CONFIG_CEILOMETER_COORDINATION_BACKEND=redis

IP address of the server on which to install MongoDB.

CONFIG_MONGODB_HOST=192.168.1.22

IP address of the server on which to install the Redis master

server.

CONFIG_REDIS_MASTER_HOST=192.168.1.22

Port on which the Redis server(s) listens.

CONFIG_REDIS_PORT=6379

Specify 'y' to have Redis try to use HA (y, n).

CONFIG_REDIS_HA=n

Hosts on which to install Redis slaves.

CONFIG_REDIS_SLAVE_HOSTS=

Hosts on which to install Redis sentinel servers.

CONFIG_REDIS_SENTINEL_HOSTS=

Host to configure as the Redis coordination sentinel.

CONFIG_REDIS_SENTINEL_CONTACT_HOST=

Port on which Redis sentinel servers listen.

CONFIG_REDIS_SENTINEL_PORT=26379

ptg17123584

318 Appendix A: Sample Answer File for Packstack

Quorum value for Redis sentinel servers.

CONFIG_REDIS_SENTINEL_QUORUM=2

Name of the master server watched by the Redis sentinel (eg.

master).

CONFIG_REDIS_MASTER_NAME=mymaster

Password to use for OpenStack Data Processing (sahara) to access

the database.

CONFIG_SAHARA_DB_PW=lab

Password to use for OpenStack Data Processing to authenticate with

the Identity service.

CONFIG_SAHARA_KS_PW=lab

Password to use for OpenStack Database-as-a-Service (trove) to

access the database.

CONFIG_TROVE_DB_PW=lab

Password to use for OpenStack Database-as-a-Service to authenticate

with the Identity service.

CONFIG_TROVE_KS_PW=lab

User name to use when OpenStack Database-as-a-Service connects to

the Compute service.

CONFIG_TROVE_NOVA_USER=admin

Tenant to use when OpenStack Database-as-a-Service connects to the

Compute service.

CONFIG_TROVE_NOVA_TENANT=services

Password to use when OpenStack Database-as-a-Service connects to

the Compute service.

CONFIG_TROVE_NOVA_PW=lab

Password of the nagiosadmin user on the Nagios server.

CONFIG_NAGIOS_PW=16ff1ac86832473b

ptg17123584

Index

A
A9 processor, 1

active/active flow distribution to
cloudburst, redirection access
model, 193

adoption, Enterprise cloud, 29-30

algorithms, scheduling, 60-62

Amazon web services deployment, CSR,
211-215

Amazon web services deployment, CSR
1000V, 216-222

application-centric infrastructure
(SDN), 224

Application Virtual Switch (AVS), 270

architecture, CSR 1000V, troubleshooting,
271-272

ASR (Aggregation Service Router) 1000
router, 41, 96-97

architectural elements, 95
ESPs (embedded service processors),

42-43
RP (route processor), 42
SIP (SPA interface processor), 43

ASR (Aggregation Service Router)
1001, 97

logical architecture, 97
virtualizing into CSR 1000V, 98

ATM (Asynchronous Transfer Mode), 13

attach-device command (virsh), 90

attach-disk command (virsh), 90

attach-interface command (virsh), 90

automation, 247-248
BDEO tool, 248-249
management, 247
NSO tool, 249-251

NFV orchestration with OpenStack,
252-253, 260-261, 264-266

versus orchestration, 247
provisioning, 247

availability zones, VPC, 214

AVC (Application Visibility and Control),
CSR 1000V, 52-53

AVS (Application Virtual Switch), 270

AWS (Amazon web services) deployment
CSR, 211-215
CSR 1000V, 216-222

B
BadUidbSubIdx drop type (IOS), 285

Basic Input/Output System (BIOS), 67

BDEO tool, 248-249

BIOS (Basic Input/Output System), 67

BIOS settings, hosts, 276

block-based storage, 3

boot process (IOS), 66-67

BPG route reflector, CSR, 155-157
hierarchical use, 157-162

BqsOor drop type (IOS), 285

branch design, CSR 1000V, planning,
162-168

ptg17123584

C
caching memory, Linux, 71

Ceilometer project, OpenStack, 205

chunk manager (memory manager), 66

CIM (Common Information Model) system
processes, VMkernel, 77-78

Cinder component (OpenStack), 34

Cinder project, OpenStack, 204

Cisco Domain 10 framework, 22
abstraction and virtualization, 23
automation and orchestration, 23
customer interface, 24
infrastructure and environmental, 22-23
organization, governance, and process,

25-26
platform and application, 24
security and compliance, 24-25
service catalog and financials, 24

Cisco inter-cloud fabric, CSR 1000V
cloudburst, 194-195

CLI (command-line interface)
control-processor output, 282
show interfaces command output, 282
sw-nic output, 288

Client, CSR data plane, 101

clientless mode (SSL VPNs), 147

cloud computing, 1
design, 21-23

on-demand service, 21
Enterprise

adoption challenges, 29-30
connectivity, 26-28

cloud deployment models, 20-21

cloud services
IaaS (Infrastructure as a Service), 18-19
PaaS (Platform as a Service), 19
SaaS (Software as a Service), 20

cloudburst, CSR 1000V, 190
Cisco inter-cloud fabric, 194-195
data synchronization, 191
direct access model, 191-192
network connectivity, 190
redirection access model, 192-193
workload migration, 191

code listings
Changing the Speed of the Interface, 279

Configuration Script Sample, 240
Control-Processor CLI Output, 282
CSR 1000V as a DMVPN Hub, 149-150
CSR as a Remote Access VPN Server with

an AnyConnect Client, 153-155
ESXi NIC Stats, 290
ESXi Port Stats, 292
Example of Using the glance CLI to Add

a CSR 1000V Image, 236
How to Check Throughput Levels and

License Details, 277
Interface Controller Output, 283-285
Interface show Command, 280
ISR as a DMVPN Spoke, 150-152
Kernel Images Available to GRUB Are

Listed in menu.lst, 67-68
LMGW Configuration, 177-179
MS/MR Configuration, 179-181
Programs That Are Executed on the Full-

Multiuser Run Level, 69
QFP Feature Debugging Options,

286-288
R1 Configuration, 159
R2 Configuration, 159
R3 Configuration, 161
R4 Configuration, 161
R5-1 Configuration, 160
R5-2 Configuration, 160
RR1 Configuration, 158
RR2 Configuration, 158
RR-3 Configuration, 160
RR-4 Configuration, 161
Sample Answer File for Packstack,

231-233
Sample Definition of VNF Descriptors,

261-264
Sample NSO Initiation to Understand

Input to Be Used in Service and
Device Model Framework, 253-260

Sample of Installed NED Verification, 260
Sample VNF Instantiation, 264
show Commands, 182
show interfaces CLI Output, 283
Snapshot of BGP Update at R4, 162
sw-nic CLI Output, 288
VM List on an ESXi Host, 289

commands
show, 181-182, 278
show interface, 279

320 caching memory, Linux

ptg17123584

show interface controller, 283
show interfaces, 282
speed, 278
statistics drop, 285

computation, data centers, 3

conceptual architecture, data center
virtualization, 5-6

configuration
CPU usage, 281-282
hardware and software speed, 278-279
hosts, 275-276
interface-to-NIC mapping, 281
memory usage, 282-288

connectivity, Enterprise cloud, 26-28

containers, 8

control planes, LISP, 171-175

controlled resources, 83

core partitioning, hypervisors, 75

CPUs
pining, 138
settings, hosts, 275
scheduling algorithms, 60-62
usage configuration, 281-282

CPU scheduler, VMkernel, 76

create command (virsh), 89

Create Router dialog (OpenStack), 238

critical priority, ready queue, 65

Critical queue (IOS scheduler), 38

crypto engine, CSR 1000V, 103

crypto maps, IPsec VPNs, 143-144

CSR (cloud service router)
BPG route reflector, 155-157

hierarchical use, 157-162
host configuration, 275-276
hypervisors, 59
LISP (Locator/ID Separation Protocol),

168-169, 175
control plane, 171-175
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176-182

PETR (proxy egress tunnel router),
170-171

PITR (proxy ingress tunnel
router), 170

OpenStack
instantiating Neutron plugin,

242-245
tenant deployment, 235-242

public cloud deployment, Amazon web
services, 211-215

as Remote Access VPN server, 153-155
remote VPN access into Cloud, 153-155
secure inter-cloud connectivity, 152

CSR 1000V, 37, 95
AVC (Application Visibility and Control),

52-53
branch design planning, 162-164

virtualization, 164-168
cloudburst, 190

Cisco inter-cloud fabric, 194-195
data synchronization, 191
direct access model, 191-192
network connectivity, 190
redirection access model, 192-193
workload migration, 191

data plane, 103-104
architecture, 100-102
Netmap I/O, 104-105
packet flow, 106-109

DMVPN (Dynamic Multipoint VPN), 53
EEM (Embedded Event Manager), 54
initiation process, 99-100
installing

KVM hypervisor, 126-137
VMware hypervisor, 110-125

IP SLA (IP Service Level Agreement), 54
LISP (Location/ID Separation

Protocol), 54
MPLS (Multiprotocol Label Switching)

VPN, 54-55
multitenant data center, 185-190

zone connectivity, 188
as Neutron router, 206-209
OTV (Overlay Transport

Virtualization), 55
performance tuning, 137-139
PfR (Performance Routing), 55
private cloud deployment in OpenStack,

195-211

CSR 1000V 321

ptg17123584

public cloud deployment, 211
Amazon web services, 216-222

Radio Aware Routing, 56
Redundancy Group Infrastructure, 56
software crypto engine, 103
system design, 95-98
as tenant router, 209-211
troubleshooting, 271

architecture overview, 271-272
debugging packet loss, 276-292
I/O configuration, 272-276

virtualizing ASR 1001 into, 98
VM (virtual machine), 271

layers, 103
VPLS (Virtual Private LAN Services), 55
VPN service gateway, 148-153
VPN services, 141

L2VPNs, 141
L3VPNs, 142-148

VXLAN (Virtual Extensible LAN), 56
ZBFW (Zone Based Firewall), 56-57

CSR 1000V routers, 44-45
deployment requirements, 45-47
elastic performance and scaling, 47-48
network extension from premises to

cloud, 51
rapid deployment, 49
routing flexibility, 49
secure cloud VPN gateway, 50-51
segmentation within cloud, 52

CSRV, bringing up as guest, 126-137

D
daemon (IOSd), 40-41

DAL (Database Abstraction Layer), 202

data, unstructured, 4

data centers, 1-2
computation, 3
distributed servers, 2
evolution, 2
facilities, 3
multitenant, 16-18

CSR 1000V, 185-190
logical diagram, 185
virtual service block design, 186

network fabric, 3
physical hardware, 1
SDN, 224-225

service blocks
deployment, 188
placement, 186

services, 3
storage, 3
utilization, 2
virtualization, 2-5

conceptual architecture, 5-6
evolution, 5
network, 12-14
server, 6-8
service, 15-16
storage, 9-12

data plane (CSR 1000V), 103-104
architecture, 100-102
LISP, 171
Netmap I/O, 104-105
packet flow, 106

device initialization, 106-107
Rx, 108
Tx, 107
unicast traffic, 109

data synchronization, CSR 1000V
cloudburst, 191

Database Abstraction Layer (DAL), 202

DCUI (Direct Console User Interface)
processes, VMkernel, 77

dead queue (IOS scheduler), 65

debugging packet loss, 276
CPU usage, 281-282
ESXi, 289-292
hardware and software configurations,

278-279
high-level packet flow, 276-277
interface-to-NIC mapping, 281
L2 MTU, 280
memory usage, 282-288
throughput license, 277-278
vSwitch packet drops, 289

define command (virsh), 89

deploying OpenStack, 225-233
CSR tenant, 235-242

deployment models, cloud, 20-21

deployment requirements, CSR 1000V
routers, 45-47

descriptors, VNF, definition, 261-264

design
CSR 1000V, 95-98

branch design, 162-168

322 CSR 1000V

ptg17123584

hypervisors
core partitioning, 75
microkernel architecture, 74
monolithic architecture, 74

operating systems, 60
physical resource management,

60-62
software access to resources, 62

design, cloud, 21-23
on-demand service, 21

destroy command (virsh), 89

detach-device command (virsh), 90

detach-disk command (virsh), 90

detach-interface command (virsh), 90

device-based network virtualization, 14-15

device-based storage virtualization, 11

device drivers
ESXi hypervisor, 78-79
legacy versus native, 79

device initialization packet flow, CSR
1000V data plane, 106-107

direct access model, CSR 1000V
cloudburst, 191-192

Direct Connect, VPC, 214

Disabled drop type (IOS), 285

disaster recovery using cloudburst,
redirection access model, 193

DMVPNs (Dynamic Multipoint VPNs),
144-145

CSR 1000V, 53
overlays, 190

DNS (domain name service), diagram, 168

Domain 0 (Xen), 93

Domain 10 framework
abstraction and virtualization, 23
automation and orchestration, 23
customer interface, 24
infrastructure and environment, 22-23
organization, governance, and process,

25-26
platform and application, 24
security and compliance, 24-25
service catalog and financials, 24

domain controllers, Glance, 202

Domain U (XEN), 93

Domain U PV (XEN), 93

domains, 201

domblkstat command (virsh), 90

domid command (virsh), 89

domifstat command (virsh), 90

dominfo command (virsh), 90

domname command (virsh), 90

domstate command (virsh), 90

domuuid command (virsh), 89

DR (disaster recovery) using cloudburst,
redirection access model, 193

Driver, CSR data plane, 102

dumpxml command (virsh), 89

Dynamic Multipoint VPN (DMVPN), 53,
144-145

E
EC2 (Elastic Compute Cloud),

Amazon, 211

EEM (Embedded Event Manager), CSR
1000V, 54

Elastic Compute Cloud (EC2),
Amazon, 211

elastic IP, VPC, 213

elastic performance, CSR 1000V routers,
47-48

elasticity, cloud, 21

embedded service processors (ESPs), ASR
(Aggregation Service Router), 42-43

encapsulation, GRE (Generic Routing
Encapsulation), 142

enlightened guests, 8

Enterprise cloud
adoption challenges, 29-30
connectivity, 26-28

ESPs (embedded service processors)
ASR (Aggregation Service Router), 42-43
processes, 98

ESXi
bringing up VM with CSR 1000V,

110-125
mapping, 281
NIC stats, 290
opening screen, 80
packet debugging, 289-292
port stats, 292
VM list, 289

ESXi 323

ptg17123584

ESXi hypervisor, 75
device drivers, 78-79
file systems, 79-80
management, 80-81
VMkernel, 75-76

CIM processes, 77-78
CPU scheduler, 76
DCUI processes, 77
memory management, 76
VMM processes, 77
VMX processes, 77

ETR (egress tunnel router), 169-170

examples
Changing the Speed of the Interface, 279
Configuration Script Sample, 240
Control-Processor CLI Output, 282
CSR 1000V as a DMVPN Hub, 149-150
CSR as a Remote Access VPN Server with

an AnyConnect Client, 153-155
ESXi NIC Stats, 290
ESXi Port Stats, 292
Example of Using the glance CLI to Add

a CSR 1000V Image, 236
How to Check Throughput Levels and

License Details, 277
Interface Controller Output, 283-285
Interface show Command, 280
ISR as a DMVPN Spoke, 150-152
Kernel Images Available to GRUB Are

Listed in menu.lst, 67-68
LMGW Configuration, 177-179
MS/MR Configuration, 179-181
Programs That Are Executed on the Full-

Multiuser Run Level, 69
QFP Feature Debugging Options,

286-288
R1 Configuration, 159
R2 Configuration, 159
R3 Configuration, 161
R4 Configuration, 161
R5-1 Configuration, 160
R5-2 Configuration, 160
RR1 Configuration, 158
RR2 Configuration, 158
RR-3 Configuration, 160
RR-4 Configuration, 161
Sample Answer File for Packstack,

231-233
Sample Definition of VNF Descriptors,

261-264

Sample of Installed NED Verification, 260
Sample NSO Initiation to Understand

Input to Be Used in Service and
Device Model Framework, 253-260

Sample VNF Instantiation, 264
show Commands, 182
show interfaces CLI Output, 283
Snapshot of BGP Update at R4, 162
sw-nic CLI Output, 288
VM List on an ESXi Host, 289

Extensible Messaging and Presence
Protocol (XMPP), 32

F
facilities, data centers, 3

FIFO (first in, first out) scheduling
algorithm, 60

file systems, VMFS, 79-80

firewalls, ZBFW (Zone Based Firewall), 56

first in, first out (FIFO) scheduling
algorithm, 60

Forwarding Manager (IOSd), 41

full server virtualization, 8

functions
malloc(), 69
vPATH, 270

G
Generic Routing Encapsulation (GRE)

tunnels, 142

GET VPNs (Group Encrypted Transport
VPN), 145-147

Glance component (OpenStack), 34

Glance project, OpenStack, 201-202

GM (Group Member) device, 146

GNU Grand Unified Boot Loader (GRUB),
66-68

GRE (Generic Routing Encapsulation)
tunnels, 142

Group Encrypted Transport VPNs (GET
VPNs), 145-147

Group Member (GM) devices, 146

groups, 201

GRUB (GNU Grand Unified Boot Loader),
66-68

324 ESXi hypervisor

ptg17123584

guest emulator (QEMU), 85-87

guest mode, Linux kernel, 83

H
hair pinning of traffic, 27

hardware, speed configuration, 278-279

hardware hub VPN access, 27

hardware VPN access, 26

Heat project, OpenStack, 205

help command (virsh), 89

high-level packet flow, debugging,
276-277

high priority, ready queue, 65

High queue (IOS scheduler), 38

Horizon component (OpenStack), 34

Horizon project, OpenStack, 205

host-based storage virtualization, 11

host machines, 272

hosts, configurations, 275-276

hybrid cloud, 20

hybrid kernels, 64

Hyper-V, 91-92

hypercalls, 72-73

hyperthreading setting, BIOS, 276

hypervisors, 59, 71-72, 94
design, 74

core partitioning, 75
microkernel architecture, 74
monolithic architecture, 74

ESXi, 75
device drivers, 78-79
file systems, 79-80
management, 80-81
VMkernel, 75-78

Hyper-V, 91-92
KVM, 82-83

architectural components, 84-85
guest emulator, 85-87
installing CSR 1000V on, 126-137
Libvirt, 88-91

PCI passthrough mode, 274
software, 272
versus operating systems, 72-73
VMware, installing CSR 1000V on,

110-125
Xen, 92-93

I
IaaS (Infrastructure as a Service), 2, 18-19

idle queue (IOS scheduler), 65

Infrastructure as a Service (IaaS). See IaaS
(Infrastructure as a Service)

initiation process, CSR 1000V, 99-100

installation
CSR 1000V on KVM hypervisor, 126-137
CSR 1000V on VMware hypervisor,

110-125

instantiation (VNF), 264-265

inter-cloud fabric, CSR 1000V cloudburst,
194-195

interface, changing speed, 278-279

Interface Manager (IOSd), 41

interface-to-NIC mapping,
configuration, 281

Internet for transport, Enterprise cloud
connectivity, 26-28

Internet gateway (VPC), 213

Internetworking Operating System (IOS).
See IOS (Internetworking Operating
System)

I/O configuration, CSR 1000V,
troubleshooting, 272-276

I/O stack, Netmap, 105

IOS (Internetworking Operating System),
37-39

boot process, 66-67
IOSd (IOS daemon), 40-41
kernel, 64

scheduler, 65-66
scheduler, 37
XE architecture, 39

kernel, 40
XE drop types, 285

IOSd (IOS daemon), 95

IOS XE, 96
versus IOS, 96-98

IOS XE operating system, 95

IP mobility, LISP, 175

IP SLA (IP Service Level Agreement), CSR
1000V, 54

IPsec VPNs, 142
with crypto maps, 143-144
offloading, 3

IPsec VPNs 325

ptg17123584

326 Ipsilon Networks

Ipsilon Networks, 13

Ipv4NoAdj drop type (IOS), 286

Ipv4NoRoute drop type (IOS), 286

IPv6 migration, LISP, 175

ITR (ingress tunnel router), 169-170

K
Kernel-based Virtual Machine (KVM). See

KVM (Kernel-based Virtual Machine)

kernels, 63
ESXi hypervisor, VMkernel, 75-78
hybrid, 64
IOS, 64

memory manager, 65-66
scheduler, 65

IOS XE, 40
KVM (Kernel-based Virtual Machine),

82-83
architectural components, 84-85
guest emulator, 85-87

Linux, memory management, 69-71
microkernels, 63

hypervisor architecture, 74

Key Server (KS), 146

Keystone component (OpenStack), 34

Keystone project, OpenStack, 199-201

KS (Key Server), 146

KVM (Kernel-based Virtual Machine),
82-83

architectural components, 84-85
guest emulator, 85-87
hypervisor

installing CSR 1000V on, 126-137
Libvirt, 88-91

L
L2 MTU, configuration, 280

L2VPNs (Layer 2 VPNs), 141

L3VPNs (Layer 3 VPNs), 141-143
DMVPNs (Dynamic Multipoint VPNs),

144-145
GET VPNs (Group Encrypted Transport

VPN), 145-147
GRE tunnels, 142
IPsec VPNs, 142
IPsec VPNs with crypto maps, 143-144

MPLS VPNs, 142
site-to-site VPNs, 143
SSL VPNs, 147-148

legacy drivers versus native drivers, 79

Libvirt
management daemon, 88
user tools, 89-91
virsh, 89-91

Linux
memory management, 69

caching, 71
overcommitment, 69-70
swap space, 69-71

versus Netmap I/O, 105

LISP (Location/ID Separation Protocol),
168-169, 175, 190

control plane, 171-175
CSR 1000V, 54
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176, 179-182
packet header, 172
PETR (proxy egress tunnel router),

170-171
PITR (proxy ingress tunnel router), 170

LISP-to-MPLS Gateway (LMGW),
176, 179

list command (virsh), 89

LMGW (LISP-to-MPLS Gateway),
176, 179

Locator/ID Separation Protocol (LISP).
See LISP (Locator/ID Separation
Protocol)

low priority, ready queue, 65

Low queue (IOS scheduler), 38

M
mainframes, virtualization, 17

malloc() function, 69

management, automation, 247

ptg17123584

networks 327

management daemon (Libvirt), 88
user tools, 89-91

map resolver (MR), 176

map server (MS), 176

MBR (Master Boot Record), 67

measured services, cloud, 21

medium priority, ready queue, 65

Medium queue (IOS scheduler), 38

memory, physical, 76

memory management
Linux

caching, 71
over commitment, 69-70
swap space, 69-71

VMkernel, 76

memory manager (IOS), 65-66

memory usage, configuration, 282-288

microkernel architecture, hypervisors, 74

microkernels, 63

migrate command (virsh), 90

modes of operation (KVM), 83

monolithic architecture, hypervisors, 74

MPLS (Multiprotocol Label Switching), 14
VPNs (virtual private networks),

54-55, 142

MPLS over GRE, 190

MR (MAP Resolver), 170

MTUs (maximum transmission units)
L2, configuration, 280

multipoint L2VPNs, 141

Multiprotocol Label Switching (MPLS). See
MPLS (Multiprotocol Label Switching)

multitenancy, 21, 185

multitenant data center, 16-18
CSR, 185-190

zone connectivity, 188
logical diagram, 185
virtual service block design, 186

N
NAS (network-attached storage), 3

native drivers versus legacy drivers, 79

NBAR2 (Network Based Application
Recognition), 52

NEDs, installation verification, 260-261

NETCONF, 166-168

Netmap I/O
CSR 1000V data plane, 104-105
versus Linux, 105

network-attached storage (NAS), 3

Network Based Application Recognition
(NBAR2), 52

network-based storage virtualization, 11

Network Configuration Protocol
(NetConf), 32

network connectivity, CSR 1000V
cloudburst, 190

network data centers, virtualization, 15

network extension from premises
deployment, CSR 1000V routers, 51

network fabric, data centers, 3

Network Functions Virtualization (NFV),
15, 33, 156, 223

network-level hypervisor, virtualization, 15

network-to-network connectivity, LISP,
175-176

network-to-network interconnection
configuration, LISP, 176-182

network virtualization, 12-13
device-based, 14-15
evolution, 13-14
protocol-based, 14

networking
NFV (network function virtualization), 33
OpenStack, 34
SDN (software-defined networking),

30-31
ONF (Open Networking

Foundation), 31-32
OpenDaylight, 32-33

networks
orchestrating solutions, 247
VPNs (virtual private networks), 141

DMVPNs (Dynamic Multipoint
VPNs), 144-145

GET VPNs (Group Encrypted
Transport VPN), 145-147

IPsec, 142
IPsec with crypto maps, 143-144
L2VPNs, 141
L3VPNs, 142-148
remote access into cloud, 153-155
service gateway, 148-153
site-to-site, 143
SSL VPNs (Secure Sockets Layer

VPN), 147-148

ptg17123584

328 Neutron component (OpenStack)

Neutron component (OpenStack), 34

Neutron plugin, instantiating CSR to
OpenStack, 242-245

Neutron project, OpenStack, 202-203

Neutron routers, CSR 1000V, 206-209

NFV (Network Functions Virtualization),
15, 156, 223

NSO orchestration with OpenStack,
252-253, 260-266

NFV MANO, 268

NFV Orchestrator, 268

Nova component (OpenStack), 34

Nova project, OpenStack, 198-199

NSO tool, 249-251
initiation in service and device model

framework, 253, 260
installed NED verification, 260-261
NFV orchestration with OpenStack,

252-253, 260-261, 264-266
VNF (virtual network function)

descriptor definition, 261, 264
instantiation, 264-265

NVF (network function virtualization), 33

O
on-demand service, cloud, 21

ONF (Open Networking Foundation),
31-32

OpenDaylight, 32-33

OpenFlow protocol, 31-32

OpenStack, 34, 196, 225
Create Network submenu, 237-238
Create Router dialog, 238
CSR, instantiating Neutron plugin to,

242-245
dashboard login, 235
deploying, 225-233

CSR tenant, 235-242
network subnet menu, 238
private cloud deployment, CSR 1000V,

195-211
projects, 197

Ceilometer, 205
Cinder, 204
Glance, 201-202
Heat, 205
Horizon, 205

Keystone, 199-201
Neutron, 202-203
Nova, 198-199
Sahara, 205
Swift, 205
Trove, 205

tenants, 265-266
VM image creation, 235

operating systems, 59
boot process, 66-67
design, 60

physical resource management,
60-62

software access to resources, 62
IOS XE, 95-96

versus IOS, 96-98
kernels, 63

hybrid, 64
IOS, 64-66
microkernels, 63

Linux, memory management, 69-71
shared resource access, 72
versus hypervisors, 72-73
virtualization, 8

orchestration, 267
network solutions, 247
NFV MANO, 268
PNSC (Prime Network Services

Controller), 269-270
versus automation, 247
VMS (Virtual Managed Services), 267-268

OTV (Overlay Transport
Virtualization), 190

CSR 1000V, 55

overcommitment, memory, Linux, 69-70

Overlay Transport Virtualization
(OTV). See OTV (Overlay Transport
Virtualization)

overlays, SDN, 224

P
PaaS (Platform as a Service), 2, 18-19

packet flow, CSR 1000V data plane, 103
device initialization, 106-107
Netmap I/O, 104-105
Rx, 108
Tx, 107
unicast traffic, 109

ptg17123584

public cloud deployment 329

packet loss, debugging, 276
CPU usage, 281-282
ESXi, 289-292
hardware and software configurations,

278-279
high-level packet flow, 276-277
interface-to-NIC mapping, 281
L2 MTU, 280
memory usage, 282-288
throughput license, 277-278
vSwitch packet drops, 289

packets, LISP, 172

Packstack, deploying OpenStack, 225-233

paged memory, 61

para-virtualization, server, 8

partitioning, core, hypervisors, 75

pay-as-you-use service, 21

PCI passthrough mode, hypervisor
software, 274

Performance Routing (PfR), 55

performance tuning, CSR 1000V, 137-139

PETR (proxy egress tunnel router),
170-171

PfR (Performance Routing), 55

physical infrastructure, network
virtualization, 15

physical memory, 76

physical resource management, operating
systems, 60-62

pining, CPUs, 138

PITR (proxy ingress tunnel router), 170

Platform as a Service (PaaS). See PaaS
(Platform as a Service)

Platform Manager (IOSd), 41

PNSC (Prime Network Services
Controller), 248

orchestration, 269-270

point-to-point L2VPNs, 141

policy IPsec VPNs, 143

pool manager (memory manager), 65

Power setting, BIOS, 276

preemption scheduling algorithm, 61

Prime Network Services Controller
(PNSC). See PNSC (Prime Network
Services Controller)

priority scheduling algorithm, 61

private cloud, 20

private cloud deployment in OpenStack,
CSR 1000V, 195-211

processes
ESP, 98
RP, 97
SIP/SPA, 98
VMkernel, 77-78

programmable fabric, SDN, 224

projects, OpenStack, 197
Ceilometer, 205
Cinder, 204
Glance, 201-202
Heat, 205
Horizon, 205
Keystone, 199-201
Neutron, 202-203
Nova, 198-199
Sahara, 205
Swift, 205
Trove, 205

protocol-based network protocol, 14

protocols
LISP (Location/ID Separation Protocol),

54, 168-169, 175
control plane, 171-175
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176, 179-182
PETR (proxy egress tunnel router),

170-171
PITR (proxy ingress tunnel

router), 170
OpenFlow, 31-32

provisioning, automation, 247

public cloud, 20

public cloud deployment
CSR, Amazon web services, 211-215
CSR 1000V, 211

Amazon web services, 216-222

ptg17123584

330 QEMU (Quick Emulator)

Q
QEMU (Quick Emulator)

architectural components, 84-85
guest emulator, 85-87
KVM architecture, 87

QFP (QuantumFlow Processor), 43
debugging options, 286-288

QFP uCode (packet processing), CSR data
plane, 102

quit command (virsh), 90

R
Radio Aware Routing, CSR 1000V, 56

rapid deployment, CSR 1000V routers, 49

ready queue (IOS scheduler), 65

reboot command (virsh), 90

redirection access model, CSR 1000V
cloudburst, 192-193

Redundancy Group Infrastructure, CSR
1000V, 56

region manager (memory manager), 65

regions, VPC, 214

resource pooling, 21

REST API, 202

restore command (virsh), 90

resume command (virsh), 90

ring manipulation, Netmap I/O, 105

RLOC (Routing Locator), 170

round-robin scheduling algorithm, 60

route reflector (RR), 176

routers. See also CSR (cloud service router)
ASR 1000, 41

ESPs (embedded service processors),
42-43

RP (route processor), 42
SIP (SPA interface processor), 43

CSR (cloud service router)
BPG route reflector, 155-162
host configuration, 275-276
hypervisors, 59
LISP (Locator/ID Separation

Protocol), 168-182
OpenStack, 235-242
public cloud deployment, Amazon

web services, 211-215

as Remote Access VPN server,
153-155

remote VPN access into Cloud,
153-155

secure inter-cloud connectivity, 152
CSR 1000V, 44-45

deployment requirements, 45-47
elastic performance and scaling,

47-48
network extension from premises to

cloud, 51
rapid deployment, 49
routing flexibility, 49
secure cloud VPN gateway, 50-51
segmentation within cloud, 52

ETR (Egress Tunnel Router), 169-170
ITR (Ingress Tunnel Router), 169-170
Neutron, CSR 1000V, 206-209
PETR, 170-171
PITR, 170
software, 16
tenant, CSR 1000V, 209-211

routing
flexibility, 49
PfR (Performance Routing), 55
Radio Aware Routing, 56
tables, 213

RP (route processor)
ASR (Aggregation Service Router), 42
processes, 97

Rx packet flow, CSR 1000V data
plane, 108

S
S3 (Simple Storage Service), Amazon, 212

SaaS (Software as a Service), 2, 18-20

Sahara project, OpenStack, 205

SAN (storage-area network), 3

save command (virsh), 90

scaling CSR 1000V routers, 47-48

scheduler (IOS), 37, 65

scheduling algorithms, 60-62

SDN (software-defined networking), 1,
30-31, 223

abstract layer creation, 223
application-centric infrastructure, 224
data center, 224-225

ptg17123584

swap files 331

framework, 223
ONF (Open Networking Foundation),

31-32
OpenDaylight, 32-33
overlays, 224
programmable fabric, 224

secure cloud VPN gateway deployment,
CSR 1000V routers, 50-51

secure inter-cloud connectivity, CSR, 152

Secure Sockets Layer (SSL), 3
VPNs (SSL VPNs), 147-148

security groups, VPC, 213

segmentation within cloud, CSR 1000V
routers, 52

segmented memory allocation, 61

server virtualization, 6-7
full, 8
OS (operating system), 8
para-, 8
storage, 10

service blocks, data centers
deployment, 188
placement, 186

service virtualization, 15-16

services
data centers, 3
IaaS (Infrastructure as a Service), 18-19
PaaS (Platform as a Service), 19
SaaS (Software as a Service), 20

Setmaxmem command (virsh), 90

Setmem command (virsh), 90

Setvcpus command (virsh), 90

shared resources, access, operating
systems, 72

Shortest Process Next (SPN) scheduling
algorithm, 60

Shortest Remaining Time (SRT)
algorithm, 61

show commands, 181-182

show interface command, 278-279

show interface controller command, 283

show interfaces command, 282

shutdown command (virsh), 90

Simple Storage Service (S3), Amazon, 212

Single Root I/O Virtualization (SR-IOV),
274-275

SIP (SPA interface processor), ASR
(Aggregation Service Router), 43

SIP/SPA processes, 98

site-to-site VPNs, 143

SNIA (Storage Networking Industry
Association), 10

sockets settings, hosts, 275

software
access to physical resources, operating

systems, 62
speed configuration, 278-279

Software as a Service (SaaS). See SaaS
(Software as a Service)

software crypto engine, CSR 1000V, 103

software-defined networking (SDN). See
SDN (software-defined networking)

software router, 16

software VPN access, 27

SPA interface processor (SIP), 43

speed command, 278

SpeedStep setting, BIOS, 276

SPN (Shortest Process Next) scheduling
algorithm, 60

SR-IOV (Single Root I/O Virtualization),
274-275

SRT (Shortest Remaining Time)
algorithm, 61

SSL (Secure Sockets Layer), 3
VPNs (Secure Sockets Layer VPNs),

147-148

start command (virsh), 89

static routing VPNs, 143

statistics drop command, 285

storage, 3

storage-area network (SAN), 3

Storage Networking Industry Association
(SNIA), 10

storage virtualization, 9-11
device-based, 11
hidden complexity, 12
host-based, 11
network-based, 11
performance, 12
thin provisioning, 12

subnets, VPC, 212

supervisors, 72

suspend command (virsh), 90

swap caches, 71

swap files, 71

ptg17123584

332 swapping memory, Linux

swapping memory, Linux, 69-71

Swift component (OpenStack), 34

Swift project, OpenStack, 205

switches, vSwitch, 272-273
packet drops, 289

synchronization, Netmap, 105

system design, CSR 1000V, 95-98

T
Tail-f framework, 166

Tail-f tool, 249, 251
NFV orchestration with OpenStack,

252-253, 260-261, 264-266

TailDrop drop type (IOS), 286

tenant deployment, OpenStack, CSR,
235-240, 242

tenant routers
CSR 1000V, 209-211

tenants, 201
OpenStack, 265-266

thin client mode (SSL VPNs), 147

thrashing, 71

throughput, appropriate license, 277-278

Tiny Code Generator (TCG), 87

traffic, hair pinning, 27

troubleshooting, CSR 1000V
architecture overview, 271-272
I/O configuration, 272-276

Trove project, OpenStack, 205

tunnel mode (SSL VPNs), 147

Tx packet flow, CSR 1000V data
plane, 107

U
uCode, CSR data plane, 102

UnconfiguredIpv4Fia drop type (IOS), 286

UnconfiguredIpv6Fia drop type (IOS), 286

undefine command (virsh), 90

unicast traffic packet flow, CSR 1000V
data plane, 109

UNIVAC-I mainframe computer, 1

unstructured data, 4

user tools, Libvit, 89-91

utilization, data centers, 2

V
vCenter, 81

Vcpuinfo command (virsh), 90

Vcpupin command (virsh), 90

VIM (Virtualized Infrastructure
Manager), 268

virsh command-line tool, 89-91

Virtual Extensible LAN (VxLAN), 56, 190

Virtual Machine File System (VMFS),
79-80

Virtual Machine Manager, 71, 127,
130-134. See also hypervisors

virtual machines, KVM (Kernel-based
Virtual Machine), 82-83

architectural components, 84-85
guest emulator, 85-87

Virtual Managed Services (VMS). See VMS
(Virtual Managed Services)

Virtual Private Cloud (VPC), Amazon, 211

Virtual Private LAN Services (VPLS), 55

virtual private networks (VPNs). See VPNs
(virtual private networks)

virtual routing and forwarding (VRF), 14

virtual service block design, multitenant
data centers, 186

virtual switches, vSwitch, 272-273

virtualization, 71
ASR 1001 into CSR 1000V, 98
branch, 164-168
data centers, 2-4

conceptual architecture, 5-6
evolution, 5

mainframes, 17
network, 12-13

device-based, 14
evolution, 13-14
protocol-based, 14

NFV (Network Functions Virtualization),
33, 156, 223

OTV (Overlay Transport Virtualization),
CSR 1000V, 55

server, 6-8
storage, 11

service, 15-16
SR-IOV (Single Root I/O Virtualization),

274-275

ptg17123584

zones, connectivity, multitenant data center with CSR 1000V 333

storage, 9-10
device-based, 11
hidden complexity, 12
host-based, 11
network-based, 11
thin provisioning, 12

Virtualized Infrastructure Manager
(VIM), 268

VMs (virtual machines)
bringing up on ESXi with CSR 1000V,

110-125
layers, CSR, 103

VMFS (virtual machine file system), 79-80

VMkernel, ESXi hypervisor, 75-76
CIM processes, 77-78
CPU scheduler, 76
DCUI processes, 77
memory management, 76
VMM processes, 77
VMX processes, 77

VMM (virtual machine manager). See
hypervisors

VMS (Virtual Managed Services), 248
orchestration, 267-268

VMware hypervisor, installing CSR 1000V
on, 110-125

VMX processes, VMkernel, 77

VNF
descriptor definition, 261, 264
instantiation, 264-265
Manager, 268

vPATH function, 270

VPC (Virtual Private Cloud), 212
Amazon, 211
availability zones, 214
Direct Connect, 214
elastic IP, 213
Internet gateway, 213
regions, 214
routing tables, 213
security groups, 213
subnets, 212

VPLS (Virtual Private LAN Services), CSR
1000V, 55

VPNs (virtual private machines), 141
DMVPNs (Dynamic Multipoint VPNs),

53, 144-145
GET VPNs (Group Encrypted Transport

VPN), 145-147

IPsec, 142
IPsec with crypto maps, 143-144
L2VPNs, 141
L3VPNs, 142-143

DMVPNs, 144-145
GET VPNs, 145-147
GRE tunnels, 142
IPsec VPNs, 142-144
MPLS VPNs, 142
site-to-site VPNs, 143
SSL VPNs, 147-148

MPLS (Multiprotocol Label
Switching), 54

remote access into cloud, 153-155
service gateway, 148-153
site-to-site, 143
SSL VPNs (Secure Sockets Layer VPN),

147-148

VRF (virtual routing and forwarding), 14

vSwitch, 272-273
packet drops, troubleshooting, 289

VxLAN (Virtual Extensible LAN), 190
CSR 1000V, 56

W-X
Windows Server Virtualization, 91

workload migration, CSR 1000V
cloudburst, 191

XE architecture, IOS, 39
kernel, 40

Xen hypervisor, 92-93

XMPP (Extensible Messaging and
Presence Protocol), 32

Y-Z
YANG, 166-168

ZBFW (Zone Based Firewall), CSR 1000V,
56-57

zero-copy model, Netmap, 105

Zone Based Firewall (ZBFW), 56

zones, connectivity, multitenant data
center with CSR 1000V, 188

ptg17123584

Connect, Engage, Collaborate

The Award Winning
 Cisco Support Community

Attend and Participate in Events

Ask the Experts

Live Webcasts

Knowledge Sharing

Documents

Blogs

Videos

Top Contributor Programs

Cisco Designated VIP

Hall of Fame

Spotlight Awards

Multi-Language Support

https://supportforums.cisco.com

https://supportforums.cisco.com

ptg17123584

9781587144943_Durai_Virtual_Routing_Cloud_CVR.indd 2 4/8/16 1:25 PM

REGISTER YOUR PRODUCT at CiscoPress.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

Download available product updates.

Access bonus material when applicable.

Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

Get a coupon for 35% for your next purchase, valid for 30 days.
Your code will be available in your Cisco Press cart. (You will also find
it in the Manage Codes section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

CiscoPress.com - Learning Solutions for Self-Paced Study, Enterprise, and the Classroom
Cisco Press is the Cisco Systems authorized book publisher of Cisco networking technology,
Cisco certification self-study, and Cisco Networking Academy Program materials.

At CiscoPress.com you can
Shop our books, eBooks, software, and video training.
Take advantage of our special offers and promotions (ciscopress.com/promotions).
Sign up for special offers and content newsletters (ciscopress.com/ newsletters).
Read free articles, exam profiles, and biogs by information technology experts.
Access thousands of free chapters and video lessons.

Connect with Cisco Press - Visit CiscoPress.com/community
Learn about Cisco Press community events and programs.

Cisco Press

ALWAYS LEARNING PEARSON

http://www.ciscopress.com/register
http://www.ciscopress.com
http://www.ciscopress.com
http://www.ciscopress.com/promotions
http://www.ciscopress.com/newsletters
http://www.ciscopress.com/community

	Cover
	Title Page
	Copyright Page
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Chapter 1 Introduction to Cloud
	Evolution of the Data Center
	Data Center Architecture Building Blocks

	Introduction to Virtualization in the Data Center
	Evolution of Virtualization
	Conceptual Architecture of Virtualization
	Types of Virtualization Technologies
	Server Virtualization
	Types of Server Virtualization
	Storage Virtualization
	Types of Storage Virtualization
	Network Virtualization
	Network Virtualization Evolution
	Types of Network Virtualization
	Service Virtualization
	Introduction to the Multitenant Data Center

	Introduction to Cloud Services
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Cloud Deployment Models
	Cloud Design Considerations
	Domain 1: Infrastructure and Environmental
	Domain 2: Abstraction and Virtualization
	Domain 3: Automation and Orchestration
	Domain 4: Customer Interface
	Domains 5 and 6: Service Catalog and Financials
	Domains 7 and 8: Platform and Application
	Domain 9: Security and Compliance
	Domain 10: Organization, Governance, and Process
	Enterprise Connectivity to the Cloud
	Internet for Transport
	Direct Connectivity to a Cloud Provider
	Enterprise Cloud Adoption Challenges
	Software-Defined Networking
	Open Networking Foundation
	OpenDaylight Project
	Network Function Virtualization
	OpenStack

	Summary

	Chapter 2 Software Evolution of the CSR 1000
	IOS Software Architecture
	IOS XE Architecture
	The IOS XE Kernel
	The IOS Daemon
	The Forwarding Manager
	The Interface Manager
	The Platform Manager

	Cisco ASR 1000 System Architecture Overview
	Route Processor
	Embedded Service Processor
	SPA Interface Processor

	Cloud Service Router 1000V Overview
	Deployment Requirements
	Elastic Performance and Scaling
	Rapid Deployment and Routing Flexibility in the Cloud
	CSR 1000V Deployment Examples
	Secure Cloud VPN Gateway
	Network Extension from Premises to Cloud
	Segmentation Within a Cloud

	CSR 1000V Key Features
	Summary

	Chapter 3 Hypervisor Considerations for the CSR
	Understanding Operating Systems
	Operating System Design
	Physical Resource Management
	Software Access to Physical Resources
	Kernels
	Microkernels
	Hybrid Kernels
	The Cisco IOS Kernel
	The Boot Process
	Linux Memory Management
	Linux Swap Space and Memory Overcommit
	Linux Caching

	Understanding Hypervisors
	How Does a Hypervisor Compare to an Operating System?
	Type 1 Hypervisor Design
	Monolithic Architecture
	Microkernel Architecture
	Core Partitioning

	ESXi Hypervisor
	Architectural Components of ESXi
	The VMkernel
	Components of the VMkernel
	Processes Running on the VMkernel
	Device Drivers
	File Systems
	Management

	KVM
	Architectural Components of KVM/QEMU
	Guest Emulator (QEMU)
	Management Daemon (Libvirt)
	User Tools (virsh, virt-manager)

	Hyper-V
	Xen
	Summary

	Chapter 4 CSR 1000V Software Architecture
	System Design
	Virtualizing the ASR 1001 into the CSR 1000V
	CSR 1000V Initialization Process
	CSR 1000V Data Plane Architecture
	CSR 1000V Software Crypto Engine

	Life of a Packet on a CSR 1000V: The Data Plane
	Netmap I/O
	Packet Flow
	Device Initialization Flow
	TX Flow
	RX Flow
	Unicast Traffic Packet Flow

	Installing the CSR 1000V on a VMware Hypervisor
	Bringing Up the VM with the CSR 1000V on ESXi

	Installing the CSR 1000V on a KVM Hypervisor
	Bring Up the CSR 1000V as a Guest

	Performance Tuning of the CSR 1000V
	Summary

	Chapter 5 CSR 1000V Deployment Scenarios
	VPN Services
	Layer 2 VPNs
	Layer 3 VPNs
	Site-to-Site VPNs
	Remote Access VPNs

	Use Cases for the CSR 1000V as a VPN Service Gateway
	Enterprise Data Center Network Extension
	The CSR 1000V as a VPN Gateway
	CSR for Secure Inter-Cloud Connectivity
	Remote VPN Access into the Cloud

	BGP Route Reflector Use Case for the CSR
	The CSR 1000V in a Hierarchical Route Reflector Use Case

	Planning for Future Branch Design with the CSR 1000V
	Evolution of Branch Virtualization

	LISP and CSR
	LISP Terminology
	The LISP Data Plane
	The LISP Control Plane
	Typical LISP Use Cases
	IP Mobility
	IPv6 Migration
	Network-to-Network Connectivity
	Network-to-Network Interconnection Topology and Configuration

	Summary

	Chapter 6 CSR Cloud Deployment Scenarios
	CSR in a Multitenant Data Center
	Cloudburst
	Direct Access Model
	Redirection Access Model
	The Cisco Inter-Cloud Fabric

	Private Cloud Deployment with CSR in OpenStack
	Introduction to OpenStack
	Primary Use Case for OpenStack
	OpenStack Components
	CSR Within OpenStack
	CSR 1000V as a Neutron Router
	CSR 1000V as a Tenant Router

	CSR 1000V in a Public Cloud
	Amazon Web Services Deployment for the CSR
	Amazon Web Service Solutions
	Routing in AWS Clouds
	CSR 1000V Deployment in AWS
	Instantiate a CSR in AWS

	Summary

	Chapter 7 CSR in the SDN Framework
	Deploying OpenStack
	CSR as an OpenStack Tenant Deployment
	Instantiate CSR Plugin to OpenStack
	Summary

	Chapter 8 CSR 1000V Automation, Orchestration, and Troubleshooting
	Automation
	BDEO
	NSO (Tail-f)
	NSO Example for NFV Orchestration with OpenStack (Service Chain)

	Orchestration
	Virtual Managed Services (VMS)
	Cisco Prime Network Services Controller (PNSC)

	CSR 1000V Troubleshooting
	Architecture Overview
	I/O Configuration
	vSwitch
	PCI Passthrough
	SR-IOV (Single Root I/O Virtualization)
	Host Configurations
	Debugging Packet Loss
	High-Level Packet Flow
	ESXi Packet Debugging

	Summary

	Appendix A: Sample Answer File for Packstack
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

